Other Test Method – 36: Method for the Determination of Filterable PM_{2.5} Emissions from Moisture Saturated and/or Droplet-laden Stationary Source Gas Streams (Constant Sampling Rate Procedure)

Note: Please submit a copy, either electronic or paper, of any test report from application of this OTM to EPA's Measurement Technology Group.

Electronic copies should be submitted via email with the subject line "OTM-036" to: EMC@epa.gov

Paper copies should be mailed to:

Measurement Technology Group
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency (Mail Code E143-02)
Research Triangle Park, NC 27711

This test method is designed to measure filterable particulate matter emissions equal to or less than a nominal aerodynamic diameter of 2.5 micrometers (PM_{2.5}) in moisture saturated (wet) and/or droplet-laden gas streams from stationary sources. This method addresses the equipment, preparation, and analysis necessary to measure filterable PM_{2.5} emissions in droplet-laden and/or moisture-saturated gas streams. You must use this method in combination with Method 202 of 40 CFR Part 51, Appendix M (Method 202) for measuring condensable particulate matter regardless of the temperature of the gas stream.

A heated probe and filter box for the sampling train is used to vaporize water droplets in the sample gas stream, which may also vaporize volatile particulate matter in the gas stream. This method measures filterable $PM_{2.5}$ particulate matter based on the material passing through a $PM_{2.5}$ cyclone and depositing in the cyclone exit tubing, filter, and front half of the filter holder. This method can also be used to measure total filterable particulate matter based on the material captured in all parts of the sampling train. When used to measure total filterable particulate matter, the results obtained with this method are similar to those measured by Methods 5 and 5B.

This method was submitted by the American Petroleum Industry (API) and the National Council for Air and Stream Improvement (NCASI) to EPA's Office of Air Quality, Planning and Standards – Air Quality Assessment Division – Measurement Technology Group (MTG) for inclusion into the Other Test Method (OTM) category on EPA's Emission Monitoring Center (EMC) website at: http://www.epa.gov/ttn/emc/tmethods.html#CatC/.

The posting of a test method on the OTM portion of the EMC website is neither an endorsement by EPA regarding the validity of the test method nor a regulatory approval of the test method. The purpose of the OTM portion of the EMC website is to promote discussion of developing emission measurement methodologies and to provide regulatory agencies, the regulated community, and the public at large with potentially helpful tools.

Other Test Methods are test methods which have not yet been subject to the Federal rulemaking

process. Each of these methods, as well as the available technical documentation supporting them, have been reviewed by the EMC staff and have been found to be potentially useful to the emission measurement community. The types of technical information reviewed include field and laboratory validation studies; results of collaborative testing; articles from peer-reviewed journals; peer- review comments; and quality assurance (QA) and quality control (QC) procedures in the method itself. A table summarizing the available technical information for each method can be found at the link below. The EPA strongly encourages the submission of additional supporting field and laboratory data as well as comments in regard to these methods.

These methods may be considered for use in federally enforceable State and local programs (e.g., Title V permits, State Implementation Plans (SIP)) provided they are subject to an EPA Regional SIP approval process or permit veto opportunity and public notice with the opportunity for comment. The methods may also be considered to be candidates to be alternative methods to meet Federal requirements under 40 CFR Parts 60, 61, and 63. However, they must be approved as alternatives under 60.8, 61.13, or 63.7(f) before a source may use them for this purpose. Consideration of a method's applicability for a particular purpose should be based on the stated applicability as well as the supporting technical information outlined in the table. The methods are available for application without EPA oversight for other non-EPA program uses including state permitting programs and scientific and engineering applications.

As many of these methods are submitted by parties outside the Agency, the EPA staff may not necessarily be the technical experts on these methods. Therefore, technical support from EPA for these methods is limited, but the table contains contact information for the developers so that you may contact them directly. Also, be aware that these methods are subject to change based on the review of additional validation studies or on public comment as a part of adoption as a Federal test method, the Title V permitting process, or inclusion in a SIP.

Method History

Final - 04/07/2016

EPA advises all potential users to review the method and all appendices carefully before application of this method.

Wet Stack Measurement and OTM-036 Caveats and Cautions

Principles of "Wet Stack" Measurement

EPA recognizes the need to measure particulate matter (PM) less than 2.5 micrometers (μm) aerodynamic diameter (PM_{2.5}) emissions from industrial sources. Currently, there are no promulgated methods available for the measurement of filterable PM_{2.5} from sources with entrained water droplets (See Method 201A Section 1.5). One common example of a source with entrained moisture droplets is an exit of wet scrubbers, routinely used for emissions control boilers. Entrained water droplets confound the ability of current particulate matter sampling using manual methods and continuous monitoring systems (CEMS) to obtain representative results due to size of the droplet compared to the size of the final dried particle and other practical issues dealing with water droplets themselves.

Note: Entrained water droplets (or a "wet stack") occur when a gas stream is saturated with water and is then cooled. This condition can occur at any moisture range or temperatures between 0 deg F and approximately 220 deg F. Verification of entrained droplets can be done when comparing gravimetric moisture results with calculations based on temperature and pressure (See Section 4.1 of Method 4).

The droplets entrained in the effluent gas streams of saturated sources make representative sampling extremely difficult by presenting a set of challenges not found with traditional testing for filterable PM_{2.5} using Method 201A. The water droplets contain both soluble and insoluble materials that become solid particles as the droplets are emitted to the atmosphere and the water evaporates. As a result, the ultimate dried particle size will be dependent on the concentration and makeup of the materials within the droplet. These water droplets, which will become filterable PM_{2.5} particles, must be extracted from the stack, transported, and dried in a manner representative of emissions to the atmosphere, which presents difficultly due to the size of the water droplets needed. These dried particles must then be size classified as PM_{2.5}. The specific mix of soluble and insoluble materials and concentration in water droplets

depend on the source (industrial sector, controls, raw materials, etc) and cannot be generalized. Therefore, it is difficult to determine the size range of the water droplets that must be sampled in order to capture the ones that will dry and become PM_{2.5}.

Another confounding factor is that particles are measured and regulated based on their aerodynamic diameter, not their physical diameter, and the PM_{2.5} moniker represents a 50% transmission point at nominally 2.5 µm aerodynamic diameter along a penetration curve for a size classification device. Along this curve, the larger particles are not excluded altogether, but are collected with substantially decreasing efficiency and smaller particles are collected with increasing (up to 100%) efficiency. For a more in-depth discussion of these topics, please see the paper titled "Development of Plans for Monitoring Emissions of PM₁, PM_{2.5} and PM₁₀ from Stationary Sources with Wet Stacks" by David Leith and Maryanne G. Boundy, located in Appendix H and "2009 Final Report: Integrated Science Assessment for Particulate Matter" (http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=216546).

In addition to entrained water droplets, the exhaust gas may contain solid particles that are not associated with water droplets. Finally, the exhaust may also contain gaseous organic and inorganic compounds that condense or react to form particles when the gas cools. It is necessary in the measurement of PM _{2.5} from sources with entrained water droplets that both filterable and condensible material are characterized.

A Word of Caution

As discussed above, OTMs are test methods which have not yet been subject to the Federal rulemaking process. For this particular OTM, we have the particular concerns explained in the next section. Additionally, the EPA strongly encourages the submission of additional supporting field and laboratory data as well as comments in regard to these methods.

More Information Needed

The appropriateness of the following aspects of OTM-036 have not yet been assessed.

Additional data is needed is these areas before this method can be fully evaluated regarding the issues discussed below. Any data developed during the application of this OTM that may

assist in the further evaluation of these unknowns should be submitted to EPA's Measurement Technology Group.

Electronic copies should be submitted via email with the subject line "OTM-036" to: EMC@epa.gov

Paper copies should be mailed to:

Measurement Technology Group
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency (Mail Code E143-02)
Research Triangle Park, NC 27711

- Probe transfer efficiency If water droplets, which become PM_{2.5}, and particles are not being efficiently transferred through the probe, the corresponding PM_{2.5} results would be biased low.
- **Droplet shattering during drying** More information is needed to determine whether or not water droplets are shattering during the drying process. If this shattering is occurring, it would cause the PM_{2.5} results to be biased high.
- Probe water droplet residence time More information is also needed about the probe
 water droplet residence time. This aspect of the method is difficult to assess as it is a
 function of flow rate, probe temperature, probe inside diameter, specific heat of the gas
 stream and water droplet concentration and size distribution. Improperly low residence
 time would bias the PM_{2.5} results low.
- Nozzle While nozzle efficiency testing was conducted (See Appendix E, F and G of this document), EPA believes the results were inconclusive due to imprecision of the experimental design and measurements. It should be noted that 27 % of runs were rejected based on test observations of poor PSL atomization or microsphere dispersion, 30 % of the runs were rejected during data analysis for microsphere clustering, and 7 % of the runs were rejected during data analysis for microsphere bounce. After all the various data points were rejected as invalid, the nozzle efficiency curve was determined with only 37% of the

Precutter Nozzle Perfomance 100 Δ 90 % × Precutter Capture Efficiency, 80 슞 70 × 8 60 × 50 40 30 20 10 0 10 100 1 Aerodynamic Dia, µm △ VALID ◆ Rejected due to bounce losses □ Rejected due to clustering ★ Rejected due to poor atomization

runs. In addition, there was only one run deemed valid in the critical <10um range.

EPA recommends further evaluation of the nozzle efficiency using a vibrating orifice aerosol generator (VOAG) and monodisperse droplets or other experimental design with appropriate data quality indicators for precision.

- Method 301 Testing The Method 301 testing conducted to validate the method using analyte spiking approach did not meet the required number of test runs due to issues with either train setup or train recovery which resulted in damage to the filter. The end user should be aware that during the Method 301 testing the trains were not validated using dynamic spiking, due to the nature of measurement. Instead, a static spike of salt particles were introduced into the nozzle of the sampling trains following sampling of a wet stack as additive to the field runs. This issue was discussed prior to testing with EPA and EPA recognized the extreme difficulty in dynamically spiking water droplets during test runs and agreed to static spiking. The salt particles were nominally less than PM_{2.5}, which is substantially smaller than the water droplets that would form PM_{2.5} particles when dried.
- QA/ QC Procedures This version of OTM-036 contains new QA/QC procedures that have not been demonstrated in the field. These new QA/QC procedures may require further study to determine their suitability (i.e., posttest leak check.)

Caveats

- EPA advises all potential users to review the method and all appendices carefully before application of this method.
- End users should be aware that due to the lack of verification and validation for this test
 method, any data gathered using this test method may be invalidated in the future.
- You must use this method in combination with Method 202 of 40 CFR Part 51, Appendix
 M for measuring particulate matter regardless of the temperature of the gas stream. This
 method should not be used directly for filterable PM_{2.5} emission limits due to the
 elevated filtration temperature required.
- This method may be considered for use in Federally enforceable State and local programs
 (e.g., Title V permits, State Implementation Plans (SIP)) provided it is subject to an EPA
 Regional SIP approval process or permit veto opportunity and public notice with the
 opportunity for comment.
- This method may also be considered to be a candidate for use as an alternative method to
 meet Federal requirements under 40 CFR Parts 60, 61, and 63. However, any alternative
 method must be approved under 60.8, 61.13, or 63.7(f) before use for this purpose.
 Consideration of a method's applicability for a particular purpose should be based on the
 stated applicability as well as the supporting technical information outlined in the table.
- This method is available for application without EPA oversight for other non-EPA program uses including state permitting programs and scientific and engineering applications.
- This method was submitted by parties outside the Agency, the EPA staff may not
 necessarily be the technical experts on these methods. Therefore, technical support from
 EPA for these methods is limited, but the table contains contact information for the
 developers so that you may contact them directly.
- This method is subject to change based on the review of additional validation studies or on public comment as a part of adoption as a Federal test method, the Title V permitting process, or inclusion in a SIP.

OTHER TEST METHOD 36 - DETERMINATION OF FILTERABLE PM_{2.5} EMISSIONS FROM MOISTURE SATURATED AND/OR DROPLET-LADEN STATIONARY SOURCE GAS STREAMS (Constant Sampling Rate Procedure)

1.0 Scope and Applicability

1.1 Scope.

This method was developed to describe the procedures that the stack tester ("you") must follow to measure filterable particulate matter emissions equal to or less than a nominal aerodynamic diameter of 2.5 micrometers (PM2.5) from moisture saturated (wet) and/or droplet-laden gas streams from stationary sources.

1.2 Applicability.

This method addresses the equipment, preparation, and analysis necessary to measure filterable PM_{2.5} emissions in droplet-laden and/or moisture-saturated gas streams. You must use this method in combination with Method 202 of 40 CFR Part 51, Appendix M (Method 202) for measuring condensable particulate matter regardless of the temperature of the gas stream. The probe and filter box heat for the sampling train is used in this method to vaporize droplets in the sample gas stream and can also vaporize volatile particulate matter in the gas stream.

This method can be used to measure filterable PM_{2.5} particulate matter based on the material passing through a PM_{2.5} cyclone and depositing in the cyclone exit tubing, filter, and front half of the filter holder. This method can also be used to measure total filterable particulate matter based on the material captured in all parts of the sampling train. When used to measure total filterable particulate matter, the results obtained with this method are similar to those measured by Methods 5 and 5B.

1.3 Responsibility.

You are responsible for obtaining the equipment and supplies you will need to use this method. You must also develop your own procedures for following this method and any additional procedures to ensure accurate sampling and analytical measurements.

1.4 Additional Methods.

To obtain results, you must have a thorough knowledge of the following test methods found in Appendices A-1 through A-3 of 40 CFR Part 60:

- (a) Method 1 Sample and velocity traverses for stationary sources.
- (b) Method 2 Determination of stack gas velocity and volumetric flow rate (Type S Pitot tube).
- (c) Method 3 Gas analysis for the determination of dry molecular weight.
- (d) Method 4 Determination of moisture content in stack gases.
- (e) Method 5 Determination of particulate matter emissions from stationary sources.

You must also have a thorough knowledge of Methods 201A and Method 202 of Appendix M.

1.5 Limitations.

You cannot use this method to measure emissions in which the water droplets present in the gas stream cannot be efficiently evaporated by the probe operated at $160^{\circ}\text{C} \pm 14^{\circ}\text{C}$ ($320^{\circ}\text{F} \pm 25^{\circ}\text{F}$). To measure filterable PM_{2.5} in emissions where water droplets cannot be completely evaporated, we recommend that you use Method 5 of Appendix A-3 to Part 60.

This method cannot be used to traverse vertically in a horizontal duct due to the droplet reservoir. This method is also not applicable for sampling locations subject to cyclonic flow as defined by Method 1.

1.6 Conditions for Using This Method

To use this method as an alternative to Methods 5 or 5B, you must recover the particulate matter collected in the precutter nozzle and probe before the PM_{2.5} cyclone, the PM_{2.5} cyclone, the PM_{2.5} exit tubing, the front half of the filter holder, and the filter. Be aware that this method determines PM_{2.5} filterable emissions by sampling from a recommended maximum of 12 sample points, at a constant flow rate through the train (the constant flow is necessary to maintain the size cut of the cyclone), and with a filter that is in a specific temperature range. In contrast, Methods 5 and 5B trains are operated isokinetically with varying flow rates through the train. Further, to use this method in place of Methods 5 or 5B, you must extend the sampling time so that you collect the minimum mass necessary for weighing each portion of this sampling train.

If you are using this method as an alternative to a test method specified in a regulatory requirement (e.g., a requirement to conduct a compliance or performance test), then you must receive approval from the authority that established the regulatory requirement before you conduct the test. This test method includes a requirement to separately recover the solids captured in (1) the appropriately sized filter, (2) the cyclone exit tube and the front half of the filter holder, (3) the front half of the $PM_{2.5}$ cyclone and the cyclone cup, (4) the probe, and (5) the precutter nozzle. Filterable $PM_{2.5}$ is defined as the material recovered in samples (1) and (2). Total filterable particulate matter (i.e., equivalent to Methods 5 or 5B) is the sum of the material recovered from all five samples.

2.0 Summary of Method

Filterable PM_{2.5} is measured by extracting a gas sample at a predetermined constant flow rate through a heated out-of-stack cyclone and filter. The probe and hot box containing the cyclone and filter are maintained at $160^{\circ}\text{C} \pm 14^{\circ}\text{C}$ ($320^{\circ}\text{F} \pm 25^{\circ}\text{F}$) to ensure that all gas stream droplets have evaporated and only dry particles enter the sizing device. The cyclone separates particles with nominal aerodynamic diameter of 2.5 micrometers. To minimize variations in the isokinetic sampling conditions, you must establish well-defined limits to the sampling rate. After a sample is obtained, remove uncombined water from the particulate matter, and then use gravimetric analysis to determine the particulate mass for each size fraction. The sampling train may be used to measure total filterable PM and filterable PM_{2.5} emissions. Figure 1 of Section 17 presents the schematic of the sampling train.

This method is based on Method 201A. The numbering and sequence of the equations used in this method have been kept the same as Method 201A even though not all of the Method 201A equations and calculations are used in this method. Equations not needed are marked in Section

12. There are differences in the numbering of the sample containers in this method as compared to Method 201A.

3.0 Definitions

- 3.1 Condensable particulate matter (CPM) means material that is vapor phase at stack conditions, but condenses and/or reacts upon cooling and dilution in the ambient air to form solid or liquid PM immediately after discharge from the stack. Note that all CPM is assumed to be in the PM_{2.5} size fraction.
- 3.2 *Constant weight* means a difference of no more than 0.5 mg or one percent of total weight less tare weight, whichever is greater, between two consecutive weighings, with no less than six hours of desiccation time between weighings.
- 3.3 *Filterable particulate matter (FPM)* means particles that are emitted directly by a source as a solid or liquid at stack or release conditions and captured on the filter of a stack test train.
- 3.4 Field Train Proof Blank. A train blank collected from a clean, fully-assembled sampling train prior to conducting the first emissions test. The sampling train is assembled, leak checked, and left exposed on the sampling platform for a period of time equal to an actual test run, with a final leak check performed at the conclusion of the exposure time. Samples are collected and processed as would occur for an actual test run.
- 3.5 *Primary particulate matter (PM)* (also known as direct PM) means particles that enter the atmosphere as a direct emission from a stack or an open source. Primary PM has two components: FPM and CPM. These two PM components have no upper particle size limit.
- 3.6 *Primary PM*_{2.5} (also known as direct PM_{2.5}, total PM_{2.5}, PM_{2.5}, or combined filterable PM_{2.5} and condensable PM) means PM with an aerodynamic diameter equal to or less than 2.5 micrometers. These solid particles are emitted directly from an air emissions source or activity, or are the gaseous or vaporous emissions from an air emissions source or activity that condense to form PM at ambient temperatures. Direct PM_{2.5} emissions include elemental carbon, directly emitted organic carbon, directly emitted sulfate, directly emitted nitrate, and other inorganic particles (including but not limited to crustal material, metals, and sea salt).

4.0 Interferences

You cannot use this method to measure $PM_{2.5}$ emissions where the water droplets cannot be completely evaporated prior to the $PM_{2.5}$ sizing device.

5.0 Safety

Disclaimer—Because the performance of this method may require the use of hazardous materials, operations, and equipment, you should develop a health and safety plan to ensure the safety of your employees who are on site conducting the particulate emission test. Your plan should conform to all applicable Occupational Safety and Health Administration, Mine Safety and Health Administration, and Department of Transportation regulatory requirements. Because of the unique situations at some facilities and because some facilities may have more stringent requirements than is required by State or federal laws, you may have to develop procedures to conform to the plant health and safety requirements.

6.0 Equipment and Supplies

Figure 2 of Section 17 shows the cyclone head and filter holder arrangement used in this method. The sampling train is the same as Method 5 of Appendix A-3 to Part 60 with the exception of the precutter nozzle and the PM_{2.5} cyclone before the filter holder. The following sections describe the sampling train's primary design features in detail.

6.1 Filterable Particulate Matter Sampling Train Components.

6.1.1 Precutter Nozzle.

You can use glass, quartz, stainless steel (316 or equivalent) or fluoropolymer-coated stainless steel nozzles with a sharp tapered leading edge designed to remove particles and droplets with a 50% cut size equal to or greater than 12 micrometers. The precutter nozzle must meet the design specifications shown in Figure 3 of Section 17. Use a caliper to verify that the dimensions of the precutter nozzle are within ± 0.025 cm(0.01 inch) of the design specifications. We recommend that you have a large number of nozzles in small diameter increments available to increase the likelihood of using a single nozzle for the entire traverse.

6.1.2 PM_{2.5} Cyclone.

6.1.2.1. Use stainless steel (316 or equivalent) or fluoropolymer-coated PM_{2.5} cyclones. You may use cyclones constructed of high-temperature specialty metals such as Inconel, Hastelloy, or Haynes 230 (See also Section 8.6.1.). The cyclones must meet the design specifications shown in Figure 7 of Section 17. Use a caliper to verify that the dimensions of the PM_{2.5} cyclone is within ± 0.02 cm of the design specifications.

Example suppliers of PM_{2.5} cyclones include the following:

- (a) Environmental Supply Company, Inc., 2142 E. Geer Street, Durham, North Carolina 27704. Telephone No.: (919) 956-9688; Fax: (919) 682-0333.
- (b) Apex Instruments, 204 Technology Park Lane, Fuquay-Varina, North Carolina 27526. Telephone No.: (919) 557-7300 (phone); Fax: (919) 557-7110.
- 6.1.2.2. You may use alternative cyclones if they meet the requirements in Development and Laboratory Evaluation of a Five-Stage Cyclone System, EPA-600/7-78-008 (http://cfpub.epa.gov/ols).

6.1.3 Filter Holder.

Use a filter holder that is glass or stainless steel (316 or equivalent). Commercial-size filter holders are available depending upon project requirements, including commercial stainless steel filter holders to support 25-, 47-, or 63-mm diameter filters. Commercial size filter holders contain a fluoropolymer O-ring, a stainless steel screen that supports the particulate filter, and a final fluoropolymer O-ring. Screw the assembly together and attach to the outlet of the PM_{2.5} cyclone. The filter must not be compressed between the fluoropolymer O-ring and the filter housing.

6.1.4 Pitot Tube.

You must use a Pitot tube made of heat resistant tubing. Attach the Pitot tube to the probe with stainless steel fittings. Follow the specifications for the Pitot tube and its orientation to the inlet nozzle given in Section 6.1.1.3 of Method 5 of Appendix A-3 to Part 60.

6.1.5 Probe and Liner.

The probe sheath must be capable of heating the gas stream to $160^{\circ}\text{C} \pm 14^{\circ}\text{C}$ ($320^{\circ}\text{F} \pm 25^{\circ}\text{F}$) to evaporate all gas stream moisture. The probe must have a thermocouple mounted at least three locations and no more than 6 inches from the inlet to the probe. The probe liner must be glass, quartz, Teflon or fluoropolymer-lined. Follow the specifications in Section 6.1.1.2 of Method 5 of Appendix A-3 to Part 60. The probe must be a minimum of four feet long to ensure complete droplet evaporation prior to entry to the cyclone.

6.1.6 Differential Pressure Gauge, Condensers, Metering Systems, Barometer, and Gas Density Determination Equipment.

Follow the requirements in Sections 6.1.1.4 through 6.1.3 of Method 5 of Appendix A-3 to Part 60, as applicable.

6.2 Sample Recovery Equipment.

6.2.1 Filterable Particulate Recovery.

Use the following equipment to quantitatively determine the amount of filterable PM recovered from the sampling train.

- (a) PM_{2.5} Cyclone and filter holder brushes.
- (b) Wash bottles. Two wash bottles are recommended. Any container material is acceptable, but wash bottles used for sample and blank recovery must not contribute more than 0.1 mg of residual mass to the CPM measurements.
- (c) Leak-proof sample containers. Containers used for sample and blank recovery must not contribute more than 0.10 mg of residual mass to the CPM measurements. Sample containers must be rinsed with acetone before use.
- (d) Petri dishes. For filter samples; glass or polyethylene, unless otherwise specified by the Administrator.
- (e) Graduated cylinders, or balance. To measure condensed water to within 1 ml or 0.5 g graduated cylinders must have subdivisions not greater than 2 ml.
- (f) Plastic storage containers. Air-tight containers to store silica gel.
- 6.2.2 Condensable PM Recovery. You must use this method in combination with Method 202 for measuring condensable particulate matter regardless of the temperature of the gas stream. Refer to section 6.2.1 of Method 202 for the equipment needed for condensable PM recovery.

6.2.3 Analysis Equipment.

- (a) Funnel. Glass or polyethylene, to aid in sample recovery.
- (b) Rubber policeman. To aid in transfer of silica gel to container; not necessary if silica gel is weighed in the field.
- (c) Analytical balance. Analytical balance with a minimum resolution of or capable of detecting a mass difference as low as 0.0001 g (0.1 mg).
- (d) Balance. To determine the weight of the moisture in the sampling train components, use an analytical balance with a minimum resolution of or capable of detecting a mass difference as low as $0.1 \, \mathrm{g}$.
- (e) Fluoropolymer beaker liners or glass beakers (or other non-reactive containers).

7.0 Reagents, Standards, and Sampling Media

7.1 Sample Collection.

You must use this method in combination with Method 202 for measuring condensable particulate matter regardless of the temperature of the gas stream. In addition to the specification below, please refer to section 7.1.2 through 7.1.5 of Method 202 for the additional requirements for sample collection.

Use a nonreactive, nondisintegrating glass fiber, quartz, or polymer filter that does not a have an organic binder and meets the requirements of Section 7.1.1 of Method 5. The filter must have an efficiency of at least 99.95 percent (less than 0.05 percent penetration) on 0.3 micrometer dioctyl phthalate particles. You may use test data from the supplier's quality control program to document the PM filter efficiency.

Note: There is substantial evidence of alkaline material on a majority of glass filter media. In order to avoid the possibility of biased results, some testers have decided to use only quartz filters when performing Method 5.

7.2 Sample Recovery and Analytical Reagents

Please refer to section 7.2 of Method 202 for the requirements for sample recovery and analytical reagents related to Method 202.

7.2.1 Acetone.

Use acetone that is stored in a glass bottle. Do not use acetone from a metal container because it will likely produce a high residue in the laboratory and field reagent blanks. You must use acetone with blank values less than 1 part per million by weight residue. Analyze acetone blanks prior to field use to confirm low blank values.

7.2.2 Particulate Sample Desiccant.

Use indicating type anhydrous calcium sulfate to desiccate samples prior to weighing.

8.0 Sample Collection, Preservation, Storage, and Transport

8.1 Qualifications

This is a complex test method. To obtain reliable results, you should be trained and experienced with stack filtration systems (such as cyclones and filters) and impinger and moisture train systems.

8.2 Preparations

Follow the pretest preparation instructions in Section 8.1 of Method 5 of Appendix A-3 to Part 60.

8.3 Site Setup.

You must complete the following to properly set up for this test:

- (a) Determine the sampling site location and traverse points.
- (b) Verify the absence of cyclonic flow.
- (c) Complete a preliminary velocity profile and select a nozzle(s) and sampling rate.

8.3.1 Sampling Site Location and Traverse Point Determination.

Follow the standard procedures in Method 1 of Appendix A-1 to Part 60 to select the appropriate sampling site. Choose a location that maximizes the distance from upstream and downstream flow disturbances.

- (a) Traverse points. The required maximum number of total traverse points at any location is 12, as shown in Figure 6 of Section 17. You must prevent the disturbance and capture of any solids accumulated on the inner wall surfaces by maintaining a 1-inch distance from the stack wall (0.5 inch for sampling locations less than 36.4 inches in diameter with the Pitot tube and 32.4 inches without the Pitot tube).
- (b) Round or rectangular duct or stack. If a duct or stack is round with two ports located 90° apart, use six sampling points on each diameter. Use a 3x4 sampling point layout for rectangular ducts or stacks. Consult with the Administrator to receive approval for other layouts before you use them.

8.3.2 Cyclonic Flow.

Do not use this method at sampling locations subject to cyclonic flow. Also, you must follow procedures in Method 1 of Appendix A-1 to Part 60 to determine the presence or absence of cyclonic flow and then perform the following calculations:

- (a) As per Section 11.4 of Method 1 of Appendix A-1 to Part 60, find and record the angle that has a null velocity pressure for each traverse point using an S-type Pitot tube.
- (b) Average the absolute values of the angles that have a null velocity pressure. Do not use the sampling location if the average absolute value exceeds 20°. (Note: You can minimize the effects of cyclonic flow conditions by moving the sampling location or, placing gas flow straighteners upstream of the sampling location

8.3.3 Preliminary Velocity Profile.

Conduct a preliminary velocity traverse by following Method 2 of Appendix A-1 to Part 60 velocity traverse procedures. The purpose of the preliminary velocity profile is to determine all of the following:

- (a) The gas sampling rate for the cyclone in order to meet the required particle size cut.
- (b) The appropriate nozzle to maintain the required gas sampling rate for the velocity pressure range and isokinetic range. If the isokinetic range cannot be met (e.g., batch processes, extreme process flow or temperature variation), void the sample or use methods subject to the approval of the Administrator to correct the data. The acceptable variation from isokinetic sampling is 80 to 120 percent and no more than 100 ± 20 percent (two out of 12) sampling points outside of these criteria.
- (c) The necessary sampling duration to obtain sufficient particulate matter catch weights.

8.3.3.1 Preliminary traverse.

You must use an S-type Pitot tube with a conventional thermocouple to conduct the traverse. A Pitot tube mounted on a probe with the precutter nozzle attached must be used for the preliminary traverse. Conduct the preliminary traverse as close as possible to the anticipated testing time on sources that are subject to hour-by-hour gas flow rate variations of approximately \pm 20 percent and/or gas temperature variations of approximately \pm 28°C (\pm 50°F). (Note: You should be aware that these variations can cause errors in the cyclone cut diameters and the isokinetic sampling velocities.)

- 8.3.3.2 Velocity pressure range. Insert the S-type Pitot tube and probe assembly at each traverse point and record the range of velocity pressures measured on the data form in Method 2 of Appendix A-1 to Part 60. You will use this later to select the appropriate nozzle.
- 8.3.3.3 Initial gas stream viscosity and molecular weight. Determine the average gas temperature, average gas oxygen content, average carbon dioxide content, and estimated moisture content. You will use this information to calculate the initial gas stream viscosity (Equations 3a and 3b) and molecular weight (Equations 1 and 2). (Note: You must follow the instructions outlined in Method 4 of Appendix A-3 to Part 60 or Alternative Moisture Measurement Method Midget Impingers (ALT-008) to estimate the moisture content. You may use a wet bulb-dry bulb measurement or hand-held hygrometer measurement to estimate the moisture content of sources with gas temperatures less than 71°C (160°F).
- 8.3.3.4 Approximate PM_{2.5} concentration in the gas stream. Determine the approximate concentration for the PM_{2.5} components of the gas stream through qualitative measurements or estimates from previous stack PM emissions tests. Having an idea of the PM_{2.5} concentration in the gas stream is not essential but will help you determine the appropriate sampling time to acquire sufficient PM_{2.5} weight for better accuracy at the source emission level. The collectable PM_{2.5} weight requirements depend primarily on the types of filter media and weighing capabilities that are available and needed to characterize the emissions. Estimate the collectable PM concentrations in the greater than 2.5 micrometer and less than or equal to 2.5 micrometer size ranges. Typical PM_{2.5} concentrations are listed in Table 1 of Section 17. Additionally, relevant sections of AP-42, Compilation of Air Pollutant Emission Factors, may contain particle size distributions for processes characterized in those sections, and Appendix B2 of AP-42 contains generalized particle size distributions for nine industrial process categories (e.g., stationary internal combustion engines firing gasoline or diesel fuel, calcining of aggregate or unprocessed ores). The generalized particle size distributions can be used if source-specific particle size distributions are unavailable. Appendix B2 of AP-42 also contains typical collection efficiencies of various particulate control devices and example calculations showing how to estimate uncontrolled total particulate emissions, uncontrolled size-specific emissions, and controlled size-specific particulate emissions. (http://www.epa.gov/ttnchie1/ap42.)

8.4 Pre-test Calculations.

You must perform pre-test calculations to help select the appropriate gas sampling rate through the PM_{2.5} cyclone (PM_{2.5}). Choosing the appropriate sampling rate will allow you to maintain the appropriate particle cut diameter based upon preliminary gas stream measurements, as specified in Table 2 of Section 17.

The gas sampling rate is defined by the performance curve for the $PM_{2.5}$ cyclone, as illustrated in Figure 8 of Section 17. You must select a gas sampling rate such that the cyclone cut point will be in the middle of the acceptable range (2.25-2.75 micrometers). You must use the calculations in Section 8.5 to determine a gas sampling rate that will achieve the appropriate cut size specification for the cyclone.

8.5 Test Calculations.

You must perform all of the calculations in Table 3 of Section 17 and the calculations described in Sections 8.5.1 through 8.5.5.

8.5.1 Assumed Reynolds Number.

You must select an assumed Reynolds number (N_{re}) using Equation 10 and an estimated sampling rate or from prior experience under the stack conditions determined using Methods 1 through 4 to part 60. You will perform initial test calculations based on an assumed N_{re} for the test to be performed. You must verify the assumed N_{re} by substituting the sampling rate ($Q_{2.5}$) calculated in Equation 8 or 9 into Equation 10

8.5.2 Final Sampling Rate.

Recalculate the final $Q_{2.5}$ if the assumed N_{re} used in your initial calculation is not correct. Use Equation 8 or 9 to recalculate the optimum $Q_{2.5}$.

8.5.3 Meter Box ΔH .

Use Equation 11 to calculate the meter box orifice pressure drop (ΔH) after you calculate the optimum sampling rate and confirm the N_{re} .

(Note: The stack gas temperature may vary during the test, which could affect the sample rate due to moisture content of the stack. It is recommended to develop a range of ΔH at 5 deg F increments with the saturated moisture content at those temperatures.)

8.5.4 Choosing a Sampling Nozzle.

Select one or more nozzle sizes to provide for near isokinetic sampling rate (see Section 1.6). This will also minimize any isokinetic sampling error for the particles at each point. Calculate the mean stack gas velocity (v_s) using Equation 13, the nozzle flow rate using equation 8a or 9a,then use Equation 14 to calculate the diameter (D) of a nozzle that provides for isokinetic sampling at the mean v_s at flow Q_{Nozzle} . From the available nozzles one size smaller and one size larger than this diameter, D, select the most appropriate nozzle. Perform the following steps for the selected nozzle.

- 8.5.4.1 Minimum/maximum nozzle/stack velocity ratio. Use Equation 15 to determine the velocity of gas in the nozzle. Use Equation 16 to calculate the minimum nozzle/stack velocity ratio (R_{min}). Use Equation 17 to calculate the maximum nozzle/stack velocity ratio (R_{max}). Use the stack gas viscosity in this calculation.
- 8.5.4.2 Minimum gas velocity. If R_{min} is an imaginary number (negative value under the square root function) or if R_{min} is less than 0.5, use Equation 18 to calculate the minimum gas velocity (v_{min}) . If R_{min} is \geq 0.5, use Equation 19 to calculate v_{min} . Use the stack gas viscosity in this calculation.
- 8.5.4.3 Maximum stack velocity. Use Equation 20 to calculate the maximum stack velocity (v_{max}) if R_{max} is less than 1.5. Use Equation 21 to calculate the stack velocity if R_{max} is ≥ 1.5 .
- 8.5.4.4 Conversion of gas velocities to velocity pressure. Use Equation 22 to convert v_{min} to minimum velocity pressure, Δp_{min} . Use Equation 23 to convert v_{max} to maximum velocity pressure, Δp_{max} .
- 8.5.4.5 Comparison to observed velocity pressures. Compare minimum and maximum velocity pressures with the observed velocity pressures at all traverse points during the preliminary test.

8.5.5 Optimum Sampling Nozzle.

The nozzle you selected is appropriate if all the observed velocity pressures during the preliminary test fall within the range of the Δp_{min} and Δp_{max} . Make sure the following requirements are met then follow the procedures in Sections 8.5.5.1 and 8.5.5.2.

- (a) Choose an optimum nozzle that provides for isokinetic sampling conditions as close to 100 percent as possible. This is prudent because even if there are slight variations in the gas flow rate, gas temperature, or gas composition during the actual test, you have the maximum assurance of satisfying the isokinetic criteria. Generally, one of the two candidate nozzles selected will be closer to optimum (see Section 8.5.4).
- (b) You are allowed a 16 percent failure rate, rounded to the nearest whole number, of sampling points that are outside the range of the Δp_{min} and Δp_{max} .
- 8.5.5.1 Pre-check. Visually check the selected nozzle for dents before use.
- 8.5.5.2 Attach the pre-selected nozzle. Attach the pre-selected nozzle onto the precutter inlet. Use a union and adaptor to connect the $PM_{2.5}$ cyclone inlet to the probe outlet (see Figure 2 of Section 17).

8.6 Sampling Train Preparation.

A schematic of the sampling train used in this method is shown in Figure 1 of Section 17. First, assemble the train and complete the leak check on the entire sampling system. Use the following procedures to prepare the sampling train. (Note: Do not contaminate the sampling train during preparation and assembly. Keep all openings, where contamination can occur, covered until just prior to assembly or until sampling is about to begin.)

Method 202 must be conducted as part of the emission test. Instructions for preparing the Method 202 sampling train are described in Method 202.

8.6.1 PM_{2.5} Cyclone.

Assemble the cyclone. The O-rings used in the cyclone have a temperature limit of approximately 205°C (400°F). Install the cyclone into the heated filter box.

8.6.2 Filterable PM_{2.5} Matter Filter Holder.

Attach the pre-selected filter holder to the end of the PM_{2.5} cyclone (see Figure 2 of Section 17) also in the heated hot box.

8.6.3 Filter.

You must number and tare the filters before use. To tare the filters, desiccate each filter at $20 \pm 5.6^{\circ}\text{C}$ ($68 \pm 10^{\circ}\text{F}$) and ambient pressure for at least 24 hours and weigh at intervals of at least six hours to a constant weight (See Section 3.0 for a definition of constant weight.). Record results to the nearest 0.1 mg. During each weighing, the filter must not be exposed to the laboratory atmosphere for longer than two minutes and a relative humidity above 50 percent. Alternatively, the filters may be oven-dried at 104°C (220°F) for two to three hours, desiccated for two hours, and weighed. Use tweezers or clean disposable surgical gloves to place a labeled (identified) and pre-weighed filter in the filter holder. You must center the filter and properly place the gasket so that the sample gas stream will not circumvent the filter.

8.6.4 Moisture Trap.

Follow the procedures in Method 202 of Appendix M for moisture collection.

8.6.5 Leak Check.

Use the procedures outlined in Section 8.4 of Method 5 of Appendix A-3 to Part 60 to leak check the entire sampling system prior to sampling. Specifically perform the following procedures:

8.6.5.1 Sampling train.

You must pre-test the entire sampling train for leaks. The pre-test leak check must have a leak rate of not more than 0.02 actual cubic feet per minute or four percent of the average sample flow during the test run, whichever is less. Additionally, you must conduct the leak check at a vacuum equal to or greater than the vacuum anticipated during the test run. Enter the leak check results on the analytical data sheet (see Section 11.1) for the specific test. (Note: Do not conduct a leak check during port changes.)

8.6.5.2 Pitot tube assembly. After you leak check the sample train, perform a leak check of the Pitot tube assembly. Follow the procedures outlined in Section 8.1 of Method 2 of Appendix A-1.

8.6.6 Probe and Heated Sampling Box.

You must pre-heat the probe and heated sampling box with the cyclone and filter installed to 160°C (320°F). This will ensure evaporation of the gas stream moisture and that only dry particles enter the cyclone and filter. Allow a minimum of 30 minutes (or another empirical derived time to achieve thermal equilibrium) once the oven is at the specified temperature for the cyclone internal temperature to reach 160 °C (320 °F).

8.7 Sampling Train Operation.

Operate the sampling train the same as described in Section 8.5 of Method 5 of Appendix A-3 to Part 60, but use the procedures in this section for isokinetic sampling and flow rate adjustment. Maintain the flow rate calculated in Section 8.5.3 throughout the run, provided the stack temperature is within 3°C (5°F) of the temperature used to calculate ΔH . If stack temperatures vary by more than 3°C (5°F), use the appropriate ΔH value calculated in Section 8.5.3. Determine the minimum number of traverse points as in Figure 6 of Section 17. Determine the minimum total projected sampling time based on achieving the data quality objectives or emission limit of the affected facility. We recommend that you round the number of minutes sampled at each point to the nearest 15 seconds. Perform the following procedures:

8.7.1 Sample Point Dwell Time.

You must calculate the flow rate-weighted dwell time (that is, sampling time) for each sampling point to ensure that the overall run provides a velocity-weighted average that is representative of the entire gas stream. Vary the dwell time at each traverse point proportionately with the point velocity. Calculate the dwell time at each of the traverse points using Equation 24. You must use the data from the preliminary traverse to determine the average velocity pressure (Δp_{avg}). You must use the velocity pressure measured during the sampling run to determine the velocity pressure at each point (Δp_n). Here, N_{tp} equals the total number of traverse points. Each traverse point must have a dwell time of at least two minutes.

8.7.2 Sample Collection.

Collect samples the same as described in Section 8.5 of Method 5 of Appendix A-3 to Part 60, except use the procedures in this section for isokinetic sampling and flow rate adjustment. Maintain the flow rate calculated in Section 8.5 throughout the run, provided the stack

temperature is within 3°C (5°F) of the temperature used to calculate ΔH . If stack temperatures vary by more than 3°C (5°F), use the appropriate ΔH value calculated in Section 8.5.3. Calculate the dwell time at each traverse point as in Equation 24. In addition to these procedures, you must also use running starts and stops if the static pressure at the sampling location is less than minus 5 inches water column. This prevents back pressure from rupturing the sample filter. If you use a running start, adjust the flow rate to the calculated value after you perform the leak check.

- 8.7.2.1 Level and zero manometers. Periodically check the level and zero point of the manometers during the traverse. Vibrations and temperature changes may cause them to drift.
- 8.7.2.2 Sampling ports. Clean the sampling ports prior to the test run. This will minimize the chance of collecting deposited material in the nozzle.
- 8.7.2.3 Sampling procedures. Verify that the probe, cyclone and filter holder are at $160^{\circ}\text{C} \pm 14^{\circ}\text{C}$ ($320^{\circ}\text{F} \pm 25^{\circ}\text{F}$). To begin sampling, remove the protective cover from the nozzle. Position the probe at the first sampling point with the nozzle pointing directly into the gas stream. Immediately start the pump and adjust the flow to calculated isokinetic conditions. Ensure the probe/Pitot tube assembly is leveled. When the probe is in position, block off the openings around the probe and sampling port to prevent unrepresentative dilution of the gas stream. Take care to minimize contamination from the material used to block the sampling port.
 - (a) Traverse the stack cross-section, as required by Method 1 of Appendix A-1 to Part 60, with the exception that you are only required to sample from a maximum of 12-points (six points per traverse for circular cross-section ducts). Do not bump the nozzle into the stack walls when sampling near the walls or when removing or inserting the probe through the sampling ports. This will minimize the chance of extracting deposited materials.
 - (b) Record and report the data required on the field test run data sheet having the same entries as the example data sheet shown in Figure 9. Record the initial dry gas meter reading. Then take dry gas meter readings at the following times: the beginning and end of each sample time increment; when changes in flow rates are made; and when sampling is halted. Compare the velocity pressure measurements (Equations 22 and 23) with the velocity pressure measured during the preliminary traverse. Keep the meter box ΔH at the value calculated in Section 8.5.3. If it is not possible to maintain the oven temperature within the specified range, void the run and correct the problem before repeating the run. Record all point-by-point data and other source test parameters on the field test data sheet. Do not leak check the sampling system during port changes.
 - (c) If the static pressure at the sampling location is less than minus 5 inches water column, maintain flow until the nozzle is completely removed from the sampling port. Under these conditions you must also restart the sampling flow prior to inserting the nozzle into the sampling port during port changes.
 - (d) Maintain the flow through the sampling system at the last sampling point. At the conclusion of the test, if the static pressure at the sampling location is less than minus 5 inches water column, remove the nozzle, probe, and heated sampling box from the stack while the train is still operating (running stop). Make sure that you do not scrape the

Pitot tube or the nozzle against the port or stack walls. Then stop the pump and record the final dry gas meter reading and other test parameters on the field test data sheet. After you stop the pump, make sure you keep the cyclone head level to avoid tipping dust from the cyclone cup into the filter and/or down-comer line.

8.7.3 Process Data.

You must document data and information on the process unit tested, the particulate matter control system used to control emissions, any non-particulate matter control system that may affect particulate emissions, the sampling train conditions, and weather conditions. Record the site barometric pressure and stack pressure on the field test data sheet. Discontinue the test if the operating conditions may cause non-representative particulate matter emissions.

- 8.7.3.1 Particulate matter control system data. Use the process and control system data to determine whether representative operating conditions were maintained throughout the testing period.
- 8.7.3.2 Sampling train data. Use the sampling train data to confirm that the measured particulate emissions are accurate and complete.

8.7.4 Sample Recovery.

Disconnect the probe and remove the cyclone from the sampling box. Seal both ends of the cyclone to prevent particulate matter from entering or leaving the cyclone. After the cyclone is removed, perform a posttest leak check of the sample train from the inlet of the filter through the remainder of the sampling train. You must conduct the leak check at a vacuum equal to or greater than the maximum vacuum achieved during the test run. Enter the results of the leak check onto the field test data sheet. If the leak rate of the sampling train (without the combined cyclone sampling head) exceeds 0.02 actual cubic feet per minute or four percent of the average sampling rate during the test run (whichever is less), the run is invalid and must be repeated.

Connect the outlet of the probe to a jumper and leak check the precutter nozzle and probe at a maximum of 2 in. Hg vacuum to avoid loss of material from the precutter and probe. Enter the results of the leak check onto the field test data sheet. If the leak rate of the precutter nozzle and probe exceeds 0.02 actual cubic feet per minute or four percent of the average sampling rate during the test run (whichever is less), the run is invalid and must be repeated. Seal all openings of sampling train components from which samples will be collected and transport to the sample recovery area.

Recover the captured material from the precutter nozzle, probe, cyclone, cyclone exit tubing, the front half of the filter holder, and the filter. Refer to the following sections for more detailed information.

- 8.7.4.1 Recover the Method 202 sampling train in accordance with the sample recovery procedures specified in Method 202.
- 8.7.4.2 Recovery of Filterable PM. Recovery involves the quantitative transfer of particles in the following size range: greater than 2.5 micrometers; and less than or equal to 2.5 micrometers. You must use a nylon or fluoropolymer brush and an acetone rinse to recover particles from the cyclone and filter holder. For sources covered under 40 CFR Part 60, Subpart BB, water is used as the rinse reagent. Use the following procedures for each container:
 - (a) Container #1, Filter, Filterable Particulate Matter Less Than or Equal to 2.5 Micrometers. Use tweezers and/or clean disposable surgical gloves to remove the filter

from the filter holder. Place the filter in the Petri dish that you labeled with the test identification and Container #1. Using a dry brush and/or a sharp-edged blade, carefully transfer any PM and/or filter fibers that adhere to the filter holder gasket or filter support screen to the Petri dish. Seal the container. This container holds particles less than or equal to 2.5 micrometers that are caught on the filter.

(b) Container #2. Rinse, Filterable Particulate Matter Less Than or Equal to 2.5 Micrometers

Place the reagent (and brush cleaning) rinses of the interior surfaces of the inlet side of the filter holder and the exit tube from the PM2.5 cyclone into Container #2. Seal the container and mark the liquid level on the outside of the container. This container holds filterable less than or equal to 2.5 micrometers.

(c) Container #3. Cyclone Rinse, Filterable Particulate Matter Greater than 2.5 Micrometers.

Place the solids from the $PM_{2.5}$ cyclone cup and the reagent (and brush cleaning) rinses of the interior surface of the $PM_{2.5}$ cyclone, into Container #3. Seal the container and mark the liquid level on the outside of the container. This container holds filterable PM greater than 2.5 micrometers.

- (d) Container #4. Probe Rinse, Filterable Particulate Matter Greater than 2.5 Micrometers. Place the solids from the probe (and brush cleaning) rinses of the interior surface of the probe into Container #4. Seal the container and mark the liquid level on the outside of the container. This container holds filterable PM greater than 2.5 micrometers.
- (e) Container #5. Precutter Nozzle Rinse, Filterable Particulate Matter Greater than 2.5 Micrometers. Place the solids from the precutter nozzle (and brush cleaning) rinses of the interior surface of the precutter nozzle into Container #5. Seal the container and mark the liquid level on the outside of the container. This container holds filterable PM greater than 2.5 micrometers.
- (f) Container #6, Acetone field reagent blank. Take approximately 350 ml of the acetone directly from the wash bottle you used and place it in Container #8 labeled "Acetone Field Reagent Blank."

8.7.5 Transport Procedures.

Containers must remain in an upright position at all times during shipping. Samples may be transported and stored at ambient temperatures.

9.0 Quality Control

9.1 Daily Quality Checks.

You must perform daily quality checks of field log books and data entries and calculations using data quality indicators from this method and your site-specific test plan. You must review and evaluate recorded and transferred raw data, calculations, and documentation of testing procedures. You must initial or sign log book pages and data entry forms that were reviewed.

9.2 Calculation Verification.

Verify the calculations by independent, manual checks. You must flag any suspect data and identify the nature of the problem and potential effect on data quality. After you complete the test, prepare a data summary and compile all the calculations and raw data sheets.

9.3 Conditions.

You must document data and information on the process unit tested, the particulate matter control system used to control emissions, any non-particulate matter control system that may affect particulate matter emissions, the sampling train conditions, and weather conditions. Discontinue the test if the operating conditions may cause non-representative particulate matter emissions.

9.4 Field Analytical Balance Calibration Check.

Perform calibration check procedures on field analytical balances each day that they are used. You must use National Institute of Standards and Technology (NIST)-traceable weights at a mass approximately equal to the weight of the sample plus container you will weigh.

9.5 Field Train Proof Blank.

Prior to performing emissions testing, collect the Field Train Proof Method Blank in the following manner. Assemble a sampling train from laboratory cleaned sampling train components on the same sampling platform on which the emissions testing will be performed. Perform a leak check of the assembled sampling train. Leave the assembled sampling train on the sampling platform for a period of time equivalent to an actual test run. At the conclusion of the exposure period perform a second leak check of the sampling train. Disassemble, seal, and transport the sampling train components to the sample recovery area, and recover the samples in the same manner as would be performed for an actual test run as detailed in section 8.7.4.

10.0 Calibration and Standardization

Maintain a log of all filterable particulate matter sampling and analysis calibrations. Include copies of the relevant portions of the calibration and field logs in the final test report.

10.1 Gas Flow Velocities.

You must use an S-type Pitot tube that meets the required EPA specifications (EPA Publication 600/4-77-0217b) during these velocity measurements. You must also complete the following:

- (a) Visually inspect the S-type Pitot tube before sampling.
- (b) Leak check both legs of the Pitot tube before and after sampling
- (c) Maintain proper orientation of the S-type Pitot tube while making measurements.

10.1.1 S-type Pitot Tube Orientation.

The S-type Pitot tube is properly oriented when the yaw and the pitch axis are 90 degrees to the air flow.

10.1.2 Average Velocity Pressure Record.

Instead of recording either high or low values, record the average velocity pressure at each point during flow measurements.

10.1.3 Pitot Tube Coefficient.

Determine the Pitot tube coefficient based on techniques described in Section 10 of Method 2 of Appendix A-1 to Part 60.

10.2 Thermocouple Calibration.

You must calibrate the thermocouples using the procedures described in Section 10.3.1 of Method 2 of Appendix A-1 to Part 60 or Alternative Method 2 Thermocouple Calibration (ALT-011). Calibrate each temperature sensor at a minimum of three points over the anticipated range of use against a NIST traceable thermometer. Alternatively, a reference thermocouple and potentiometer calibrated against NIST standards can be used.

10.3 Precutter and Nozzles.

You may use glass, quartz, stainless steel (316 or equivalent), high-temperature steel alloy, or fluoropolymer-coated nozzles for isokinetic sampling. Make sure that all nozzles are thoroughly cleaned, visually inspected, and calibrated according to the procedure outlined in Section 10.1 of Method 5 of Appendix A-3 to Part 60. The precutter is designed to remove droplets and particles with a 50% cut size equal to 12 micrometers.

10.4 Dry Gas Meter Calibration.

Calibrate your dry gas meter following the calibration procedures in Section 16.1 of Method 5 of Appendix A-3 to Part 60. Also, make sure you fully calibrate the dry gas meter to determine the volume correction factor prior to field use. Post-test calibration checks must be performed as soon as possible after the equipment has been returned to the shop. Your pre-test and post-test calibrations must agree within \pm 5 percent.

10.5 Glassware.

Use analytical glassware as specified in Method 202.

11.0 Analytical Procedures

11.1 Analytical Data Sheet.

Record and report all data on the analytical data sheet using the data sheet shown in Figure 9 or a data sheet having similar data entries. Alternatively, data may be recorded and reported electronically using software applications such as the Electronic Reporting Tool located at http://www.epa.gov/ttn/chief/ert/ert_tool.html.

11.2 Dry Weight of PM.

Determine the dry weight of particulate following procedures outlined in this section.

11.2.1 Container #1, Filter, Filterable Particulate Matter Less than or Equal to 2.5 Micrometers. Particulate Matter Captured on Front-Half Filter.

Transfer the filter and any loose particulate matter from the sample container to a tared weighing dish or pan that is inert to solvent or mineral acids. Desiccate for 24 hours in a desiccator containing anhydrous calcium sulfate. Weigh to a constant weight and report the results to the nearest 0.1 mg (See Section 3.0 for a definition of Constant weight.) If constant weight requirements cannot be met, the filter must be treated as described in Section 11.2.1 of Method

202 of Appendix M to this part. Extracts resulting from the use of this procedure must be filtered to remove filter fragments before the filter is processed and weighed.

- 11.2.2 Container #2, Rinse, Filterable Particulate Matter Less Than or Equal to 2.5 Micrometers. Reagent Rinse of the Exit Tube of the PM_{2.5} cyclone and Front Half of the Filter Holder. Note the level of liquid in the container and confirm on the analysis sheet whether leakage occurred during transport. If a noticeable amount of leakage has occurred, either void the sample or use methods (subject to the approval of the Administrator) to correct the final results. Quantitatively transfer the contents to a tared, non-reactive container, and evaporate to dryness at room temperature and pressure in a laboratory hood. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 mg.
- 11.2.3 Container #3, Cyclone Rinse, Filterable Particulate Matter Greater Than 2.5 Micrometers. Reagent Rinse of the PM_{2.5} Cyclone Cup and the Reagent (and brush cleaning) Rinses of the Interior Surface of the PM_{2.5} Cyclone.

Note the level of liquid in the container and confirm on the analysis sheet whether leakage occurred during transport. If a noticeable amount of leakage has occurred, either void the sample or use methods (subject to the approval of the Administrator) to correct the final results. Quantitatively transfer the contents to a tared, non-reactive container, and evaporate to dryness at room temperature and pressure in a laboratory hood. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 mg.

11.2.4 Container #4, Probe Rinse, Filterable Particulate Matter Greater Than 2.5 Micrometers. Reagent Rinse of the Probe (and brush cleaning).

Note the level of liquid in the container and confirm on the analysis sheet whether leakage occurred during transport. If a noticeable amount of leakage has occurred, either void the sample or use methods (subject to the approval of the Administrator) to correct the final results. Quantitatively transfer the contents to a tared, non-reactive container, and evaporate to dryness at room temperature and pressure in a laboratory hood. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 mg.

11.2.5 Container #5, Precutter Nozzle Rinse, Filterable Particulate Matter Greater Than 2.5 Micrometers. Reagent Rinse of the Precutter and Brush Cleaning Rinses.

Note the level of liquid in the container and confirm on the analysis sheet whether leakage occurred during transport. If a noticeable amount of leakage has occurred, either void the sample or use methods (subject to the approval of the Administrator) to correct the final results. Quantitatively transfer the contents to a tared, non-reactive container, and evaporate to dryness at room temperature and pressure in a laboratory hood. Desiccate for 24 hours and weigh to a constant weight. Report the results to the nearest 0.1 mg.

11.2.6 Container #8, Acetone Field Reagent Blank.

Use 150 ml of acetone from the blank container used for this analysis. Transfer 350 ml of the acetone to a clean, non-reactive container. Evaporate the acetone to dryness at room temperature and pressure in a laboratory hood. Following evaporation, desiccate the residue for 24 hours in a desiccator containing anhydrous calcium sulfate. Weigh and report the results to the nearest 0.1 mg.

11.2.7 Notes on Gravimetric Analysis and Containers Used for Sample Analysis.

Accuracy of sample mass determinations is directly correlated to the gravimetric detection limit achievable. The lower the gravimetric detection limit the greater the accuracy of the sample mass determination. Gravimetric detection limits are affected by the environmental conditions in which the mass determinations are made (temperature, humidity, barometric pressure, air movement), static charge accumulation, buoyancy of the sample container and sample substrate, and mass of the container used to hold the sample. A light weight sample container will yield a lower gravimetric detection limit than a heavier sample container (i.e. a fluoropolymer beaker liner with a tare weight of a few grams will have a lower gravimetric detection limit than a 250 ml glass beaker with a tare weight of close to 160 grams). ASTM Standard D 6552 – 06 provides guidance in controlling errors for gravimetric analysis.

12.0 Calculations and Data Analysis

12.1 Nomenclature.

Report results in International System of Units (SI units) unless the regulatory authority that established the requirement to use this test method specifies reporting in English units. The following nomenclature is used.

A = Area of stack or duct at sampling location, square inches.

 A_n = Area of nozzle, square feet.

 B_{ws} = Moisture content of gas stream, fraction (e.g., 10 percent H₂O is B_{ws} = 0.10).

C = Cunningham correction factor for particle diameter, D_p and calculated using the cyclone temperature of $780^{\circ}R$.

 $%CO_2 = Carbon dioxide content of gas stream, percent by volume.$

Ca = Acetone blank concentration, mg/mg.

 $C_{fPM_{2.5}}$ = Conc. of filterable PM_{2.5}, gr/DSCF.

 C_p = Pitot coefficient for the Pitot, dimensionless

 $C_{p'}$ = Coefficient for the Pitot used in the preliminary traverse, dimensionless.

C_r= Re-estimated Cunningham correction factor for particle diameter equivalent to the actual cut size diameter and calculated using the actual stack gas temperature, dimensionless.

 C_{tf} = Conc. of total filterable PM, gr/DSCF.

 $C_1 = -150.3162$ (micropoise)

 $C_2 = 18.0614 \text{ (micropoise/K}^{0.5}) = 13.4622 \text{ (micropoise/R}^{0.5})$

 $C_3 = 1.19183 \times 10^6 \text{ (micropoise/K}^2) = 3.86153 \times 10^6 \text{ (micropoise/R}^2)$

 $C_4 = 0.591123$ (micropoise)

 $C_5 = 91.9723$ (micropoise)

 $C_6 = 4.91705 \times 10^{-5} \text{ (micropoise/K}^2) = 1.51761 \times 10^{-5} \text{ (micropoise/R}^2)$

D = Inner diameter of sampling nozzle, inches.

 D_p = Physical particle size, micrometers.

 D_{50} = Particle cut diameter, micrometers.

 D_{50-1} = Re-calculated particle cut diameters based on re-estimated C_r , micrometers.

 D_{50LL} = Cut diameter for cyclone I (not used for OTM-036) corresponding to the 2.25 micrometer cut diameter for PM_{2.5} cyclone, micrometers.

 $D_{50N} = D_{50}$ value for PM_{2.5} cyclone calculated during the Nth iterative step, micrometers.

 $D_{50(N+1)} = D_{50}$ value for PM_{2.5} cyclone calculated during the N+1 iterative step, micrometers.

 D_{50T} = Cyclone I (not used for OTM-036) cut diameter corresponding to the middle of the overlap zone shown in Figure 7 of Section 17, micrometers.

I = Percent isokinetic sampling, dimensionless.

 $K_p = 85.49$, ((ft/sec)/(pounds/mole -°R)).

 M_a = Mass of residue of acetone after evaporation, mg.

M_d = Molecular weight of dry gas, pounds/pound Mole.

mg = Milligram.

mg/L = Milligram per liter.

M_w= Molecular weight of wet gas, pounds/pound mole.

 M_1 = Milligrams of PM collected on the filter (Container 1), less than or equal to 2.5 micrometers

M₂= Milligrams of PM recovered from cyclone exit tubing and filter holder (Container 2), less or equal to 2.5 micrometers

 M_3 = Milligrams of PM recovered from the cyclone rinse (Container 3), greater than 2.5 micrometers.

M₄= Milligrams of PM recovered from the probe rinse (Container 4), greater than 2.5 micrometers

 M_5 = Milligrams of PM recovered from the precutter rinse (Container 5), greater than 2.5 micrometers.

 N_{tp} = Number of iterative steps or total traverse points.

 N_{re} = Reynolds number, dimensionless.

 $%O_{2,wet} = O_{xygen}$ content of gas stream, % by volume of wet gas.

(Note: The oxygen percentage used in Equation 3 is on a wet gas basis. That means that since oxygen is typically measured on a dry gas basis, the measured percent O_2 must be multiplied by the quantity $(1 - B_{ws})$ to convert to the actual volume fraction. Therefore, $\%O_{2,wet} = (1 - B_{ws}) \times \%O_{2,dry}$

 P_{bar} = Barometric pressure, inches Hg.

 P_s = Absolute stack gas pressure, inches Hg.

 Q_s = Sampling rate for cyclone I to achieve specified D₅₀. (Not used in OTM-036)

 Q_{SST} = Dry gas sampling rate through the sampling assembly, DSCFM.

Q_I = Sampling rate for cyclone I to achieve specified D₅₀. (Not used in OTM-036)

 $Q_{2.5}$ = Sampling rate for PM_{2.5} Cyclone to achieve specified D₅₀.

 Q_{Nozzle} = Actual air flow rate through the nozzle.

 R_{max} = Nozzle/stack velocity ratio parameter, dimensionless.

R_{min} = Nozzle/stack velocity ratio parameter, dimensionless.

 T_m = Meter box and orifice gas temperature, ${}^{\circ}R$.

 t_n = Sampling time at point n, min.

 t_r = Total projected run time, min.

 T_s = Absolute stack gas temperature, ${}^{\circ}R$.

T_c⁼Absolute cyclone gas temperature, °R.

 t_1 = Sampling time at point 1, min.

v_{max} = Maximum gas velocity calculated from Equations 18 or 19, ft/sec.

v_{min} = Minimum gas velocity calculated from Equations 16 or 17, ft/sec.

 v_n = Sample gas velocity in the nozzle, ft/sec.

 v_s = Velocity of stack gas, ft/sec.

V_a= Volume of acetone blank, ml.

V_{aw} = Volume of acetone used in sample recovery wash, ml.

 V_c = Quantity of water captured in impingers and silica gel, ml.

 $V_m = Dry$ gas meter volume sampled, ACF.

V_{ms} = Dry gas meter volume sampled, corrected to standard conditions, DSCF.

 V_{ws} = Volume of water vapor, SCF.

 V_b = Volume of aliquot taken for IC analysis, ml.

V_{ic} = Volume of impinger contents sample, ml.

W_a = Weight of blank residue in acetone used to recover samples, mg.

Z = Ratio between estimated PM_{2.5} cyclone D₅₀ values, dimensionless.

 $\Delta H = Meter box orifice pressure drop, inches W.C.$

 $\Delta H_{@}$ = Pressure drop across orifice at flow rate of 0.75 SCFM at standard conditions, inches W.C. (Note: Specific to each orifice and meter box.)

 $[(\Delta p)^{0.5}]_{avg}$ = Average of square roots of the velocity pressures measured during the preliminary traverse, inches W.C.

 Δp_m = Observed velocity pressure using S-type Pitot tube in preliminary traverse, inches W.C.

 Δp_{avg} = Average velocity pressure, inches W.C.

 $\Delta p_{\text{max}} = \text{Maximum velocity pressure, inches W.C.}$

 Δp_{min} = Minimum velocity pressure, inches W.C.

 Δp_n = Velocity pressure measured at point n during the test run, inches W.C.

 Δp_1 = Velocity pressure measured at point 1, inches W.C.

 γ = Dry gas meter gamma value, dimensionless.

 μ_c = Gas viscosity of gas stream in the PM_{2.5} cyclone, micropoise.

 μ_s = Gas viscosity of stack gas, micropoise.

 θ = Total run time, min.

 ρ_a = Density of acetone, mg/ml (see label on bottle).

12.2 Calculations.

Perform all of the calculations found in Table 6 of Section 17. Table 6 of Section 17 also provides instructions and references for the calculations.

12.3 Analyses.

Analyze D₅₀ of PM_{2.5} cyclone and the concentrations of the PM in the various size ranges.

12.3.1 D₅₀ of PM_{2.5} cyclone.

To determine the actual D_{50} for $PM_{2.5}$ cyclone, recalculate the Cunningham correction factor and the Reynolds number for the best estimate of $PM_{2.5}$ cyclone D_{50} . The following sections describe additional information on how to recalculate the Cunningham correction factor and determine which Reynolds number to use.

- 12.3.1.1 Cunningham correction factor. Recalculate the initial estimate of the Cunningham correction factor using the actual test data. Insert the actual test run data and D_{50} of 2.5 micrometers into Equation 4. This will give you a new Cunningham correction factor based on actual data.
- 12.3.1.2 Initial D₅₀ for the PM_{2.5} cyclone. Determine the initial estimate for the PM_{2.5} cyclone D₅₀ using the test condition Reynolds number calculated with Equation 10 as indicated in Table 3 of Section 17. Refer to the following instructions.

- (a) If the Reynolds number is less than 3,162, calculate the D_{50} for the $PM_{2.5}$ cyclone with Equation 34, using actual test data.
- (b) If the Reynolds number is greater than or equal to 3,162, calculate the D_{50} for the $PM_{2.5}$ cyclone with Equation 35 using actual test data.
- (c) Insert the "new" D_{50} value calculated by either Equation 34 or 35 into Equation 36 to re-establish the Cunningham Correction Factor (C_r). Use the test condition calculated Reynolds number to determine the most appropriate equation (Equation 34 or 35).
- 12.3.1.3 Re-establish the $PM_{2.5}$ cyclone D_{50} . Use the reestablished Cunningham correction factor (calculated in the previous step) and the calculated Reynolds number to determine D_{50-1} .
 - (a) Use Equation 37 to calculate the re-established the $PM_{2.5}$ cyclone D_{50-1} if the Reynolds number is less than 3,162.
 - (b) Use Equation 38 to calculate the re-established the $PM_{2.5}$ cyclone D_{50-1} if the Reynolds number is greater than or equal to 3,162.
- 12.3.1.4 Establish "Z" values. The "Z" value is the result of an analysis that you must perform to determine if the C_r is acceptable. Compare the calculated $PM_{2.5}$ cyclone D_{50} (either Equation 34 or 35) to the re-established $PM_{2.5}$ cyclone D_{50-1} (either Equation 37 or 38) values based upon the test condition calculated Reynolds number (Equation 10). Follow these procedures.
 - (a) Use Equation 39 to calculate the "Z" values. If the "Z" value is between 0.99 and 1.01, the D_{50-1} value is the best estimate of the $PM_{2.5}$ cyclone D_{50} cut diameter for your test run.
 - (b) If the "Z" value is greater than 1.01 or less than 0.99, re-establish a C_r based on the D_{50-1} value determined in either Equations 37 or 38, depending upon the test condition Reynolds number.
 - (c) Use the second revised C_r to re-calculate the PM_{2.5} cyclone D₅₀.
 - (d) Repeat this iterative process as many times as necessary using the prescribed equations until you achieve the criteria documented in Equation 40.

12.3.2 Particulate Matter Concentration.

Use the particulate matter catch weights in the cyclone sampling train to calculate the concentration of PM in the various size ranges.

12.4 Reporting.

You must prepare a test report following the guidance in EPA Guidance Document 043, Preparation and Review of Test Reports (December 1998).

12.5 Equations.

Use the following equations to complete the calculations required in this test method.

Molecular Weight of Dry Gas. Calculate the molecular weight of the dry gas using Equation 1.

$$M_d = 0.44 \, (\%CO_2) + 0.32 \, (\%O_2) + 0.28 \, (100 - \%O_2) - \% \, CO_2)$$
 (Eq. 1)

Molecular Weight of Wet Gas. Calculate the molecular weight of the stack gas on a wet basis using Equation 2.

$$-M_w = M_d (1 - B_{ws}) + 18 (B_{ws})$$
 (Eq. 2)

Stack Gas Stream and $PM_{2.5}$ Cyclone Gas Stream Viscosities. Calculate the stack gas stream viscosity using Equation 3a. This equation uses constants for gas temperatures (T_s) in $^{\circ}$ R. Calculated the $PM_{2.5}$ cyclone gas stream viscosity using Equation 3b. T_c is the temperature of the $PM_{2.5}$ cyclone (780 $^{\circ}$ R).

$$\mu_s = C_1 + C_2 \sqrt{T_s} + C_3 T_s^{-2} + C_4 (\% O_{2,wet}) - C_5 B_{ws} + C_6 B_{ws} T_s^2$$
 (Eq. 3a)

$$\mu_c = C_1 + C_2 \sqrt{T_c} + C_3 T_s^{-2} + C_4 (\% O_{2,wet}) - C_5 B_{ws} + C_6 B_{ws} T_c^2$$
 (Eq. 3b)

Cunningham Correction Factor. The Cunningham correction factor is calculated for a 2.25 micrometer diameter particle. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$C = 1 + 0.0057193 \left[\frac{\mu_C}{P_S D_{50}} \right] \left[\frac{T_C}{M_W} \right]^{0.5}$$
 (Eq. 4)

Equation 5 not used.

Equation 6 not used.

Equation 7 not used.

Sampling Rate Using PM_{2.5} Cyclone. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

For N_{re} Less than 3,162:

$$Q_{2.5} = 0.0060639 \left[\frac{\mu_c}{C^{0.4242}} \right] \left[\frac{P_s M_w}{T_c} \right]^{-0.5759} \left[\frac{1}{2.5} \right]^{0.8481}$$
 (Eq. 8)

$$Q_{Nozzle} = Q_{2.5} \left[\frac{460 + T_S}{460 + T_C} \right]$$
 (Eq. 8a)

For Nre greater than or equal to 3,162. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$Q_{2.5} = 0.007657 \left[\frac{\mu_c}{c^{0.6205}} \right] \left[\frac{P_s M_w}{T_c} \right]^{-0.3795} \left[\frac{1}{2.5} \right]^{1.241}$$
 (Eq. 9)

$$Q_{Nozzle} = Q_{2.5} \left[\frac{460 + T_s}{460 + T_c} \right]$$
 (Eq. 9a)

Reynolds Number. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$N_{re} = 8.64 \times 10^5 \left[\frac{P_s M_w}{T_s} \right] \left[\frac{Q_{2.5}}{\mu_c} \right]$$
 (Eq. 10)

Meter Box Orifice Pressure Drop.

$$\Delta H = \left[\frac{Q_{2.5}(1 - B_{ws})P_s}{T_s} \right]^2 \left[\frac{1.083T_m M_d \Delta H_{@}}{P_{har}} \right]$$
 (Eq. 11)

Equation 12 not used.

Velocity of Stack Gas.

$$v_s = K_p C_p \left(\sqrt{(\Delta p)} \right)_{avg} \left[\sqrt{\frac{T_s}{P_s M_s}} \right]$$
 (Eq. 13)

Calculated Nozzle Diameter for Acceptable Sampling Rate.

$$D = \left[\frac{3.056 \, Q_{Nozzle}}{v_{\rm s}}\right]^{0.5} \tag{Eq. 14}$$

Velocity of Gas in Nozzle.

$$V_n = \frac{\left(\frac{Q_{Nozzle}}{60 \text{ min/sec}}\right)}{A_n}$$
 (Eq. 15)

Minimum Nozzle/Stack Velocity Ratio Parameter. Use the stack gas viscosity from Equation 3a for this calculation.

$$R_{min} = \left[0.2457 + \left(0.3072 - \frac{0.2603\mu_{s}(Q_{Nozzle})^{0.5}}{V_{n}^{1.5}}\right)^{0.5}\right]$$
 (Eq. 16)

Maximum Nozzle/Stack Velocity Ratio Parameter. Use the stack gas viscosity from Equation 3a for this calculation.

$$R_{max} = \left[0.4457 + \left(0.5690 + \frac{0.2603\mu_s(Q_{Nozzle})^{0.5}}{V_n^{1.5}}\right)^{0.5}\right]$$
 (Eq. 17)

Minimum Gas Velocity for $R_{min} < 0.5$, or an imaginary number (negative value under the square root function).

$$v_{\min} = v_n (0.5)$$
 (Eq. 18)

Minimum Gas Velocity for $R_{min} \ge 0.5$.

$$V_{\min} = v_n R_{\min} \tag{Eq. 19}$$

Maximum Gas Velocity for $R_{max} < 1.5$.

$$V_{\text{max}} = v_n R_{\text{max}} \tag{Eq. 20}$$

Maximum Gas Velocity for $R_{max} \ge 1.5$.

$$V_{\text{max}} = v_{\text{n}}(1.5)$$
 (Eq. 21)

Minimum Velocity Pressure.

$$\Delta p_{min} = 1.3686 x 10^{-4} \left[\frac{P_S M_W}{T_S} \right] \left[\frac{v_{min}}{c_p} \right]^2$$
 (Eq. 22)

Maximum Velocity Pressure.

$$\Delta p_{max} = 1.3686x10^{-4} \left[\frac{P_s M_w}{T_s} \right] \left[\frac{v_{max}}{c_n} \right]^2$$
 (Eq. 23)

Sampling Dwell Time at Each Point. N_{tp} is the total number of traverse points. You must use the preliminary velocity traverse data.

$$t_n = \left[\frac{c_p \sqrt{\Delta p_n}}{c_p^1 (\sqrt{\Delta p})_{avg}}\right] \left[\frac{t_r}{N_{tp}}\right]$$
 (Eq. 24)

Equations 25, 26, and 27 not used.

Dry Gas Volume Sampled at Standard Conditions.

$$V_{ms} = \left[\frac{528}{29.92}\right] \left[(\gamma)(V_m) \right] \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_m} \right]$$
 (Eq. 28)

Sample Flow Rate at Standard Conditions.

$$Q_{SST} = \frac{V_{ms}}{\theta} \tag{Eq. 29}$$

Volume of Water Vapor.

$$V_{ws} = 0.04707 V_c$$
 (Eq. 30)

Moisture Content of Gas Stream.

$$B_{ws} = \left[\frac{V_{ws}}{V_{ms} + V_{ws}}\right] \tag{Eq. 31}$$

Sampling Rate.

$$Q_{2.5} = \frac{29.92}{528} Q_{SST} \left[\frac{1}{1 - B_{WS}} \right] \left[\frac{T_c}{P_s} \right]$$
 (Eq. 32)

(Note: The viscosity and Reynolds Number must be recalculated using the actual cyclone temperature, moisture, and oxygen content.)

Equation 33 not used.

Particle Cut Diameter for $N_{re} < 3,162$ for $PM_{2.5}$ Cyclone. C must be recalculated using the actual test run data and a D_{50} for 2.5 micrometer diameter particle size. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$D_{50} = 0.0024302 \left[\frac{\mu_c}{Q_{2.5}} \right]^{1.1791} \left[\frac{1}{c} \right]^{0.5} \left[\frac{T_c}{P_S M_W} \right]^{0.6790}$$
 (Eq. 34)

Particle Cut Diameter for $N_{re} \ge 3,162$ for $PM_{2.5}$ Cyclone must be recalculated using the actual test run data and a D_{50} for 2.5 micrometer diameter particle size. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$D_{50} = 0.019723 \left[\frac{\mu_c}{Q_{2.5}} \right]^{0.8058} \left[\frac{1}{c} \right]^{0.5} \left[\frac{T_c}{P_s M_w} \right]^{0.3058}$$
 (Eq. 35)

PM2.5 cyclone

Re-estimated Cunningham Correction Factor. You must use the actual test run Reynolds Number (N_{re}) value and select the appropriate D_{50} from Equation 33 or 34 (or Equation 37 or 38 if reiterating). Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$C_r = 1 + 0.0057193 \left[\frac{\mu_c}{P_c D_{ro}} \right] \left[\frac{T_c}{M_{vir}} \right]^{0.5}$$
 (Eq. 36)

Re-calculated Particle Cut Diameter for Nre < 3,162.

$$D_{50-1} = 0.0024302 \left[\frac{\mu_c}{Q_{2.5}} \right]^{1.1791} \left[\frac{1}{C_r} \right]^{0.5} \left[\frac{T_c}{P_s M_w} \right]^{0.6790}$$
 (Eq. 37)

Re-calculated Particle Cut Diameter for N_{re} Greater than or Equal to 3,162. Use the cyclone gas stream viscosity from Equation 3b in this calculation.

$$D_{50-1} = 0.019723 \left[\frac{\mu_c}{Q_{2.5}} \right]^{0.8058} \left[\frac{1}{C_r} \right]^{0.5} \left[\frac{T_c}{P_s M_w} \right]^{0.3058}$$
 (Eq. 38)

Ratio (Z) Between D₅₀ and D₅₀₋₁ Values.

$$Z = \frac{D_{50-1}}{D_{50}} \tag{Eq. 39}$$

Acceptance Criteria for Z Values. The number of iterative steps is represented by N.

$$0.99 \le \left[Z = \left(\frac{D_{50N}}{D_{50N-1}}\right)\right] \le 1.01$$
 (Eq. 40)

Percent Isokinetic Sampling.

$$I = \left[\frac{100(T_s)(V_{ms})(29.92)}{60(v_s)(\theta)(A_n)(P_s)(1-B_{ws})(528)} \right]$$
 (Eq. 41)

Equation 42 not used.

Equation 43 not used.

Equation 44 not used.

Concentration of Total Filterable PM.

$$C_{tf} = \left[\frac{7000}{453.592}\right] \left[\frac{M_1 + M_2 + M_3 + M_4 + M_5}{V_{ms}}\right]$$
 (Eq. 45)

Equation 46 not used.

Concentration of Filterable PM_{2.5}.

$$C_{fPM2.5} = \left[\frac{7000}{453.592}\right] \left[\frac{M_1 + M_2}{V_{ms}}\right]$$
 (Eq. 47)

This method is designed to determine filterable $PM_{2.5}$ based on the total catch weights in Containers #1 and #2 using Equation 47.

Alternatively, if stack temperature meets filtration temperature as required by the applicable subpart of the standard or method and other requirement as described Section 1.5, sources can measure the total filterable PM by combining the total catch weights in Containers #1, #2, #3, #4, #5 using Equation 45.

13.0 Method Performance

13.1 Reserved

13.2 Not Applicable.

13.3 Field Evaluation

A field evaluation of the revised Method 201A by EPA showed that the detection limit was 2.54 mg for total filterable PM, and 1.35 mg for PM_{2.5}. The precision resulting from 10 quadruplicate tests (40 test runs) conducted for the field evaluation was 6.7 percent relative standard deviation. The field evaluation also showed that the blank expected from Method 201A was less than 0.9 mg (EPA, 2010). Similar values are anticipated for this OTM.

14.0 Alternative Procedures

[Reserved]

15.0 Waste Management

[Reserved]

16.0 References

- (1) Dawes, S.S., and W.E. Farthing. 1990. "Application Guide for Measurement of PM_{2.5} at Stationary Sources," U.S. Environmental Protection Agency, Atmospheric Research and Exposure Assessment Laboratory, Research Triangle Park, NC, 27511, EPA-600/3-90/057 (NTIS No.: PB 90-247198).
- (2) Farthing, et al. 1988a. "PM₁₀ Source Measurement Methodology: Field Studies," EPA 600/3-88/055, NTIS PB89-194278/AS, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.
- (3) Farthing, W.E., and S.S. Dawes. 1988b. "Application Guide for Source PM_{10} Measurement with Constant Sampling Rate," EPA/600/3-88-057, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711.
- (4) Richards, J.R. 1996. "Test protocol: PCA PM₁₀/PM_{2.5} Emission Factor Chemical Characterization Testing," PCA R&D Serial No. 2081, Portland Cement Association.
- (5) U.S. Environmental Protection Agency, Federal Reference Methods 1 through 5 and Method 17, 40 CFR Part 60, Appendix A-1 through A-3 and A-6. (6) U.S. Environmental Protection Agency. 2010. "Field Evaluation of an Improved Method for Sampling and Analysis of Filterable and Condensable Particulate Matter." Office of Air Quality Planning and Standards, Sector Policy and Program Division Monitoring Policy Group. Research Triangle Park, NC 27711.

- (6) Air Control Techniques, P.C. "Wet Stack Filterable PM_{2.5} Sampling System Development Report." Report to the American Petroleum Institute. September 16, 2013.
- (7) Air Control Techniques, P.C. "Wet Stack Filterable PM_{2.5} Sampling System, Method 301 Validation Test Report." Report to the American Petroleum Institute. September 16, 2013.
- (8) Air Control Techniques, P.C. "1951 Precutter 50% Cut Size Test Report." Report to the National Council of Air & Stream Improvement and the American Petroleum Institute. April 9, 2015.

17.0 Tables, Diagrams, Flowcharts, and Validation Data

You must use the following tables, diagrams, flowcharts, and data to complete this test method successfully.

Table 1. Typical PM Concentrations

Particle Size Range	Concentration and% by Weight	
Total collectable PM	0.015 grains per Dry Standard Cubic Foot, gr/DSCF	
\leq 10 and > that 2.5 micrometers	40% of total collectable PM	
≤ 2.5 micrometers	20% of total collectable PM	

Table 2. Required Cyclone Cut Diameters (D₅₀)

Cyclone	Minimum cut diameter	Maximum cut diameter
PM _{2.5} Cyclone Also termed Cyclone IV	2.25 micrometers	2.75 micrometers

Table 3. Test Calculations

If you are using	To calculate	Then use
Preliminary Data	Dry gas molecular weight, M _d	Equation 1
Dry gas molecular weight (M _d) and preliminary moisture content of the gas stream	Wet gas molecular weight, Mw	Equation 2 ^a
Stack gas temperature, oxygen and moisture content of the gas stream	Stack gas viscosity, μ _s	Equation 3a
Cyclone gas temperature	PM _{2.5} Cyclone viscosity μ _c	Equation 3b
Gas viscosity, μ _c	Cunningham correction factor ^b ,	Equation 4
D_{50} for PM _{2.5} cyclone and N _{re} < 3,162	Final sampling rate for the PM _{2.5} cyclone, Q _{2.5}	Equation 8

D_{50} for PM _{2.5} cyclone and $N_{re} \ge 3,162$	Final sampling rate for the PM _{2.5} cyclone, Q _{2.5}	Equation 9
Q _{2.5} from Equation 29	Verify the assumed Reynolds number, N_{re}	Equation 10

^a Use Method 4 to determine the moisture content of the stack gas. Use a wet bulb-dry bulb measurement device or hand-held hygrometer to estimate moisture content of sources with gas temperature less than 160°F.

Table 4. AH Values Based on Preliminary Traverse Data

Stack Temperature (°R)	Ts - 5°	T_s	$T_s + 5^{\circ}$
ΔH, (inches W.C.)	a	a	a

^a These values are to be filled in by the stack tester

^b For the lower cut diameter of PM_{2.5} cyclone, 2.25 micrometers

^c Verify the assumed Reynolds number using the procedure in Section 8.5.1 before proceeding to Equation 11

Table 5 is not used.

Table 6. Calculations for Recovery of PM_{2.5}

Calculations	Instructions and References
Average dry gas meter temperature	See field test data sheet
Average orifice pressure drop	See field test data sheet
Dry gas volume (V _{ms})	Use Equation 28 to correct sample volume to standard conditions (68°F, 29.92 inches Hg)
Dry gas sampling rate (Q _{sST})	Must be calculated using Equation 29
Volume of water condensed (Vws)	Use Equation 30 to determine the water condensed in the impingers and silica gel combination
Moisture content of stack gas (B _{ws})	Use Equation 31 to calculate
Sampling rate (Q _{2.5})	Use Equation 32 to calculate
Test condition Reynolds Number ^a	Use Equation 10 to calculate the actual Reynolds number with test conditions
Stack gas velocity (V _s)	Use Equation 13 to calculate
Percent isokinetic rate (%I)	Use Equation 41 to calculate

^a Calculate the Reynolds number at the PM_{2.5} cyclone inlet during the test based on: (1) the sampling rate through the cyclone, (2) the actual gas viscosity for the test at the cyclone, and (3) the dry and wet gas stream molecular weights.

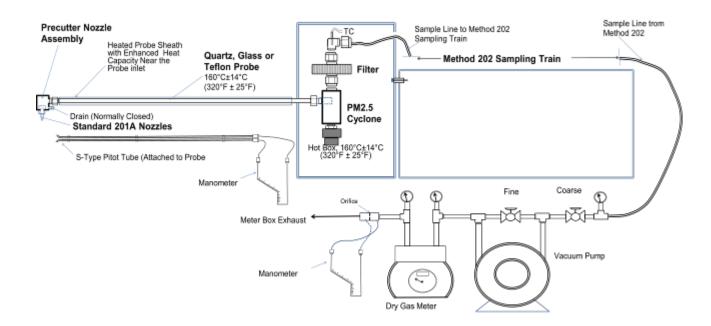


Figure 1. Schematic of the API/NCASI Wet Stack Filterable PM_{2.5} Sampling Train

Figure 2. PM_{2.5} Cyclone Sampling Head and 47 mm Filter Holder (Note: standard connection to PM_{2.5} cyclone is a 5/8" O.D. glass probe liner)

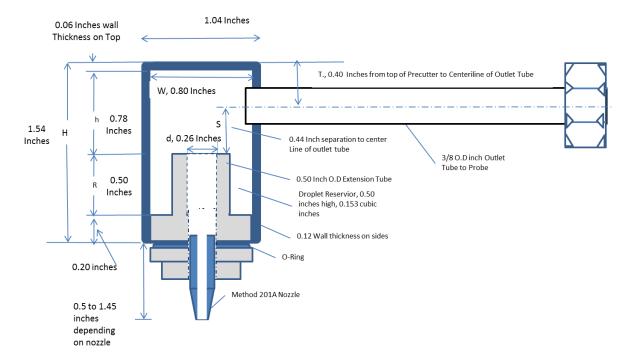


Figure 3. Precutter Nozzle Dimensions

Table 7. Precutter Dimensions, Inches				
Component	Designation	Precutter Nozzle		
Precutter Barrel Diameter	W	0.80		
Precutter Barrel External Height	Н	1.54		
Nozzle Support Extension to the Top of the Barrel	h	0.78		
Nozzle Support Extension Height	a	0.500		
Nozzle Support Extension Orifice Diameter	d	0.260		

Figure 4. Precutter Nozzle Attached to Method 5 Sampling Probe

Figure 5. Precutter Nozzle with Various Nozzle Sizes

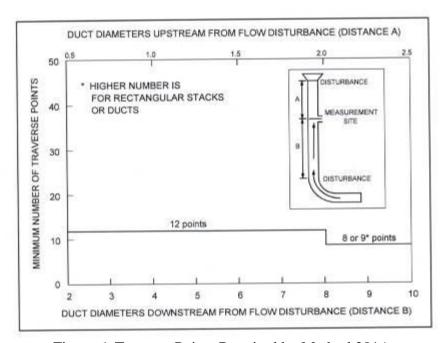
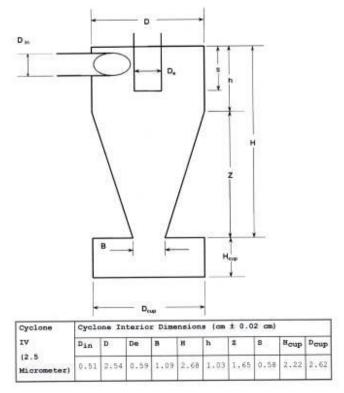



Figure 6. Traverse Points Required by Method 201A

Design Specifications for Cyclone IV (2.5 Micrometer) Sixing Device

Figure 7. PM_{2.5} cyclone Dimensions

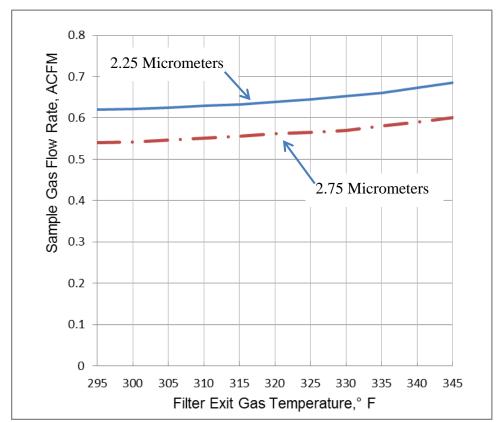


Figure 8. Acceptable Sampling Rate for the PM_{2.5} Cyclone

OTM XXX Wet Stack PM2.5/202 Run ID Condition IDENTIFICATION INFORMATION LEAK CHECKS AND DATA Req'd < 0.02 or 4% Plant Name Full Train Pretest Leak Check, ACFM City Filter Inlet Posttest Leak Check, ACFM State Precutter and Probe Leak Check, ACFM Source Number Date Do not leak check during port changes. Sampling Location Start Test Personnel Stop В Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check Meterbox ID Filter ID Tare ΔΗ@ BP, In.,Hg. SP, In. H2O Gamma, y ACTUAL MOISTURE & GAS COMPOSITION Nozzle ID Water Recovered, grams Nozzle Diameter Moisture, % Orsat/Fyrite CO₂ % O₂ % Precutter ID Sampling Information Filter/ Cyclone Impinger Dwell **Bapsed** Meter Meter Stack Actual Target CPM Filter Sample Leak Exit Gas Volume ΔΗ . Train Vac. Point Time, Time, Temp., Temp., Temp., ΔH Temp., (In. H₂O) Temp., Checks Temp., (M in.) h:m:s (ft³) (°F) (°F) (in. H₂O) (in H2 O) (in. Hg) (°F) (°F) (°F) Total Run Time Total Volume, ACF in. H2O in H2O in H2O Max in Hg Notes:

Figure 9. Example Data Sheet

Appendices

- A. Letters from API/NCASI and Air Control Techniques
- **B.** Wet Stack Sampling System Development Report
- C. Method 301 Test Protocol
- D. Method 301 Test Report
- E. Precutter Nozzle Cut Size Test Protocol May 12 2014
- F. Precutter Nozzle Cut Size Test Protocol Revised December 19, 2014
- **G.** Precutter Nozzle Cut Size Test Report
- H. Leith, D. and Boundy, M. 2008. "Development of Plans for Monitoring Emissions of PM₁, PM_{2.5} and PM₁₀ from Stationary Sources with Wet Stacks," U.S. Environmental Protection Agency, Research Triangle Park, NC 27709

Appendix A

Letters from API/NCASI and Air Control Techniques

ncasi 402 SW 140 Terrace Newberry, FL 32669

Via email: garnett.kim@epa.gov

April 30, 2015

Ms. Kim Garnett
U.S. Environmental Protection Agency
109 T.W. Alexander Drive
Mail Code: E143-02
Research Triangle Park, NC 27709

Re: PM_{2.5} Filterable Test Method for Droplet-Laden and Saturated Stacks

Request for Status as an Other Test Method (OTM)

Dear Ms. Garnett:

Thank you and others in the EPA Measurement Technology Group for your time on April 15 to discuss our proposed PM_{2.5} filterable wet test method and to provide feedback on the pre-cutter nozzle testing. Summarized below is supporting information for advancing the method to Other Test Method (OTM) status. We are also attaching a revised draft test method which incorporates the enhancements that we discussed.

Background

Although a National Ambient Air Quality Standard (NAAQS) for particulate matter 2.5 microns and smaller (PM_{2.5}) was promulgated in 1997, EPA has yet to promulgate a method for measuring filterable PM_{2.5} emissions from sources with entrained droplets in their stack gas streams. In place of a promulgated method, EPA's guidance is to measure total filterable PM using Method 5 and report all filterable PM as PM_{2.5}. This creates a bias to higher-than-true PM_{2.5} emissions. This is especially problematic because this bias can represent a major fraction of the emissions counted towards the PM_{2.5} 10 tons per year PSD significance level. This bias also causes errors in dispersion modeling used to demonstrate compliance with the PM_{2.5} NAAQS. The recent lowering of the ambient air quality standards for PM_{2.5} has exacerbated the situation, making it extremely difficult for facilities with wet stacks to either stay under the 10 tons per year threshold and/or demonstrate compliance with the ambient PM_{2.5} standards.

Many industrial sectors, including pulp and paper, petroleum, utility, and metallurgical have sources with entrained droplets and are encountering challenges with expansion projects and demonstrating compliance with the ambient $PM_{2.5}$ standards through modeling. Because pulp and papermaking is a water-based process, a significantly large fraction of emission sources at pulp and paper mills are saturated. There is an urgent need for a method which would allow facilities with wet sources to accurately measure their filterable $PM_{2.5}$ emissions.

Method Performance and Need for Field Assessment

Over the past five years, the American Petroleum Institute (API) has spent considerable resources in developing and evaluating a method for measuring wet source PM_{2.5} emissions. The National Council for Air and Stream Improvement, Inc. (NCASI) has also contributed towards this project to enable further refinement and laboratory/field evaluation of this method. Throughout this process, we have had the benefit of feedback and input from EPA's staff with expertise in this area. We have conducted numerous laboratory and field studies.

While we understand that our studies may not have answered all the questions that could be asked, the data from the Method 301 validation tests demonstrate that the precutter nozzle does not stop $PM_{2.5}$ particulate matter. In the 22 test runs (two of the twenty-four were discarded), probe rinse solids accounted for an average of only 8% of the total sampling train particulate matter catch weight and 11.7% of the $PM_{2.5}$ material catch. These test results demonstrate that the trends observed in the December 2014 nozzle tests in the 6 to 10 micrometer size range were due to limitations in the ability to disperse the microspheres—not due to precutter nozzle capture of $PM_{2.5}$ particulate matter. These data are summarized in Table 1.

		Table	1. Data from	Method 301	Validation R	eport		
	Total	Cyclone	Cyclone	Total	Total,	Total	Nozzle	Nozzle
Run ID	Nozzle	Inlet and	Outlet	Filter	PM _{2.5}	Catch	Catch, %	Catch, %
		Probe					of Total	of PM2.5
	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)		
U1-1	5	23.7	2.3	31.8	34.1	62.8	8.0	14.7
U2-1	2	15	2.9	33.1	36	53	3.8	5.6
S1-1	8.4	17.5	1.3	73.9	75.2	101.1	8.3	11.2
S2-1	8.8	14.9	2.8	64.4	67.2	90.9	9.7	13.1
U1-2	6.1	11.2	2.4	16.4	18.8	36.1	16.9	32.4
U2-2	3.3	7.8	1.1	16.3	17.4	28.5	11.6	19.0
S1-2	6.7	11.5	2.1	47.6	49.7	67.9	9.9	13.5
S2-2	6.6	11.5	1.1	48	49.1	67.2	9.8	13.4
U1-3	3.1	9.9	1	20.9	21.9	34.9	8.9	14.2
U2-3	1.5	7.4	0.7	21.7	22.4	31.3	4.8	6.7
S1-3	4.4	9.6	0.9	37.1	38	52	8.5	11.6
S2-3	2.2	14.1	1.1	30.7	31.8	48.1	4.6	6.9
U1-4	2.3	7.6	0.7	22.3	23	32.9	7.0	10.0
U2-4	2.3	7.3	1	23.7	24.7	34.3	6.7	9.3
S1-4	0.6	7	0.6	26.9	27.5	35.1	1.7	2.2
S2-4	1.6	5.8	1.2	26.5	27.7	35.1	4.6	5.8
U1-5	2.9	9.6	0.7	14.7	15.4	27.9	10.4	18.8
U2-5	1.3	5.4	0.7	15.1	15.8	22.5	5.8	8.2
S1-5	8.9	10.8	0.9	55	55.9	75.6	11.8	15.9
S2-5	3.5	12	0.8	5.8	6.6	22.1	Filter	Tear
U1-6	2.7	7.3	1.5	29.5	31	41	6.6	8.7
U2-6	3.2	6.5	1.8	30.1	31.9	41.6	7.7	10.0
S1-6	2.1	6.7	1.2	37.4	38.6	47.4	4.4	5.4
S2-6	2.2	4.5	0.6	1.2	1.8	8.5	Filter	Tear
_						Average	7.8	11.7

April 30, 2015 Ms. Kim Garnett – EPA Page 3 of 5

More significantly, it is also worthwhile to note that the Method 301 nozzle catch and efficiency matches the size efficiency curve indicated by the relatively few tests conducted on the EPA's IDS nozzle. The data presented in the February 3, 2015 and the April 9 update of the precutter nozzle report have been converted to penetration efficiency values and plotted along with the penetration efficiency data measured in the EPA-sponsored University of Minnesota tests of the IDS nozzle. As shown in Figure 1, the precutter nozzle penetration efficiencies (ACTPC data points) are very similar to those measured for the IDS nozzle.

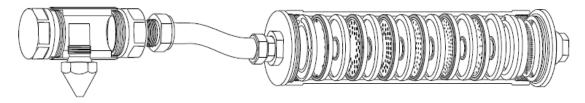



Figure 1. Comparison of Precutter Nozzle and IDS Nozzle Penetration Data

This is logical considering that (1) both the IDS nozzle and the precutter nozzle use basically the same droplet capture technique and (2) there are no aerosol physics mechanisms that are effective for removing droplets in the 1 to 8 micrometer size range under the relatively low velocity conditions existing in either nozzle. Inertial impaction, Brownian diffusion, and electrostatic attraction are all ineffective separation mechanisms in these nozzles.

The precutter nozzle used with the proposed test method is based on similarly designed precutter nozzles in use since the mid-1960's for removal of large particles prior to cascade impactors. For example, EPA document EPA-600/2-77-004 Appendix C published in 1977 shows a similar unit. Apex Instruments, Inc. in Holly Springs, North Carolina still sells a precutter nozzle that is very similar to the one used in the proposed method.

Cutaway of Cascade Impactor with Precutter

Figure 2. Apex Instruments Precutter Nozzle

April 30, 2015 Ms. Kim Garnett – EPA Page 4 of 5

The objective of using a cascade impactor is to measure the size distribution over a range of 10 to less than 0.3 micrometers. Obviously, if the precutter removed a significant fraction of the $PM_{2.5}$ particulate matter the results of the cascade impactor tests would be skewed. This has not been reported in over forty years of precutter use with cascade impactors. The precutter used in the proposed method also does not significantly remove $PM_{2.5}$ particles.

We believe that not much more would be gained by additional laboratory testing of the wet stack method. While continued laboratory testing may yield additional insights, it is not expected to answer all remaining questions about droplet behavior in this experimental setup. It is extremely difficult, if not impossible, to simulate droplet behavior in a laboratory environment. Droplet sizing remains a highly qualitative procedure subject to numerous uncertainties. Even computational fluid dynamic (CFD) modeling of droplet behavior can be subject to error due, in part, to (1) the difficulty of defining the initial droplet vectors, droplet velocity distributions, and droplet size distributions at the starting plane of the CFD model and (2) droplet impaction shattering, agglomeration, condensational growth, and reentrainment within nozzles. Only testing in actual stacks fully takes into account the real-world, hard-to-simulate variables. Therefore, in our judgment, the most effective way to understand the performance of this method would be to publish it as an OTM and thereby encourage its use in the field, in real-world conditions.

Benefits of OTM Status

Making the test method an OTM would encourage the generation of more data, and identification of possible real-world method issues. Emissions data (nozzle rinse vs filter catch weight) from sources having emissions primarily in the <2.5 micrometer size range would help answer questions relative to the precutter nozzle performance. In the absence of an OTM designation, it is unlikely that states would permit facilities to use this method, thus closing the door for a very promising method for measuring $PM_{2.5}$ emissions from wet sources and leaving only EPA's high-biased Method 5 approach.

If sources utilized the OTM, the emissions calculated based strictly on the $PM_{2.5}$ filter, cyclone outlet rinse, and filter holder rinse could be used as the measure of filterable $PM_{2.5}$ particulate matter. Emissions calculated based on the nozzle, probe, and cyclone rinses could be added to the measured filterable $PM_{2.5}$ emissions as a measure of total filterable particulate matter emissions. Accordingly, a regulatory agency or source could still make the assumption that 100% of the filterable particulate matter is filterable $PM_{2.5}$. A wet stack filterable $PM_{2.5}$ test conducted using all of the rinses and the filter is essentially equivalent to a Method 5 test.

The attached draft method has been modified to allow it to also function as a Method 5 equivalent. However, once the wet stack method becomes fully accepted, the filterable $PM_{2.5}$ emissions could be accepted based on only the cyclone outlet rinse, $PM_{2.5}$ filter and the $PM_{2.5}$ filter holder rinse—as the new method is intended. Accordingly, there is no risk to the source or the agency in approving this method as an OTM. The test data can be interpreted in whatever way proves to be most appropriate and representative.

April 30, 2015 Ms. Kim Garnett – EPA Page 5 of 5

The proposed wet stack filterable $PM_{2.5}$ test method is a logical extension of Method 201A. It uses commercially available components that most testing companies already have available. The few components unique to this method can be obtained economically and quickly from established vendors. The sampling and analysis procedures parallel those of Method 201A. Accordingly, many testing companies could perform this method almost immediately after receiving the method in OTM form. Testing firms that can properly use Method 201A can properly use this proposed method for wet stacks. Real world test data can be compiled in a short period.

It is our intent to utilize this method on a variety of sources in the industry and document its performance so that EPA may promulgate it in the future as a reference method, thus fulfilling EPA's obligation to promulgate reference methods for all criteria pollutants.

API and NCASI appreciate the review, support and feedback provided by EPA thus far in the development of this method. If you have any questions or would like to discuss further, please let us know.

Regards,

Cathe Kalisz

API

Ashok Jain

NCASI

Attachment - Draft Test Method

Jason DeWees - USEPA Barrett Parker - USEPA

Cathe Kaliss

Chet Wayland - USEPA

Vipin Varma - NCASI

Lee Carlson - NCASI

Gary Mueller - Shell

John Richards – Air Control Techniques, P.C.

301 East Durham Road Cary, North Carolina 27513

Office (919) 460-7811 Fax (919) 460-7897

Via email: kalisz.cathe@api.org; ajain@src-ncasi.org

December 21, 2015

Ms. Cathe Kalisz, P.E. Policy Advisor American Petroleum Institute 1220 L Street NW Washington, DC 20005

Mr. Ashok K. Jain Southern Regional Manager National Council for Air and Stream Improvement (NCASI) 402 SW 140th Terrace Newberry, FL 32669

Re: PM2.5 Filterable Test Method for Droplet-Laden and Moisture Saturated Stacks Response to EPA's Follow-Up Questions of November 20, 2015

Dear Ms. Kalisz and Mr. Jain:

I have prepared information to help the American Petroleum Institute (API) and the National Council for Air and Stream Improvement (NCASI) respond to questions included in the November 20, 2015 email from Ms. Kim Garnett of the U.S. Environmental Protection Agency (EPA). In her email, Mr. Garnett stated that

"The appropriateness of the following aspects of this method was not assessed during this development process. Additional data is needed in these areas before this method can be further evaluated."

This letter provides the additional information and data that EPA has requested. I have addressed each topic in the same order as in Ms. Garnett's email.

1. PROBE TRANSFER EFFICIENCY

EPA has asked if PM2.5 losses in the probe could result in a bias to lower-than-true PM2.5 emissions. The information provided below demonstrates that PM2.5 losses in the probe are negligible.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 2 of 17

The particles of interest in the sample gas stream entering the probe include solid particles with aerodynamic diameters equal to or less than 2.5 micrometers and liquid droplets less than 20 micrometers that evaporate to leave solid particles with aerodynamic diameters equal to or less than 2.5 micrometers. Both solid PM2.5 particles and droplets up to a size of 20 micrometers are addressed in the following section, which starts with a discussion of physical capture mechanisms and then addresses data from three different sets of tests.

Particle Capture Mechanisms—There are four physical mechanisms that could potentially contribute to the capture of PM2.5 particles and droplets up to 20 micrometers in the probe. All four capture mechanisms are very weak under the conditions present in the probe. These include (1) gravitational settling, (2) inertial impaction, (3) Brownian diffusion, and (4) electrostatic attraction.

Gravitation settling is potentially important only for droplets in the 10 to 20 micrometer size range having terminal settling velocities in the range of 0.31 to 1.2 centimeters per second in still air. Considering that the evaporation time of a 20 micrometer droplet is less than 0.1 second in the probe operating temperature range, there will not be time for significant settling. Turbulent mixing of the sample gas stream passing through the probe will significantly reduce gravitational settling even during the short time period while the droplet evaporates. For small PM2.5 particles with a maximum terminal settling velocity of 0.02 centimeters per second in still air, gravitational settling is negligible in the probe.

Inertial impaction requires significant differences in the velocities of the particle and the impaction target. There are no gas stream turns in the probe; therefore, there are no stationary targets for impaction. At the probe velocities of only 5 to 10 feet per second, even the velocity difference between the particle in the gas stream and the probe surface is too low to cause significant impaction losses of particles and droplets penetrating the precutter.

Brownian diffusion is very limited due to the short residence time in the probe and would only affect the particles in the lower end of the PM2.5 size range. This would only result in mass transfer in the boundary layer in the sample gas stream next to the probe wall. Brownian diffusion related capture would be negligible for droplets up to 20 micrometers and would be low even for particles less than 0.5 micrometers.

Electrostatic attraction is limited due to the lack for forces available to create high static voltage differences between the probe surface and the particles and droplets in the sample gas stream.

Particle capture in the probe is not only limited by the weakness of the four physical capture mechanisms, but also by physical mechanisms that suppress and oppose capture. Capture of particles is suppressed by thermophoresis forces created by the hot walls of the probe. Thermophoresis would drive small particles, such as those with modest Brownian diffusion rates,

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 3 of 17

away from the hot probe surfaces. Particle capture is countered by the reentrainment of particles weakly attached to smooth probe inner surfaces. The sample gas velocities in the probe are more than sufficient to cause reentrainment of particles that have become weakly attached to the probe inner surface.

It is reasonable to expect negligible bias to lower-than-true PM2.5 concentrations due to particle capture in the probe considering the weakness of the physical capture mechanisms available in the probe and the opposing effects of thermophoresis and particle reentrainment. These conclusions have been confirmed by the test data available concerning the wet stack filterable PM2.5 sampling method.

Method 301 Validation Test Program Data—The lack of capture of PM2.5 particles in the probes was clearly demonstrated during the Method 301 validation tests.

As part of these tests, two of the four sampling trains during each of the six test runs were spiked at the precutter inlet with salt-laden droplets passing through a PM2.5 cyclone separator to generate the droplet spike. The PM2.5 droplets had to pass through an 8-foot long probe to reach the PM2.5 cyclone and eventually the PM2.5 filter. The data compiled during these tests and summarized in Tables 1 and 2 indicated that the probe and cyclone inlet catch weights for the spiked sampling trains were similar to the catch weights for the two unspiked sampling trains. This indicates that the spiked PM2.5 droplets were not captured in the probe.

Table 1. Method 301 Validation Test Data ¹						
Method 301 Validation Test	Average Probe and	Total PM2.5 Catch				
Runs	Cyclone Inlet Catch	Weights,				
Kuns	Weights, mg	mg				
U1-1 and U2-1	19.4	34.1				
Spiked, S1-1 and S1-2	16.2	96.0				
U1-2 and U2-2	9.5	18.1				
Spiked, S1-2 and S2-2	11.5	49.4				
U1-3 and U2-3	8.7	22.2				
Spiked, S1-3 and S2-3	11.9	34.9				
U1-4 and U2-4	7.5	23.9				
Spiked, S1-4 and S2-4	6.4	27.6				
U1-5 and U2-5	7.5	15.6				
Spiked, S1-5 and S2-5	11.4	55.9				
U1-6 and U2-6	6.9	31.5				
Spiked, S1-6 and S2-6	5.6	38.6				

^{1.} Note: These data are averages of data provided in Table 3.4 from the Method 301 Validation
Test Program Report and reproduced in Table 2 of this letter report

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 4 of 17

As indicated in the Method 301 Validation Report previously submitted to EPA, the test method satisfied the bias and precision requirements of Method 301. This would not have been possible if there was significant PM2.5 capture in the probe.

	Tal	ble 2. Data	from Meth	od 301 Val	idation Rep	ort, Table :	3-4	
	Total	Cyclone	Cyclone	Total	Total,	Total	Nozzle	Nozzle
Run ID	Nozzle	Inlet and	Outlet	Filter	PM _{2.5}	Catch	Catch, %	Catch, %
		Probe					of Total	of PM2.5
	(mg)	(mg)	(mg)	(mg)	(mg)	(mg)		
U1-1	5	23.7	2.3	31.8	34.1	62.8	8.0	14.7
U2-1	2	15.0	2.9	33.1	36,0	53	3.8	5.6
S1-1	8.4	17.5	1.3	73.9	75.2	101.1	8.3	11.2
S2-1	8.8	14.9	2.8	64.4	67.2	90.9	9.7	13.1
U1-2	6.1	11.2	2.4	16.4	18.8	36.1	16.9	32.4
U2-2	3.3	7.8	1.1	16.3	17.4	28.5	11.6	19.0
S1-2	6.7	11.5	2.1	47.6	49.7	67.9	9.9	13.5
S2-2	6.6	11.5	1.1	48.0	49.1	67.2	9.8	13.4
U1-3	3.1	9.9	1	20.9	21.9	34.9	8.9	14.2
U2-3	1.5	7.4	0.7	21.7	22.4	31.3	4.8	6.7
S1-3	4.4	9.6	0.9	37.1	38.0	52	8.5	11.6
S2-3	2.2	14.1	1.1	30.7	31.8	48.1	4.6	6.9
U1-4	2.3	7.6	0.7	22.3	23.0	32.9	7.0	10.0
U2-4	2.3	7.3	1.0	23.7	24.7	34.3	6.7	9.3
bS1-4	0.6	7.0	0.6	26.9	27.5	35.1	1.7	2.2
S2-4	1.6	5.8	1.2	26.5	27.7	35.1	4.6	5.8
U1-5	2.9	9.6	0.7	14.7	15.4	27.9	10.4	18.8
U2-5	1.3	5.4	0.7	15.1	15.8	22.5	5.8	8.2
S1-5	8.9	10.8	0.9	55	55.9	75.6	11.8	15.9
S2-5	3.5	12	0.8	5.8	6.6	22.1	Filter	Tear
U1-6	2.7	7.3	1.5	29.5	31	41	6.6	8.7
U2-6	3.2	6.5	1.8	30.1	31.9	41.6	7.7	10.0
S1-6	2.1	6.7	1.2	37.4	38.6	47.4	4.4	5.4
S2-6	2.2	4.5	0.6	1.2	1.8	8.5	Filter Tear	
						Average	7.8	11.7

December 2015 Tests Comparing Method 201A with the Proposed Wet Stack Method—During December 2015, Air Control Techniques, P.C. conducted a set of tests to further evaluate probe losses. Polydisperse flyash particles ranging in size from less than 1 micrometer to more than 40 micrometers were used as the challenge material.

The aerodynamic sizes of the dispersed polydisperse flyash particles were accurately determined using a Method 201A sampling train. This is an especially effective means to evaluate the probe losses considering that the Method 201A PM10 cyclone has a well-accepted 50% cut size of 10 micrometers—reasonably close to the 12 micrometer 50% cut size previously measured for the precutter. Accordingly, the size distribution exiting the precutter nozzle should be similar to or

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 5 of 17

slightly more than the greater-than-10 micrometer size fraction recovered from the Method 201A PM10 cyclone.

During the December 2015 tests, both the wet stack filterable PM2.5 sampling train and the Method 201A sampling train operated at a delta H of 0.4 to 0.5 to achieve the 50% cut sizes summarized in Table 3.

Table 3. Sampling Train Operating Conditions					
Wet Stack Fil	terable PM2.5	Metho	od 201A PM10 and	PM2.5	
Samplii	ng Train		Sampling Train		
	PM2.5 Cyclone		PM10 Cyclone	PM2.5 Cyclone	
Run	50% Cut Size	Run	50% Cut Size	50% Cut	
	(micrometers)		(micrometers)	Size(micrometers)	
1	2.35	2	10.73	2.26	
3	2.96	4	10.80	2.29	
5	2.70	6	10.84	2.30	
7	2.72	8	10.82	2.29	
9	2.67	10	10.92	2.36	
11	2.72	12	10.87	2.31	
Average	2.69	Average	10.83	2.30	

Prior to the start of the test run, the precutter in the wet stack sampling train was thoroughly wetted with tap water to simulate operating conditions in a wet stack. Due to sampling runs of less than 2 minutes, the precutter interior surfaces remained wet during the sampling run.

The wet stack filterable PM2.5 sampling train consisted of the following.

- (1) Precutter with an inlet nozzle,
- (2) Four foot long probe operating at 67°F,
- (3) PM2.5 cyclone and 47-mm filter mounted in a hot box operating at 67°F,
- (4) Jumper line to a set of impingers, and
- (5) Meter box.

The Method 201A sampling system consisted of the following.

- (1) PM10 cyclone with nozzle,
- (2) PM2.5 cyclone,
- (3) 47-mm filter,
- (4) Four foot long sampling probe,
- (5) Jumper to a set of impingers, and
- (6) Meter box.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 6 of 17

Flyash from a coal-fired boiler was aspirated through a set of two mini-impingers to maximize the dispersion of the particles. This is the same dispersion system used on the monodisperse microsphere tests summarized in the January 2015 report.

The adequacy of flyash dispersion was evaluated by light microscopy using a set of 47mm polycarbonate filters at the discharge side of the dispersion system.

The dispersed flyash particles were drawn directly into the nozzles for the wet stack filterable PM2.5 sampling train and the M201A sampling train. The runs alternated between the wet stack filterable PM2.5 sampling train and the Method 201A sampling train. The total sampling train particulate matter catch weights varied from approximately 10 to 100 milligrams per test run.

Following each test, the sampling train was recovered using procedures stated in the applicable method. The results of six tests conducted on each of the sampling trains are summarized in Figure 1 and Table 4. As indicated by the PM2.5 data in the set of columns on the right, there were no significant differences in fraction of particulate matter in the PM2.5 size range when the sample gas stream passed through the probe prior to the cyclone and PM2.5 filter.

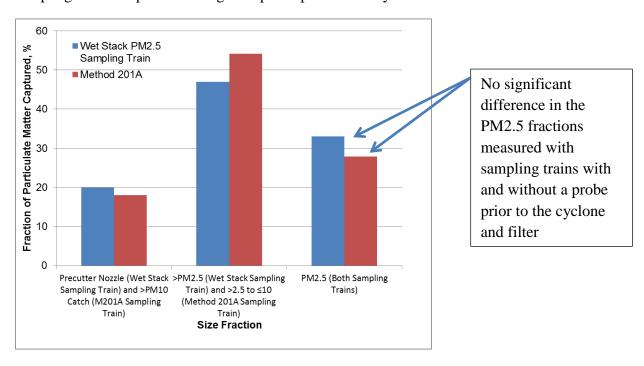


Figure 1. Comparison of the Capture of Particulate Matter in the Wet Stack Filterable PM2.5 Sampling Train and in the Method 201A sampling train

Table 4	Table 4. Comparison of Precutter Nozzle and Method 201A PM10 Cyclone Performance December 2015 Test Program					
Run	Wet Stack Sampling Train Conditions	Precutter Nozzle (mass %)	>PM2.5 Catch from Cyclone (mass %)	PM2.5 on Filter and in Rinses of the Cyclone Outlet Tube and Filter Holder Rinse (mass %)		
1	Wet wall	20	41.8	38.2		
3	Wet wall	7.4	58.5	34.0		
5	Wet wall	20.8	49.1	30.1		
7	Wet wall	33.3	42.1	24.6		
9	Wet wall	19.5	39.8	40.6		
11	Wet wall	19.0	50.4	30.6		
A	verage %	20.0	47.0	33.0		
Run	Method 201A Sampling Train Conditions	>PM10 Catch from PM10 Cyclone (mass %)	>PM2.5 and ≤ PM10 Catch from PM10 Cyclone Outlet (mass %)	PM2.5 on Filter, and in Rinses of the PM2.5 Cyclone Outlet Tube and Filter Holder Rinse (mass %)		
2	Dry	25.3	62.3	12.3		
4	Dry	20.4	47.5	32.1		
6	Dry	7.6	65.3	27.1		
8	Dry	22.2	51.9	25.9		
10	Dry	17.3	45.6	39.6		
12	Dry	22.0	52.0	30.0		
	Average, %	18.0	54.1	27.9		

These results summarized in Figure 1 and Table 4 demonstrate that the probe losses for PM2.5 particles are negligible.

Proposed Method—Air Control Techniques, P.C. ran an additional set of tests to evaluate probe losses for large diameter material, such as droplets up to a size of 20 micrometers. Based on the precutter size-efficiency curve developed during the tests summarized in January 2015, the mass of particles penetrating the precutter in the 15 to 20-micrometer size range is small. Furthermore, droplets in this size range would quickly evaporate to form particles equal to or smaller than 2.5 micrometers. Nevertheless, a small quantity of droplets in the larger size range could penetrate the precutter and exist at the inlet of the probe for up to 0.1 second.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 8 of 17

The potential capture of particles in the 15 to 20-micrometer size range was evaluated using a wet stack filterable PM2.5 sampling train in the following two configurations.

Configuration 1

- Precutter nozzle
- Four-foot long probe
- PM2.5 cyclone and filter
- Impingers
- Meter box

Configuration 2

- Precutter nozzle
- PM2.5 cyclone and filter
- Impingers
- Meter box

In configuration 1, the sample gas passed through the probe prior to entering the cyclone and PM2.5 filter. Configuration 2 was identical, except for the lack of a probe. The same polydisperse flyash particles were used as the challenge material. A set of six test runs, three with configuration 1 and three with configuration 2, were conducted to determine the probe losses and the impact on the measured PM2.5 fractions. The data are summarized in Table 5.

Table 5. Wet Stack Filterable Sampling Train Catch Weights						
With	and With	out a Prob	1	•	•	
	Run 1	Run 5	Run 6	Run 2	Run 3	Run 4
Test Conditions						
Probe	No	No	No	Yes	Yes	Yes
Wetted Precutter	Yes	Yes	Yes	Yes	Yes	Yes
Delta H	0.4	0.4	0.4	0.4	0.4	0.4
Catch Weights, milligrams						
Filter	6.1	11.0	12.5	15.4	18.6	5.9
Filter Housing, Cyclone Outlet Rinse	2.5	3.4	1.5	2.6	5.3	3.6
Cyclone Rinse	42.7	72.6	54.4	81.4	66.6	36.5
Probe Rinse	N/A	N/A	N/A	24.2	10.5	4.1
Precutter Rinse	27.3	72.7	41.6	155.3	47.7	38.4
Total Sampling Train	78.6	159.7	110.0	278.9	148.7	88.5
Catch Weights, Percent of Total Sampling Train						
Probe	N/A	N/A	N/A	8.7	7.1	4.6
PM2.5 Filter and Rinses	10.9	9.02	12.7	6.45	16.1	10.7

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 9 of 17

The probe catch averaged 6.8%, which is an especially low value considering that the concentration of very large particles penetrating the precutter and entering the probe was high and considering that these solid particles had a much a much longer residence time in the probe than evaporating water droplets.

The fractions of the particulate matter in the PM2.5 size range of the two sampling configurations were essentially identical. The fraction of PM2.5 particulate matter with the probe averaged 11.1% of the total mass. The fraction of PM2.5 particulate matter without the probe averaged 10.9% of the total mass.

These results indicate that, even with an especially large particle size distribution, the probe captures little, if any, of the particulate matter that could evaporate to become PM2.5 particles.

Further confirmation of the lack of a probe capture bias will be possible once the method is published as an OTM. There are provisions in the draft method for testing organizations to recover the particulate matter from five separate portions of the sampling train—including the probe. These data from a variety of full scale sources will be more informative than any type of laboratory test program.

Conclusions—The Method 301 validation tests and the supplemental data provided by the December 2015 tests summarized in this letter confirm that there is no significant bias to lower-than-true PM2.5 measurements due to particle capture in the probe.

2. DROPLET SHATTERING DURING DRYING

EPA has asked if droplet shattering potentially occurring during droplet evaporation could contribute to a bias to higher-than-true PM2.5 measurements. The data and information provided in this section demonstrate that this potential bias is insignificant.

It is important to note that the present EPA policy requiring the use of Method 5 for PM2.5 measurements in wet stacks inherently includes a large possible bias to higher-than-true PM2.5 emissions. Very few sources have 100% of the particulate matter in the PM2.5 size range. The primary benefit of the proposed sampling method is to provide a means to obtain more accurate data than are presently available with the Method 5-based approach. Any bias due to droplet shattering, usually termed "Rayleigh shattering," is small compare to this existing method-related bias.

Rayleigh shattering is important only for those droplets larger than 20 micrometers that can penetrate the precutter. Shattering of droplets less than 20 micrometers only affects the distribution of PM2.5 particles formed in the probe as the sample gas moves toward the PM2.5 cyclone and filter.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 10 of 17

The shattering of a droplet with a diameter larger than 20 micrometers could create a bias to higher-than-true PM2.5 reported values by shattering into numerous small droplets, most of which could yield a PM2.5 particle as the droplets evaporate. This creates PM2.5 particles that would otherwise not form in the atmosphere.

Due to the 50% cut size of 12 micrometers achieved by the precutter nozzle, few if any of these droplets larger than 20 micrometers can penetrate to the high temperature probe and undergo Rayleigh shattering. Furthermore, the droplets must have a substantial electrical charge on the surface in order to create the electrostatic repulsive forces that cause shattering as the droplet size decreases during evaporation. Therefore, it is highly unlikely that Rayleigh shattering creates much bias to higher-than-true PM2.5 measurements.

Phase I Laboratory Study—During the Phase I laboratory evaluation, Air Control Techniques, P.C. evaluated the impact of Rayleigh shattering. We used a nephelometer to measure particulate matter concentrations on a second-by-second basis penetrating the PM2.5 cyclone following the injection of droplets of salt water into the inlet of the probe. These tests indicated that PM2.5 particles caused by Rayleigh shattering were at an extremely low concentration and did not affect the PM2.5 test results. The results of these laboratory tests are summarized in the Method Development Report submitted to EPA previously in 2013.

December 2015 Rayleigh Shattering Study—In December 2015, Air Control Techniques, P.C. conducted another series of tests to evaluate the extent of Rayleigh shattering in the wet stack filterable PM2.5 sampling probe. In this second series of tests, the solids accumulating on the PM2.5 filter in the wet stack filterable PM2.5 sampling train were weighed to provide data concerning the fraction of salt injected into the probe inlet as a salt solution that reached the PM2.5 filter as dried solids.

Air Control Techniques, P.C. injected 140 milligrams of salt (14% wt. solution) in large droplets deposited on the inlet to the probe operating at 340-350°F. The PM2.5 cyclone and filter were also operated in this temperature range during these tests. During all three test runs, zero measurable material was found on the PM2.5 filter. This demonstrates that the large droplets in the inlet of the probe do not undergo shattering during evaporation.

The results of both the Phase I tests and the December 2015 droplet shattering tests are not surprising. Substantial electrical charge must be present on the surfaces of the large droplets in order to overcome surface tension forces and to shatter the evaporating droplet due to electrostatic repulsion. It is unlikely that these charges can persist in the high-droplet concentration environment of a saturated or near-saturated stack. Furthermore, the large droplets of possible concern are efficiently removed in the precutter.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 11 of 17

Conclusion—The laboratory tests conducted in during Phase I and the supplemental tests in December 2015 demonstrate that Rayleigh shattering has a negligible impact on the measured PM2.5 emissions.

3. PROBE WATER DROPLET RESIDENCE TIME

EPA has asked about probe water droplet residence times and has suggested that this is a function of sample flow rate, probe temperature, probe diameter, specific heat of the gas stream, and water droplet concentration. The information provided below demonstrates that the residence times in the probe are more than sufficient to achieve droplet evaporation under all possible sampling conditions. This conclusion is based on numerous test runs at (1) wet scrubber-equipped catalytic cracker stacks, (2) a wet scrubber-equipped MDF process stack (24 Method 301 validation runs), and (3) numerous laboratory tests in a simulated wet scrubber stack. We have not experienced wet filters in all of the previous work with the wet stack filterable PM2.5 sampling train.

In response to the EPA question, we have further evaluated the required droplet evaporation times. As a starting point, we have calculated the gas stream residence times for probes ranging from 3 feet to 8 feet long with gas flow rates of 0.35 to 0.60 ACFM. The residence times are summarized in Table 6. The calculated residence times are based on a ½ inch inner diameter probe (3/8th inch outer diameter). The volume of the precutter nozzle has not been considered because it is not heated.

0.35 ACFM is the normal sampling rate when the gas stream temperature is close to ambient temperature. 0.60 ACFM is a typical sampling rate when the gas temperature is moderately high for wet stacks.

Table 6. Gas Stream Residence Times in the					
,	Wet Stack Filterable PM2.5 San	mpling Train			
Probe Length,	Residence Time (Seconds)	Residence Time (Seconds)			
Feet	at 0.35 ACFM	at 0.60 ACFM			
3	0.70	0.41			
4	0.94	0.55			
5	1.17	0.68			
6	1.40	0.82			
7	1.64	0.95			
8	1.87	1.09			

We have compared the residence times of 0.41 to 1.87 seconds indicated in Table 6 to the calculated droplet evaporation times described by Hinds in Aerosol Technology (Second

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 12 of 17

Edition). Hinds indicates that, even at 20°C, a 20-micrometer water droplet evaporates completely in 0.31 seconds. At more than 170°C, the evaporation rate is much higher.

The residence times in the probe are much longer than necessary to achieve complete evaporation well before the gas stream enters the PM2.5 cyclone. At 350°F (176°C), complete droplet evaporation is achieved regardless of the sampling rate, probe inside diameter, specific heat of the gas stream, water droplet concentration, and water droplet size distribution penetrating the precutter nozzle.

The adequacy of droplet evaporation is further indicated by the performance of EPA Method 5 at 248 ±25°F. This method is presently required by EPA for sources equipped with wet stacks. Air Control Techniques, P.C. has conducted numerous Method 5 tests on moisture-saturated and droplet-laden stacks without experiencing any droplet evaporation problems. We are not aware of any reported problems with complete droplet evaporation in Method 5 sampling trains operating approximately 100°F colder than the wet stack filterable PM2.5 test method sampling train.

Conclusion—There is sufficient gas stream residence time in the probe to ensure complete evaporation under all possible operating conditions. This is demonstrated by prior experience with the wet stack filterable PM2.5 sampling train and by experience with EPA Method 5 operating at a slightly lower temperature.

4. SAMPLING TRAIN LEAK CHECK PROCEDURES

EPA stated the following at part of the November 20th set of questions.

"This method may contain new QA/QC procedures not demonstrated in the field. These new QA/QC procedures may require further study to determine their suitability (i.e., posttest leak check.)

In previously submitted reports and the draft method, we have proposed a two-step post-test leak check procedure involving (1) disconnecting the sampling train at the PM2.5 filter and leak checking at this point and (2) connecting a jumper to the PM2.5 cyclone outlet and leak checking from the precutter nozzle through the PM2.5 cyclone at a maximum of 2 psig to avoid dislodging solids from the cyclone.

While we continue to believe that this approach is reasonable and effective, we would like to propose an alternative approach that is simpler and more direct. This involves leak checking of the entire sampling train from the inlet to the precutter nozzle through the remainder of the sampling train. We propose to avoid dislodging any particulate matter in the nozzle, probe, PM2.5 cyclone, and connecting tubing by ensuring that following the leak check, the vacuum is

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 13 of 17

released gradually. While releasing the vacuum, the delta H gauge can be monitored to ensure that the re-pressuring air flow rate does into the sampling train not exceed the maximum sample flow rate maintained throughout the test run. To control the re-pressurizing air flow rate, a needle valve (or similar valve) can be used to slowly allow the sampling train to increase in pressure from the leak check vacuum level. A needle valve similar to the one shown in Figure 2 can be attached to the precutter nozzle prior to the start of the post-test leak check to allow for control of the air flow back into the evacuated sampling system.

Figure 2. Precutter Nozzle with Cap Prior to the Attachment of the Needle Valve

By using this simple approach, the entire sampling train can be leak-checked without disturbing the distribution of captured solids in the precutter, probe, cyclone, and filter. This procedure allows the sampling train to be post-test leak-checked in essentially an identical manner to a Method 5 sampling train.

Conclusion—A leak check of the full sampling train is possible without creating a bias to higher-than-true PM2.5 emissions by controlling the rate of air flow back into the evacuated sampling train after the post-test leak check. While metering the air back into the train, the delta H gauge can be monitored to confirm that the air inlet flow rates are at or below the flow rate during the sampling run.

Proposed Addition to the Sampling Method—The post-test leak check procedure described above could be addressed in the following addition to Section 8.7.4 of the draft method.

As Previously Drafted

Disconnect the probe and remove the cyclone from the sampling box. Seal both ends of the cyclone to prevent particulate matter from entering or leaving the cyclone. After the cyclone is removed, perform a posttest leak check of the sample train from the inlet of the

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 14 of 17

filter through the remainder of the sampling train. You must conduct the leak rate at a vacuum equal to or greater than the maximum vacuum achieved during the test run. Enter the results of the leak check onto the field test data sheet. If the leak rate of the sampling train (without the combined cyclone sampling head) exceeds 0.02 actual cubic feet per minute or four percent of the average sampling rate during the test run (whichever is less), the run is invalid and must be repeated.

Connect the outlet of the probe to a jumper and leak check the precutter nozzle and probe at a maximum of 2 in. Hg vacuum to avoid loss of material from the precutter and probe. Enter the results of the leak check onto the field test data sheet. If the leak rate of the precutter nozzle and probe exceeds 0.02 actual cubic feet per minute or four percent of the average sampling rate during the test run (whichever is less), the run is invalid and must be repeated. Seal all openings of sampling train components from which samples will be collected and transport to the sample recovery area.

Proposed Addition to the Draft Method

At the conclusion of the run, attach a needle valve to the end of the precutter nozzle. Close the needle valve, and then reduce the pressure in the sampling train to a vacuum equal to or greater than the vacuum observed during the test run. If the leak rate of the sampling train exceeds 0.02 actual cubic feet per minute or four percent of the average sampling train during the test run (whichever is less), the run is invalid and must be repeated.

At the conclusion of the leak check, slowly open the needle valve to allow air to enter the sampling train. To avoid disturbing the captured solids in the sampling train, maintain the rate of air flow back into the sampling train at a delta H value that is below the delta H value used during the sampling run.

5. PRECUTTER CUT SIZE

The set of questions provided by EPA in the November 20th email did not address precutter cut size. Nevertheless, there have been previous discussions of this topic. The December 2015 Method 201A/Wet Stack Method comparison tests discussed earlier in this letter provide further insight into the precutter 50% cut size.

During the December 2015 comparison tests, the two different sampling trains summarized below were testing using a polydisperse flyash aerosol.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 15 of 17

The wet stack filterable PM2.5 sampling train consisted of the following.

- (1) Precutter with an inlet nozzle,
- (2) Four foot long probe operating at 67°F,
- (3) PM2.5 cyclone and 47-mm filter mounted in a hot box operating at 67°F,
- (4) Jumper line to a set of impingers, and
- (5) Meter box.

The Method 201A sampling system consisted of the following.

- (1) PM10 cyclone with nozzle,
- (2) PM2.5 cyclone,
- (3) 47-mm filter,
- (4) Four foot long sampling probe,
- (5) Jumper to a set of impingers, and
- (6) Meter box.

The fraction of particulate matter captured by the precutter can be directly compared with the greater than PM10 size fraction recovered from the Method 201A PM10 cyclone.

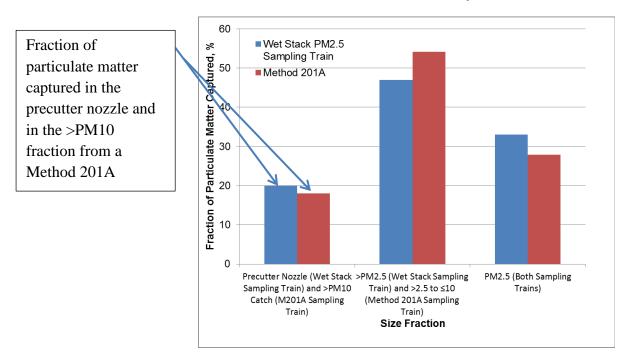


Figure 3. Comparison of the Capture of Particulate Matter in the Wet Stack Filterable PM2.5 Sampling Train and in the Method 201A Sampling Train (Note: same data as shown in Figure 1)

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 16 of 17

The wet stack filterable PM2.5 sampling train captured slightly more of the particulate matter larger than the M201A sampling train. This is reasonable considering that the 50% cut size for the wet stack filterable PM2.5 sampling train is 12 micrometers, while the Method 201A PM10 cyclone, as operated in these laboratory tests, had a 50% cut size of 10.8 micrometers.

The wet stack filterable PM2.5 sampling train captured slightly more particulate matter than was captured in the PM2.5 fraction of the M201A sampling train. This is consistent with the 50% cut sizes summarized in Table 1. The wet stack filterable PM2.5 sampling train had a 50% cut size of 2.69 micrometers, while the M201A sampling train had a 50% cut size of 2.3 micrometers.

The December 2015 method comparison test data compiled using the polydisperse particulate matter are entirely consistent with the results of the Method 301 validation tests conducted in 2013. As indicated in Table 2, the total precutter catch weights averaged 7.8% of the total particulate matter and 11.7% of the PM2.5 catch weights in the sampling train. Considering that the indicated 50% cut size of the precutter nozzle is 12 micrometers, it is apparent that most, if not all, of the precutter material captured in the Method 301 tests was large diameter droplets. Very little, if any, PM2.5 particulate matter was captured in the precutter.

Conclusion—The data compiled in these polydisperse aerosol tests and summarized in Table 4 and in Figure 3 demonstrate that the wet stack filterable PM2.5 sampling train precutter does not cause any significant loss of PM2.5 particulate matter. This conclusion is consistent with the previously submitted Method 301 validation test results.

6. SUMMARY

API and NCASI have submitted test data and information that include (1) laboratory-based method development studies, (2) Method 301 validation tests, (3) a precutter nozzle size-efficiency study, and (4) supplemental information concerning the performance characteristics and importance of the wet stack filterable PM2.5 test method. API and NCASI have also provided a draft version of the new method written in a form that parallels Method 201A, to the maximum extent possible. This letter provides the follow-up information that EPA requested in their November 20, 2015 email.

The data and information submitted demonstrate that the wet stack filterable PM2.5 test method provides an accurate and effective means to measure filterable PM2.5 in moisture saturated and/or droplet laden stacks. This method is ready for use as an OTM in a wide variety of applications involving wet scrubber-controlled sources. The April 29th letter that you sent to EPA emphasizes the importance of this method to sources required to prepare accurate emission inventories and dispersion models.

At the present time, EPA policy requires sources to use Method 5 and to assume that 100% of the particulate matter in moisture-saturated or droplet-laden stacks is in the PM2.5 size range.

Ms. Cathe Kalisz and Mr. Ashok Jain December 21, 2015 Page 17 of 17

For many sources, this policy introduces a large bias to higher-than-true PM2.5 emissions, which can create erroneous dispersion modeling results. The wet stack filterable PM2.5 should be published as an OTM to help source operators and regulatory agencies avoid these errors. Publication as an OTM will also encourage method refinements due to its use in a variety of testing applications.

Air Control Techniques, P.C. will be glad to address any questions concerning this additional data and information and concerning the wet stack filterable PM2.5 test method in general.

Sincerely

John Richards, Ph.D., P.E., QSTI

John Rulius

President, Air Control Techniques, P.C.

cc:

G. Mueller, Shell

V. Varma, NCASI

L. Carlson, NCASI

T. Holder, Air Control Techniques, P.C.

J. Gilbert, Air Control Techniques, P.C.

Appendix B

West Stack Sampling System Development Report
September 16, 2013

WET STACK FILTERABLE PM_{2.5} SAMPLING SYSTEM DEVELOPMENT REPORT

Report Prepared for:

American Petroleum Institute Washington, D.C.

Report Prepared by:

Air Control Techniques, P.C. 301 East Durham Road Cary, North Carolina 27513 (919) 460-7811

Report Date: September 16, 2013

TABLE OF CONTENTS

1. SUMMARY	1
1.1 Purpose and Scope	1
1.2 Conclusions	1
1.3 Test Program Participants	3
2. WS2.5 SAMPLING SYSTEM DESIGN CHARACTERISTICS	5
2.1 Performance Criteria	5
2.2 Sampling Train	6
2.3 Comparison of the WS2.5 Sampling Method and Other Test Methods	9
3. LABORATORY EVALUATION	11
3.1 Initial Laboratory Tests	11
3.2 Follow-up Laboratory Test Program	21
4. CATALYTIC CRACKER STACK TEST PROGRAM	27
4.1 Test Methods	27
4.2 Test Program 1, Scrubber-Controlled FCCU	32
4.3 Test Program 2, ESP Controlled FCCU	36
4.4 Test Program 3, Scrubber Controlled FCCU	46
5. COMPARISON OF FIELD TEST PROGRAMS 1, 2, AND 3	53
5.1 Emission Comparisons	53
5.2 Wet Stack Filterable PM _{2.5} Sampling System	54
REFERENCES	55
APPENDICES	
Volume I, Data Sheets for Test Program 1	
Volume II, Data Sheets for Test Program 2	
Volume III, Data Sheets for Test Program 3	
Volume IV, Data Sheets for Laboratory Analyses	
FIGURES	
	_
Figure 2-1. Wet Stack PM ₂ Sampling System	7
Figure 2-2. Heated Filter Box with Cyclone and PM _{2.5} Filter	7
Figure 2-3. WS2.5 Heated Probe and Nozzle	8
Figure 2-4. Estimated Cut Size for the WS2.5 Sampling System 90 Degree	0
Curved Nozzle Figure 2.5. Paguired Sample Flow Pate for the PM. Gyalana in the WS2.5 Sampling	8
Figure 2-5. Required Sample Flow Rate for the PM _{2.5} Cyclone in the WS2.5 Sampling System	9

Figure 3-1. WS2.5 Heated Probe, 90 Degree Curved Nozzle, Mixing/Evaporating	
Chamber, Nebulizer Exhaust, Heated Air Line, and Excess Test	
Gas Exhaust Line	12
Figure 3-2. WS2.5 Sampling Heated Probe, Heated Filter Box, Impinger Case and Meter	12
Figure 3-3. Simulated Wet Scrubber (Packed Bed)	13
Figure 3-4. Simulated Scrubber Stack and Port	13
Figure 3-5. Probe and Filter temperatures at High Droplet Loadings	14
Figure 3-6. Nephelometer PM _{2.5} Concentration Data	16
Figure 3-7. Polydisperse Spheres, Wide Field View	17
Figure 3-8. Polydisperse Spheres, Close View	17
Figure 3-9. Nozzle Run 6, Close View	18
Figure 3-10. Probe Run 6, Wide View	19
Figure 3-11. Probe Run 6, Close View	19
Figure 3-12. Cyclone Cup, Run 6, Wide View	20
Figure 3-13. Cyclone Cup, Run 6, Wide View	20
Figure 3-14. Nebulizer and Heated Chamber	21
Figure 3-15. Heated Chamber and WS2.5 Sampling System Nozzle and Probe	22
Figure 3-16. WS2.5 Sampling System and Modified Method 17-Type Sampling	
System in the Heated Chamber with Microsphere Injection	22
Figure 3-17. Photomicrograph of 2.1 Micrometer Silica Spheres, 50 Micrometer	
Field of View	23
Figure 3-18. Photomicrograph of 2.1 Micrometer Silica Spheres, 300 Micrometer	
Field of View	24
Figure 3-19. Photomicrograph of 1.44 Micrometer Silica Spheres, 50 Micrometer	
Field of View	24
Figure 3-20. Photomicrograph of 1.44 Micrometer Silica Spheres, 300 Micrometer	
Field of View	25
Figure 3-21. Comparison of the Expected and Measured PM _{2.5} Size Fractions	26
Figure 4-1. Method 202 Condensable Particulate Matter Sampling Train	28
Figure 4-2. WS2.5 Sampling Train Used In FCCU Tests	30
Figure 4-3. Field Test 1, FCCU Stack Sampling Ports	33
Figure 4-4. Field Test 2, FCCU Stack Sampling Ports	38
Figure 4-5. Stack Filter Sample, 1000X Magnification	42
Figure 4-6. Stack Filter Sample, 8640X Magnification	42
Figure 4-7. Probe and Nozzle Rinse	43
Figure 4-8. PM _{2.5} Cyclone Cup and Front Half Rinse	44
Figure 4-9. PM _{2.5} Filter Sample, Photomicrograph 1	45
Figure 4-10. PM _{2.5} Filter Samples, Photomicrograph 2	46
Figure 4-11. Field Test 3, FCCU Stack Sampling Ports	48

TABLES

Table 3-1. Solids Partitioning in the WS2.5 Sampling System	18
Table 4-1. Field Test 1, Selected Operational Parameters	32
Table 4-2. Field Test 1, Summary of Results, WS2.5 Method / Method 202	34
Table 4-3. Field Test 1, Summary of Results, EPA Method 5B / Method 202	34
Table 4-4. Field Test 1, Quality Assurance Results WS2.5 /Method 202	35
Table 4-5. Field Test 1, Quality Assurance Results, EPA Method 5B / Method 202	35
Table 4-6. Field Test 2, Selected Operational Parameters	36
Table 4-7. Field Test 2, Summary of Results, WS2.5 Method / Method 202	39
Table 4-8. Field Test 2, Summary of Results, EPA Method 5B / Method 202	40
Table 4-9. Filed Test 2, Quality Assurance Results WS2.5 Method / Method 202	40
Table 4-10. Field Test 2, Quality assurance Results EPA Method 5B / Method 202	42
Table 4-11. Field Test 3, Selected Operational Parameters	48
Table 4-12. Field Test 3, Summary of Results, EPA Method 5B/Method 202	50
Table 4-13. Field Test 3, Summary of Results, WS2.5/ Method 202	50
Table 4-14. Filed Test 3, Captured Moisture Levels, WS2.5 and Method 5B	
Sampling Trains	51
Table 4-15. Field Test 3, Quality assurance Results WS2.5 / Method 202	52
Table 4-16. Field Test 3, Quality assurance Results EPA Method 5B / Method 202	53
Table 5-1. Combined Data, Test Programs 1, 2, and 3	54
Table 5-2. PM _{2.5} Test Results, Test Programs 1, 2, and 3	54

WET STACK FILTERABLE PM_{2.5} SAMPLING SYSTEM DEVELOPMENT REPORT

1. SUMMARY

1.1 PURPOSE AND SCOPE

American Petroleum Institute (API) member companies operate fluid catalytic crackers units (FCCUs) equipped with flue gas desulfurization systems (FGDs). New regulatory programs will require filterable PM_{2.5} emission measurements in the stacks of FGD-equipped FCCUs.

Droplets entrained in the effluent gas streams exiting the FGDs prevent the use of EPA Reference Method $201A^1$ for the measurement of filterable $PM_{2.5}$. EPA Reference Method 5B is the only technique available to API member companies to measure total filterable particulate matter data. With Method 5B, total filterable particulate matter serves as a surrogate for filterable $PM_{2.5}$. This Method 5B-based approach is biased to higher-than-true emission rates of $PM_{2.5}$ because a portion of the material measured as total filterable particulate matter is larger than 2.5 micrometers.

This report presents the results of a two-year method development program sponsored by the API. During the latter stages of method development, the National Council for Air & Stream Improvement (NCASI) contributed to this program due to their shared interest in a filterable PM_{2.5} emission test method for wet stacks. In this report, the new method is described as the "WS2.5" with the understanding that EPA will assign a method number as part of their review. The WS2.5 method is intended for use in conjunction with the new EPA Method 202 (previously termed EPA OTM 028) to simultaneously provide filterable and condensable PM_{2.5} emissions matter data in wet stacks. The WS2.5 wet stack sampling system simultaneously provides filterable and condensable PM_{2.5} emissions matter data. If the nozzle, probe, and cyclone solids are also recovered, the total filterable particulate emissions can be calculated as the sum of all material captured in the sampling system. Accordingly, the total particulate matter emissions as measured by the WS2.5 sampling system can be compared directly with EPA Reference Method 5B.

1.2 CONCLUSIONS

The WS2.5 method is designed to provide an accurate means to measure $PM_{2.5}$ particles in gas streams with entrained water droplets. The sampling system captures particles (1) suspended in water droplets, (2) formed from dissolved solids during the in-probe evaporation of water droplets, and (3) present as dry particles in the stack gas stream.

This WS2.5 sampling system studied in these testing programs consisted of (1) a 90 degree curved glass nozzle², (2) a probe having probe heaters with sufficient heating capacity to maintain a temperature of 320 ± 25 °F in droplet-laden gas streams, (3) a nitrogen dilution stream³, and (4) a heated sampling box including a PM_{2.5} cyclone and a PM_{2.5} filter maintained at 320 ± 25 °F.

_

¹ EPA Reference Method 201A was substantially revised and re-promulgated on December 21, 2010.

² The 90 degree nozzle was subsequently replaced with a precutter nozzle.

³ The nitrogen dilution stream was subsequently eliminated based on the results of these tests.

The WS2.5 sampling train operates with sample gas flow rates in the range of 0.4 to 0.65 ACFM at the effluent gas stream temperatures of most wet stacks. Run times vary from two to three hours in order to obtain sufficient $PM_{2.5}$ catch weights. Sample recovery and emission calculations parallel Method 201A. Quality assurance procedures for the WS2.5 sampling system also are patterned after Method 201A.

The WS2.5 wet stack sampling system is designed for use with an EPA Method 202 condensable particulate matter sampling system. The Method 202 sampling train is needed because some residual sulfuric acid vapors and organic particulate matter in the effluent gas stream being sampled can vaporize in the hot probe and filter. The vaporized organic material is captured in the Method 202 filter and impingers.

This sampling train was proposed following completion of (1) an initial laboratory evaluation, (2) field tests at three refineries, and (3) follow-up laboratory testing. The proposed sampling system has been modified in response to the results of these tests. Specifically, the 90 degree curved nozzle was replaced with a precutter, and the nitrogen dilution system was deleted as it was not needed to ensure complete vaporization of the sample stream, and it added considerable complexity to the method. The 90 degree curved nozzle was also replaced with a precutter.⁴

Emission testing companies capable of properly conducting Method 201A will have the necessary experience to conduct the WS2.5 tests. In addition to the standard Method 201A sampling equipment, testing companies will need to have a probe capable of operating at $320 \pm 25^{\circ}$ F. The WS2.5 sampling system is as practical and economical as Method 201A for dry stacks.

The WS2.5 sampling system can operate well in wet stacks of FGD-controlled catalytic crackers and wet stacks in the Pulp and Paper Industry. The system can operate at conventional Method 201A isokinetic sampling rates of $100 \pm 20\%$ and at conventional Method 5B sampling temperatures of 320 ± 25 °F, even when the droplet loadings approach an especially high level of 0.40 grams per cubic meter. Both the lab tests and FCCU tests have confirmed the ability of the sampling system to handle high droplet loadings.

The WS2.5 sampling system is not biased to higher-than-true $PM_{2.5}$ emissions due to shattering of the evaporating solids-containing droplets in the hot probe. Laboratory tests demonstrate that shattering of the nearly evaporated droplets injected into the probe does not result in significant levels of $PM_{2.5}$ particles.

The WS2.5 sampling system also is not biased to lower-than-true indicated PM_{2.5} emissions. The probe is similar to a Method 201A probe in order to minimize inertial impaction of droplets and dry particles into droplets that might exist briefly on probe surfaces. The sample gas stream residence time in the probe is less than 0.5 seconds, which minimizes any Brownian diffusion losses to the probe surfaces. This is approximately 5% of the residence time in the dilution tunnel proposed by the EPA for use in their wet stack PM_{2.5} CEMS development project..

The proper retention of $PM_{2.5}$ particles in the gas stream has been confirmed by challenging the nozzle and probe with NIST-traceable monodisperse microspheres. The fraction of the spheres captured on the $PM_{2.5}$ filter and in the $PM_{2.5}$ portion of the cyclone rinse compares favorably with the fraction of spheres successfully dispersed as $PM_{2.5}$ particles. Tests with three types of

⁴ The precutter is discussed in the Method 301 Validation Test Program Report dated May 28, 2013.

NIST-traceable microspheres have demonstrated that the loss of $PM_{2.5}$ particles in the nozzle and probe is small. These tests also suggest that there could be a slight bias to higher-than-true $PM_{2.5}$ levels due to shattering of some particle clusters and agglomerates.

Conclusions based on the three field tests confirm that the WS2.5 wet stack $PM_{2.5}$ sampling system operates properly. The cyclones and filter remained dry in both stacks of the scrubber-controlled systems. There were no problems maintaining proper temperatures or sample flow rates and no problems traversing the stacks. Test personnel were able to traverse the stacks without difficulty.

The need for the WS2.5 sampling system is demonstrated by the results of the parallel testing Method 5B and WS2.5 sampling system testing at three refineries. The measured filterable $PM_{2.5}$ emissions ranged from 6% to 61% of the total filterable particulate matter emissions as measured by Method 5B, demonstrating that the use of Method 5B data as a surrogate for filterable $PM_{2.5}$ introduces a large positive bias into the results. The new sampling method has been prepared in a format that closely parallels Method 201A for dry stack testing and is provided in a separate report. The new sampling method provides a practical, economical, and accurate means of measuring $PM_{2.5}$ emissions form wet stacks and should be adopted by the EPA.

1.3 TEST PROGRAM PARTICIPANTS

The API Project Manager for this testing project is Ms. Cathe Kalisz. The Air Control Techniques, P.C. project manager is Mr. John Richards. Addresses and phone numbers of these individuals are provided below.

Ms. Cathe Kalisz
Regulatory and Scientific Affairs
American Petroleum Institute
1220 L Street, NW
Washington, DC 20005-4070
(202) 682-8318
kaliszc@api.org

Mr. John Richards, Ph.D., P.E.
Air Control Techniques, P.C.
301 E. Durham Road
Cary, North Carolina, 27513
(919) 460-7811
john.richards@aircontroltechniques.com

Phil Juneau was responsible for field test program management and coordination with API and plant personnel. Todd Brozell, P.E., Tom Holder, and Danny Speer assisted Phil Juneau with the field test program. John Richards, Todd Brozell, and Phil Juneau conducted the laboratory tests of the WS2.5 wet stack filterable PM_{2.5} sampling system

Resolution Analytics performed the WS2.5 sample analyses. The laboratory manager is Mr. Bruce Nemet.

Mr. Bruce Nemet Resolution Analytics, Inc. 2733 Lee Avenue Sanford, NC 27332 Tel: (919) 774-5557

Research Triangle Institute provided electron microscopy services for both the laboratory and field testing programs. The laboratory manager is Dr. Owen Crankshaw.

Dr. Owen Crankshaw Research Triangle Institute 6000 Cornwallis Road Research Triangle Park, NC Tel: (919) 542-7470

2. WS2.5 SAMPLING SYSTEM DESIGN CHARACTERISTICS

2.1 PERFORMANCE CRITERIA

The following performance criteria were applied in designing the WS2.5 wet stack filterable PM_{2.5} sampling method.

- 1. Measurement of filterable PM_{2.5} independently from condensable PM_{2.5}
- 2. Temperatures in the range of $320^{\circ}\text{F} \pm 25^{\circ}\text{F}$ in the probe, PM_{2.5} cyclone, and PM_{2.5} filter, even when sampling gas streams with droplet loadings of 0.40 grams per cubic meter
- 3. Isokinetic sampling rates in the range of $100\% \pm 20\%$
- 4. Droplet 50% cut point of 20 micrometers in the nozzle
- 5. Minimal bias to higher-than-true PM_{2.5} emissions caused by evaporative shattering of solids-containing droplets
- 6. Minimal bias to lower-than true PM_{2.5} emissions caused by PM_{2.5} particle losses in the nozzle or probe
- 7. Practical and economical stack sampling method that uses readily available commercial equipment

Independent measurement of filterable and condensable PM_{2.5} is needed to allow refineries to evaluate control strategies to minimize PM_{2.5} emissions. Filterable and condensable PM_{2.5} particles form due to quite different mechanisms, and their emission rates are affected by entirely different process and air pollution control system operating parameters.

The temperature range of $320 \pm 25^{\circ} F$ is consistent with EPA Reference Method 5B, the test method used to measure total filterable particulate matter emissions. This temperature is necessary for the independent measurement of filterable and condensable $PM_{2.5}$. Most condensable vapor remains in the gas phase at $320 \pm 25^{\circ} F$. This sampling system temperature ensures that the vapor phase materials passing through the $PM_{2.5}$ filter are captured in the Method 202 impingers used as the back half of the overall sampling system.

An isokinetic sampling rate of $100\% \pm 20\%$ is needed to ensure consistency with Method 201A. While an isokinetic sampling rate is unimportant for dry PM_{2.5}, it is moderately important for particles and droplets larger than 10 micrometers.

A droplet 50% cut point of 20 micrometers in the nozzle is needed to ensure consistency with EPA's PM_{2.5} continuous emission monitor presently under development.

A bias to higher-than-true $PM_{2.5}$ emissions can potentially be caused by Rayleigh shattering of rapidly evaporating droplets containing suspended and dissolved solids. The $PM_{2.5}$ formation rate from surface tension-related phenomenon can significantly exceed the formation rate of $PM_{2.5}$ particles from droplets evaporating slowly in plumes and air masses. This method development program is designed to evaluate the extent of $PM_{2.5}$ formation in the sampling system.

A bias to lower than true $PM_{2.5}$ emissions can potentially be caused by (1) $PM_{2.5}$ particle inertial impaction into droplets in the nozzle and probe, (2) Brownian diffusion of $PM_{2.5}$ particles to the

nozzle and probe surfaces, and (3) electrostatic attraction of $PM_{2.5}$ particles with static charge to the nozzle and probe surfaces. This method development program was designed to evaluate the extent of $PM_{2.5}$ losses in the nozzle and probe and to minimize these losses to the maximum extent possible.

Considerable emphasis was placed on the practicality of the sampling equipment. Any manual test method for filterable PM_{2.5} testing should include readily-available stack sampling equipment that can be purchased at reasonable cost. Testing organizations experienced with EPA Method 201A should be able to conduct the test method. To the maximum extent possible, the sample gas flow rates must be sufficient to provide accurately measurable particulate matter catch weights with run durations of equal to or less than three hours. Furthermore, the test method must be compatible with EPA Method 202 used as the "back half" of the overall sampling train.

The data compiled during this method development project show that the wet stack $PM_{2.5}$ sampling system designed and fabricated in this test program met all the performance criteria. This system can be used for sampling FGD-controlled catalytic crackers and other wet scrubber-controlled sources.

2.2 SAMPLING TRAIN

The WS2.5 sampling train used in the method development tests included a nozzle, a heated probe, a heated PM_{2.5} cyclone, a heated 47mm filter, and an EPA Method 202 sampling train. The probe was a 1/2 inch (I.D.) stainless steel tube enclosed in a high temperature probe sheath. While this probe was satisfactory for sources in the refinery industry, a glass probe is more generally applicable for sources with aggressive corrosive contaminants in the gas stream that could attack the metal probe liner and thereby contribute to a bias to higher-than-true reported emissions of filterable particulate matter.

The sample gas stream was maintained at 320 °F \pm 25 °F in the probe shown in Figure 2-1 and originally included a high-purity nitrogen injection line. The highpurity nitrogen injection line was included to the inlet of the probe to ensure proper droplet evaporation prior to the cyclone and filter. The field test results demonstrated that the nitrogen dilution line was not needed, even in gas streams with high droplet loadings. There was no difficulty maintaining the necessary probe temperatures as indicated by a set of thermocouples spaced along the entire length of the probe. Accordingly, this part of the sampling system was eliminated to reduce complexity in sample gas flow rate calculations. The nitrogen line continues to be shown in Figures 2-1 through 2-3 because it was evaluated in the field testing programs.

A 90-degree curved nozzle originally proposed by Dr. David Leith of the University of North Carolina at Chapel Hill was used for gas stream sampling in most of the laboratory tests and all of the field tests. The nozzle diameter is designed to provide a 50% cut point at 20 micrometers when the sample gas flow rate is in the appropriate range for the PM_{2.5} cyclone. The nozzle tip is necked down to allow for isokinetic sampling at normal stack velocities. The nozzle cut size curve is illustrated in Figure 2-4.

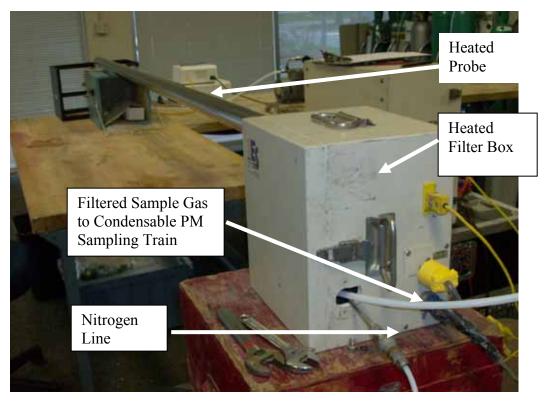


Figure 2-1. Wet Stack PM_{2.5} Sampling System

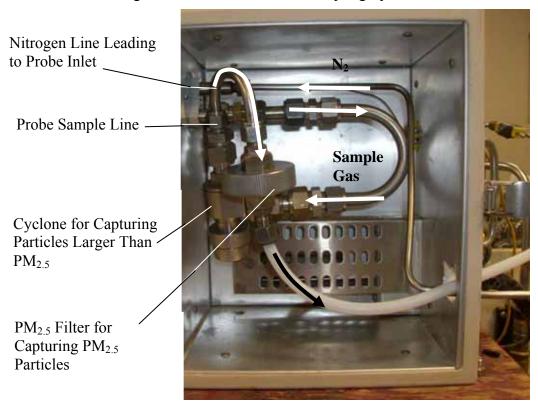


Figure 2-2. Heated Filter Box with Cyclone and PM_{2.5} Filter

While the nozzle performed well in the laboratory tests, testing personnel observed problems in the two field tests of scrubber-controlled systems. Droplets impacting on the exterior surfaces of the nozzle drain downward and are pulled into the nozzle resulting in a bias to higher-than-true total filterable particulate matter emissions. Testing organizations interested in using this method to measure both filterable PM_{2.5} and total filterable particulate matter emissions should not use this nozzle. Instead, the precutter nozzle described in the Method 301 Validation Test Program Report for the WS2.5 wet stack sampling system is recommended.

Figure 2-3. WS2.5 Heated Probe and 90 Degree Curved Nozzle

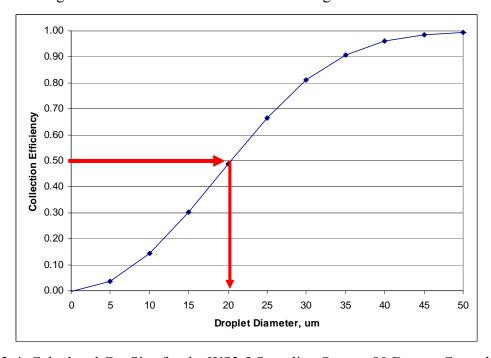


Figure 2-4. Calculated Cut Size for the WS2.5 Sampling System 90 Degree Curved Nozzle

A set of four thermocouples is mounted inside the probe. The thermocouples are monitored by the Method 5B sampling box or a separate set of temperature readouts. Another thermocouple monitors the filter box temperature.

Sample gas flow is maintained within the PM_{2.5} cyclone performance limits as shown in Figure 2-5 from Richards⁵ and Method 201A ⁶. The sample gas flow rate must be adjusted to maintain a 2.5 ± 0.5 micrometer cut size.

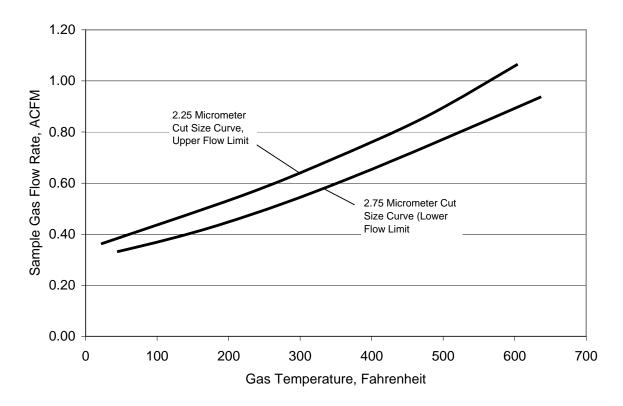


Figure 2-5. Required Sample Flow Rate for the PM_{2.5} Cyclone in the WS2.5 Sampling System

The WS2.5 sampling system can be used to measure both total particulate matter and $PM_{2.5}$ particulate matter. In a manner similar to Method 201A, total particulate matter includes all of the solid material recovered from the nozzle, probe, cyclone, cyclone lines, cyclone cup, $PM_{2.5}$ filter holder (front), and $PM_{2.5}$ filter. The $PM_{2.5}$ particulate matter includes only the solids recovered from the outlet tube of the $PM_{2.5}$ cyclone, the cyclone lines leading to the $PM_{2.5}$ filter holder, the $PM_{2.5}$ filter holder (front half), and the $PM_{2.5}$ filter.

2.3 COMPARISON OF THE WS2.5 SAMPLING METHOD AND OTHER TEST METHODS

The WS2.5 method is a logical extension of EPA Method 201A, which uses two cyclones mounted in series and inserted into the gas stream. Particle separation into the Method 201A

⁵ Richards, J. "Test Protocol: PCA PM₁₀/PM_{2.5} Emission Factor and Chemical Characterization Testing." Portland Cement Association Research Publication SP2081, July 1996.

⁶ U.S. EPA. Federal Register, December 21, 2010

PM₁₀ (10 to 2.5 micrometers) and PM_{2.5} size fractions occurs at stack temperature. Method 201A cannot be used in saturated or droplet-laden gas streams because of (1) a potential bias to lower-than-true PM₁₀ emissions caused by the sizes of droplets entering the probe and (2) the problems caused by condensing of water droplets on the cyclone walls. EPA states the rationale for this limitation to Method 201A in following statement posted on the EPA EMC website (www.epa.gov/ttn/EMC).

Method 201A cannot be used to measure emissions from stacks that have entrained moisture droplets (e.g., a wet scrubber stack), since these stacks may have water droplets larger than the cut size for the PM10-sizing device. To measure PM10 in stacks where water droplets are known to exist, EPA's Technical Information Document (TID-099-Methods 201 and 201A in Presence of Water Droplets) recommends use of Method 5 of Appendix A to 40 CFR part 60 (or a comparable method) and consideration of the particulate catch as PM10 emissions. U.S.EPA, www.epa.gov/ttn/EMC

In fact, most regulatory agencies also assume that all particulate matter captured in Methods 5 or 5B are in the $PM_{2.5}$ size range. This assumption introduces a significant bias to higher-than-true $PM_{2.5}$ emissions and leads to incorrect emission inventories and ineffective control strategies. A number of organizations are working on dilution tunnel techniques in attempt to form $PM_{2.5}$ particles from droplets in a manner similar to their formation mechanisms in plumes and in the atmosphere. These techniques provide 10 to 60 seconds residence time prior to particle capture. The dilution tunnel sampling systems are inherently large, and there is no distinction between filterable and condensable $PM_{2.5}$.

The WS2.5 sampling system uses rapid evaporation to allow for the formation of $PM_{2.5}$ particles from droplets in the sample gas stream. The rapid evaporation also removes the droplets as inertial impaction targets for $PM_{2.5}$ particles transported in the probe. The gas velocity in the probe is low, thereby minimizing impaction. The gas stream residence time in the probe is short to minimize Brownian Diffusion losses of $PM_{2.5}$ particles to the surfaces of larger particles in the sample gas stream and the probe internal surfaces.

The WS2.5 removes the Method 201A PM₁₀ cyclone and moves the PM_{2.5} cyclone from an instack position to a heated filter box outside the stack. The WS2.5 nozzle and probe are designed to convert water droplets to dry particles and to minimize the loss of these particles prior to their entry to the PM_{2.5} cyclone.

To evaluate the performance of the WS2.5 sampling system, two primary alternative approaches were reviewed: (1) the use of accurately-sized monodisperse microspheres of known density and (2) the use of in-situ sizing techniques and sample scanning electron microscopy techniques to characterize the particle size distributions of the sample gas stream and the collected samples. Microspheres of known size and density were primarily used; however, some SEM analyses were included for portions of both the laboratory and field studies.

3. LABORATORY EVALUATION

3.1 INITIAL LABORATORY TESTS

A series of tests was conducted to verify that the WS2.5 sampling system performance is consistent with the design objectives stated earlier. Specifically, the laboratory tests concerned the following four specific issues.

- 1. Temperatures in the range of $320^{\circ}\text{F} \pm 25^{\circ}\text{F}$ in the probe, PM_{2.5} cyclone, and PM_{2.5} filter, even when sampling gas streams with droplet loadings of 0.40 grams per cubic meter
- 2. Droplet 50% cut point of 20 micrometers in the nozzle
- 3. Minimal bias to higher-than-true PM_{2.5} emissions caused by evaporative shattering of solids-containing droplets
- 4. Minimal bias to lower-than true $PM_{2.5}$ emissions caused by $PM_{2.5}$ particle losses in the nozzle or probe

Monodisperse and polydisperse NIST traceable microspheres were dispersed into sample gas streams being tested with the system. Samples of the microspheres having physical diameters from 2 to more than 50 micrometers (physical diameters) were weighed and dispersed in water. The water was atomized in a nebulizer and combined with a heated clean air stream prior to entry into a small mixing/evaporating chamber. A portion of the sample gas stream was pulled into the system nozzle. The remainder of the test gas stream was pulled into a filter. The entire apparatus was maintained at a slight negative pressure to simulate typical stack conditions. The test apparatus is illustrated in Figures 3-1 and 3-2.

Some of these tests used a simulated wet scrubber stack consisting of a 1-foot high packed bed irrigated with recirculated fresh water. A KIMRE composite pad mist eliminator was operated at a gas velocity range similar to mist eliminators used in FGD systems. A blower was used to pull gas through the scrubber mist eliminator and simulated stack. Using this system, it was possible to achieve droplet entrainment levels of 1% to 2% moisture as measured by EPA Reference Method 4. These reentrainment levels are consistent with many full-scale scrubbing systems experiencing significant droplet reentrainment emissions. The simulated scrubber and stack are illustrated in Figures 3-3 and 3-4.

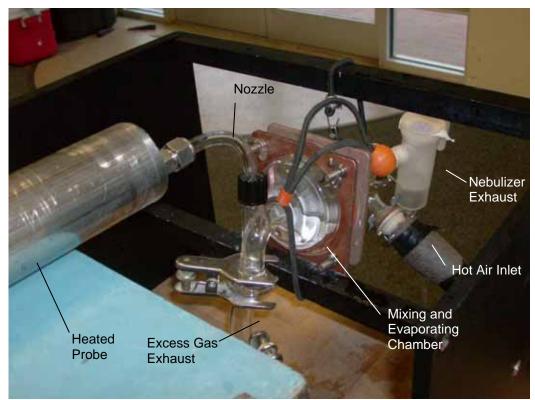


Figure 3-1. WS2.5 Heated Probe, 90 Degree Curved Nozzle, Mixing/Evaporating Chamber, Nebulizer Exhaust, Heated Air Line, and Excess Test Gas Exhaust Line

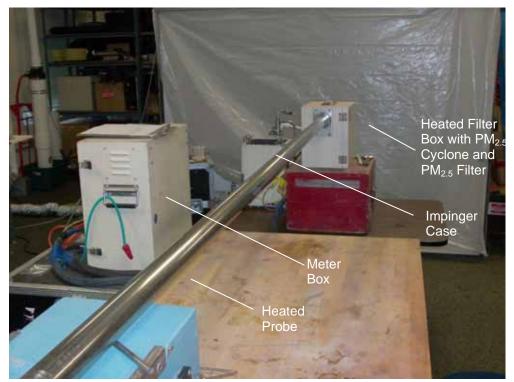


Figure 3-2. WS2.5 Sampling System Heated Probe, Heated Filter Box, Impinger Case and Meter Box

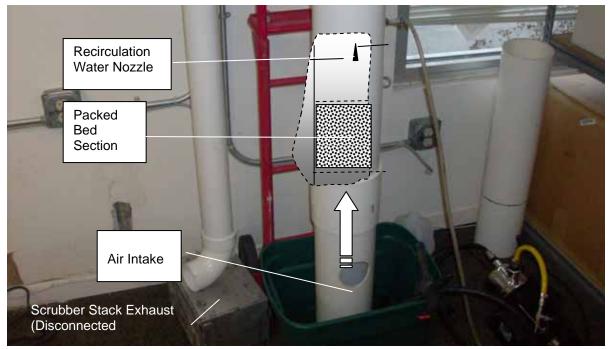


Figure 3-3. Simulated Wet Scrubber (Packed Bed)

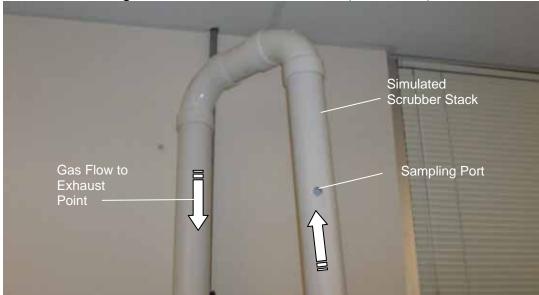


Figure 3-4. Simulated Scrubber Stack and Port

Temperature Stability Tests

During these tests, the probe sampled laboratory air having a temperature of approximately 68°F, and all three thermocouples in the probe were monitored along with one thermocouple in the filter holder. As shown in Figure 3-5, the temperatures throughout the sampling system stayed within the required range with only a brief excursion at the probe inlet.

In the first phase of the test, 1 milliliter of water was injected per minute for a period of five minutes. This quantity is approximately 113% of saturation, a level approximately seven times larger than the normal droplet loadings present in wet stacks with significant liquid reentrainment. As shown in Figure 3-5 (minutes 5 through 10), the temperatures throughout the WS2.5 sampling system stayed within the required range at this very high droplet loading. The droplets evaporated rapidly near the probe inlet and did not reach the middle of the probe. These data indicate that the WS2.5 system probe heaters provide sufficient heating.

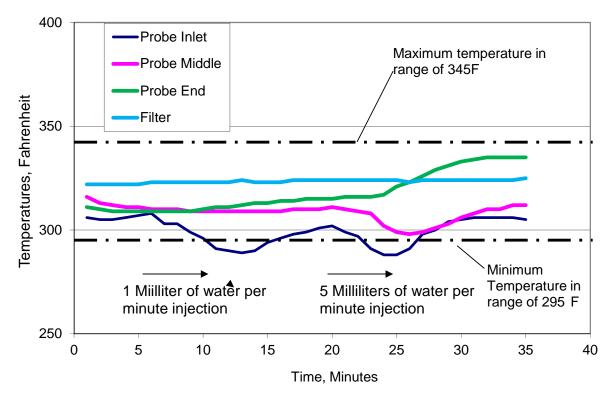


Figure 3-5. Probe and Filter Temperatures at High Droplet Loadings

During the second phase of this test, the droplet loadings were increased to the extremely high rate of 5 milliliters per minute. This is equivalent to 170% saturation, a level approximately 35 times the loadings often measured in stacks with known reentrainment problems. During this part of the test, the probe inlet temperature dropped below the minimum temperature limit, and the temperature in the middle of the probe also approached this limit. Even at these extreme droplet loadings, all portions of the sampling system except the probe inlet remained within the design temperature range. These data confirm the capacity of the probe heaters to handle heavy loadings.

As a follow-up to these temperature stability tests, the probe inlet temperatures were evaluated in a wet scrubber simulator. In this system, the probe was placed in a simulated stack having a moisture level of 101.5% saturation, a level very similar to those at scrubber systems with droplet reentrainment problems. In this test, there was no noticeable trend to lower temperatures

over a 30-minute test period. These results suggest that the sampling system will remain within the design temperature range despite the capture of reentrained droplets at levels similar to those in full scale systems.

PM_{2.5} Particle Capture in Probe Droplets

The possible bias to lower than true PM_{2.5} measurement results caused by PM_{2.5} impaction into water droplets, impaction on probe walls, and Brownian diffusion to probe walls was evaluated. The potential bias is probably small because the sample gas velocity is low at 13.81 feet per second (9.4 miles per hour). This is approximately a factor of twenty below the velocity needed to achieve even modest PM_{2.5} particle capture by impaction into wall droplets or the probe walls. The vulnerability to this negative bias is reduced further by the fact that the volume of droplets in the probe is small, and the residence time prior to droplet evaporation is short. The short residence times limited particle losses to the probe wall due to Brownian diffusion and was demonstrated by the droplet injection tests addressed earlier in this report.

During the initial laboratory tests, it was not possible to confirm low-to-negligible capture of dry PM_{2.5} particles in droplets in the probe. Tests using 2.0-micrometer monodisperse glass spheres (3.2 micrometers aerodynamic diameter) were inconclusive. The 2.0-micrometer glass spheres formed clusters of spheres during atomization of solutions containing the spheres. Efforts to increase the intensity of atomization, deagglomeration prior to atomization, static charge neutralization during atomization, and rapid drying of atomized droplets containing the glass spheres were unsuccessful. In each trial, the resulting clusters of 2.0-micrometer spheres were in the range of 5 to 20 micrometers physical diameter (7.9 to 32 micrometers aerodynamic diameter).

Due to the aerosol generation problems during these tests, follow-up tests were conducted during the second full- scale system test program. The follow-up laboratory tests are presented in Section 3.2 of this report. As indicated in these two later sections, the data indicate that $PM_{2.5}$ losses to the wall and/or droplets present in the probe are very small.

PM_{2.5} Formation Due to Droplet Evaporation

The possible bias to higher-than-true $PM_{2.5}$ particulate matter measurements was evaluated by injecting large droplets of a 1-milliliter salt solution into the WS2.5 sampling system operating at normal temperatures and sample gas flow rates. A TECO Dataram nephelometer qualitatively measured the 10-second average $PM_{2.5}$ particulate matter concentrations formed due to droplet evaporation.

The solution contained 10.5 % by weight salt. Each injection introduced 105 milligrams (105,000 micrograms) of solids at the inlet to the WS2.5 probe. The quantity of solids that potentially would be measured as $PM_{2.5}$ was calculated by integrating the difference between the nephelometer data and the background $PM_{2.5}$ concentration. The nephelometer data are illustrated in Figure 3-6.

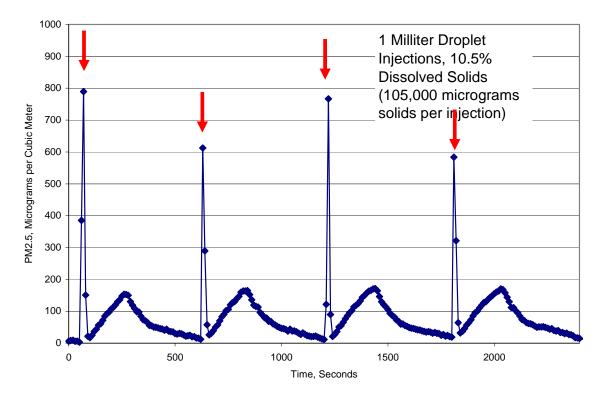


Figure 3-6. Nephelometer PM_{2.5} Concentration Data

The $PM_{2.5}$ concentration profiles in Figure 3-6 indicate that there is an initial surge of $PM_{2.5}$ particles as some of the droplets rapidly evaporate to dryness. There is a second peak that is less intense and slower to form that appears to be due to the reentrainment of dried solids present in the probe due to droplet evaporation on the probe surface.

The total quantity of $PM_{2.5}$ formed from the dissolved solids was 0.013% of the total dissolved solids injected. This result demonstrates that dissolved solids in captured droplets do not result in any appreciable bias to higher-than-true $PM_{2.5}$ particulate matter measurements.

Nozzle Cut Size

A set of polydisperse glass sphere tests was conducted to evaluate the 90 degree curved nozzle 50% cut size. A mixture of water-dispersed spheres was atomized, mixed with a hot high-purity air stream, and entered the WS2.5 nozzle at a velocity of 97 feet per second. The probe was operated at 18 liters per minute with 50% of the flow due to hot dilution nitrogen.

The size distribution of the polydisperse spheres was evaluated using scanning electron microscope photomicrographs of dry samples of the material. As indicated in Figures 3-7 and 3-8, the spheres ranged in size from 5 to more than 50 micrometers physical diameter (7.9 to 80 micrometers aerodynamic diameter).

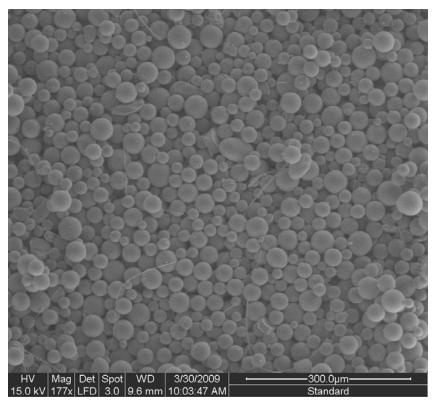


Figure 3-7. Polydisperse Spheres, Wide Field View

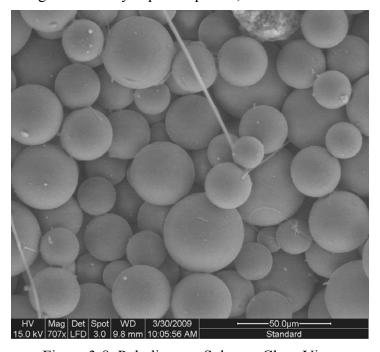


Figure 3-8. Polydisperse Spheres, Close View

Following the test runs, the quantity of material recovered in the nozzle, probe, cyclone and cyclone lines, cyclone cup, and filter were recovered and weighed. The data summarized in Table 3-1 indicate that 38% to 54% of the large diameter material successfully penetrated the

nozzle and probe. Based on the mass median diameter of the particulate matter, it is apparent that the capture efficiency in the nozzle and probe are well below the levels predicted from Figure 2-4.

Table 3-1. Solids Partitioning in the WS2.5 Sampling System						
Run	Run Weight Distribution, %			Particle Size	Particles Size,	
	Nozzle	Probe	Cyclone	Filter	Range, Micrometers	Mass Median Diameter
1	12.0	32.9	54.0	1.1	7.9 to 80	45
2	28.3	28.0	43.7	0	7.9 to 80	45
3	11.8	50.0	38.2	0	7.9 to 80	45
41	0.5	53.1	46.4	0	7.9 to 80	45

^{1.} Spheres were resuspended in dry form rather than in atomized droplets.

The lower-than-anticipated capture efficiency of the nozzle and probe is further indicated by photomicrographs of spheres captured in the $PM_{2.5}$ cyclone body and collection cup. Scanning electron microscope photomicrographs in Figure 3-9, 3-10, and 3-11 demonstrate that many of the spheres reaching the $PM_{2.5}$ cyclone are well above 20 micrometers.

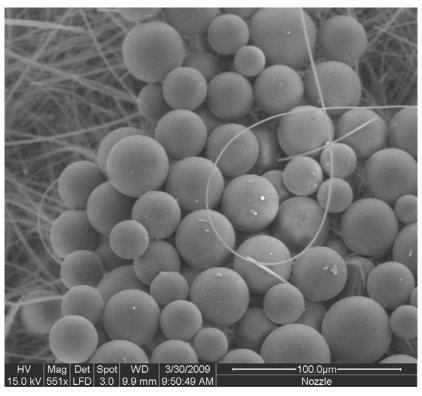


Figure 3-9. Nozzle Run 6, Close View

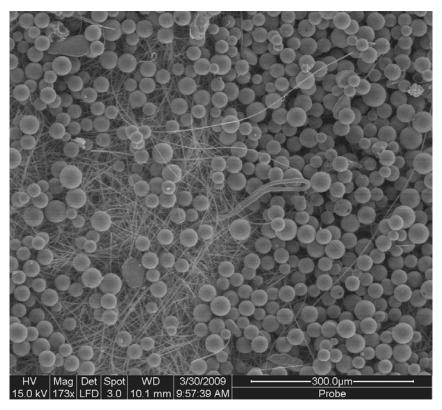


Figure 3-10. Probe Run 6, Wide View

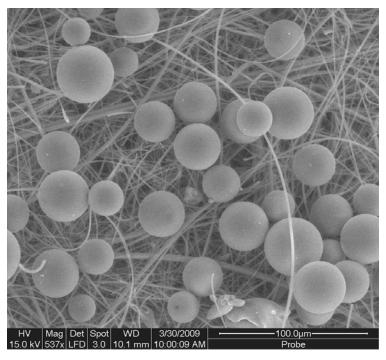


Figure 3-11. Probe Run 6, Close View

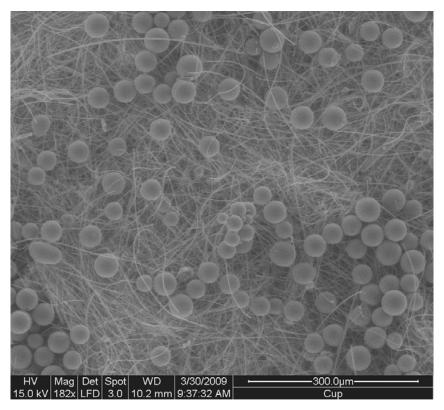


Figure 3-12. Cyclone Cup, Run 6, Wide View

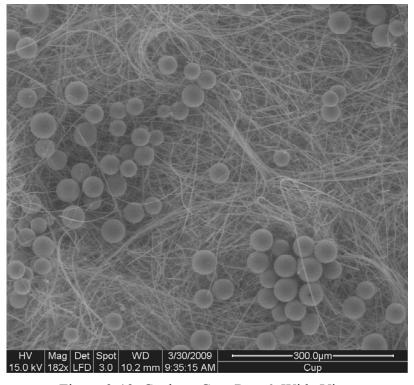


Figure 3-13. Cyclone Cup, Run 6, Wide View

Most of the spheres shown in Figures 3-12 and 3-13 are well above the 20-micrometer aerodynamic size that should be removed in the nozzle and the probe. The quantities of the greater than 20 micrometer sized (aerodynamic diameter) spheres are well below the level expected due to the shape of the theoretical collection efficiency curve shown in Figure 2-4. The large quantities of large spheres confirm the weight distribution data shown in Table 3-1. It is clear that the nozzle and the probe are not capturing relatively larger particles and droplets. This potentially biases the $PM_{2.5}$ filterable particulate matter test results to higher-than-true levels if the cyclone does not stop all of these greater than $PM_{2.5}$ -sized particles.

Despite the concern of the possible positive bias, the weight partitioning data and the photomicrographs indicate that the PM_{2.5} cyclone is very effective in capturing large particles. As indicated in Table 3-1, only one of the four test runs had as much as 1% of the solids passing the cyclone to reach the PM_{2.5} filter. In three of the test runs, no detectable material reached the PM_{2.5} filter. Considering that the sampling system inlet had no particles in the PM_{2.5} size range, these results confirm proper performance of the cyclone. The effective performance of the PM_{2.5} cyclone overcomes the low capture efficiency for over-sized particles in the nozzle and probe.

3.2 FOLLOW-UP LABORATORY TEST PROGRAM

Follow-up laboratory tests of the WS2.5 system were conducted following the completion of the field tests at three refinery catalytic cracking units. These follow-up tests focused exclusively on an evaluation of possible PM_{2.5} particle losses to the probe walls and/or droplets present in the inlet portion of the probe.

A high pressure C-type concentric nebulizer atomized high concentration solutions of NIST-traceable monodisperse silica spheres having aerodynamic diameters ranging from 1.44 to 2.20 micrometers. These solutions were injected into a heated chamber that simulated a stack operating at temperatures of 150 to 260°F to maximize evaporation of the sphere-containing droplets. Figures 3-14, 3-15, and 3-16 illustrate the nebulizer, the heated chamber, and the nozzle and probe of the WS2.5 sampling system used in these laboratory tests.

Figure 3-14. Nebulizer and Heated Chamber

Figure 3-15. Heated Chamber and WS2.5 Sampling System Nozzle and Probe

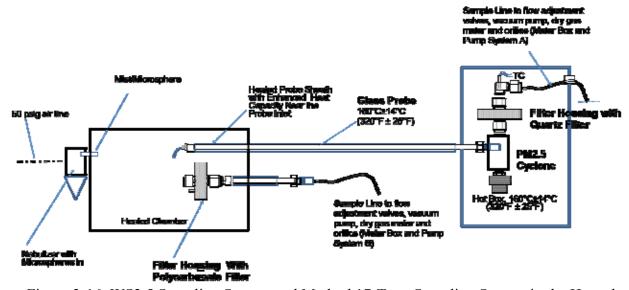


Figure 3-16. WS2.5 Sampling System and Method 17-Type Sampling System in the Heated Chamber with Microsphere Aerosol Mist Injection

Based on previous laboratory tests described in Section 3.1 of this report, it was apparent that spheres less than 2.5 micrometers do not disperse entirely due to either surface tension and/or static charge effects. According, samples of the gas stream near the WS2.5 nozzle were obtained on polycarbonate filters using a second collocated sampling system shown in Figure 3-16. This second filter used an "in-stack" Method 17 configuration to minimize any alteration of the actual size distribution of the clusters of microspheres. The Method 17 filter samples were obtained

during very short sampling periods to provide a mono-layer of particles on the filter. Polycarbonate filters with 3.0 micrometer-sized pores were used in these "snapshot" oriented particle size measurements near the inlet to the WS2.5 sampling train nozzle.

The WS2.5 sampling system operated at standard sampling rates to achieve the necessary cyclone 50% cut diameter of approximately 2.5 micrometers. The WS2.5 sampling system probe and hot box operated in the normal temperature range of $320 \pm 25^{\circ}$ F. Test aerosol catch weights exceeded 10 micrograms in each of the three samples: (1) nozzle and probe, (2) cyclone catch cup and front half tubing, and (3) filter and cyclone back-half tubing. The Method 17 polycarbonate filter samples used for particle size analysis were obtained during 2-3 minute sampling periods conducted during the approximate mid-point of the WS2.5 system test run.

Research Triangle Institute (RTI) analyzed the polycarbonate filters using SEM. Air Control Techniques, P.C. used the RTI photomicrographs to count the number of individual spheres and the particle clusters of two or more spheres on the filter surface. RTI provided photomicrographs with two fields of view: (1) a 50 by 50 micrometer view and (2) a 300 by 300 micrometer view. A minimum of 300 particles and particle clusters were evaluated on each of these photomicrographs shown in Figures 3-17 to 3-20.

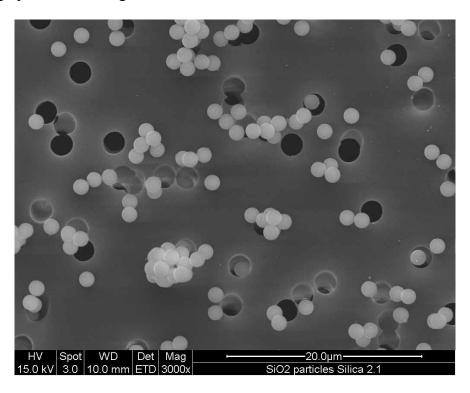


Figure 3-17 Photomicrograph of 2.1 Micrometer Silica Spheres, 50 Micrometer Field-of-View (Method 17 Sampling Train)

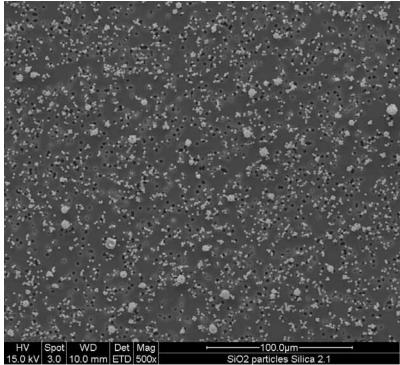


Figure 3-18. Photomicrograph of 2.1 Micrometer Silica Spheres, 300 Micrometer Field-of-View (Method 17 Sampling Train)

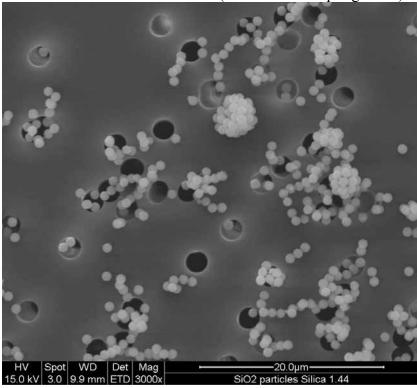


Figure 3-19. Photomicrograph of 1.44 Micrometer Silica Spheres, 50 Micrometer Field-of-View (Method 17 Sampling Train)

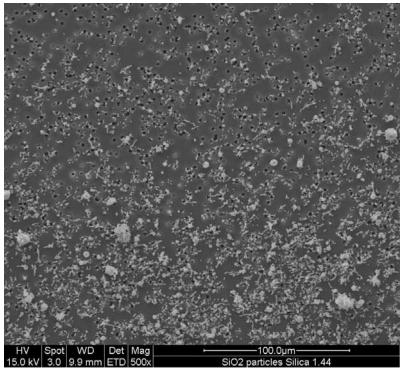


Figure 3-20. Photomicrograph of 1.44 Micrometer Silica Spheres, 300 Micrometer Field-of-View (Method 17 Sampling Train)

The equivalent aerodynamic diameters of the clusters of spheres were calculated. The expected penetration efficiency through the WS2.5 sampling system cyclone was calculated based on the size-penetration curve published in EPA Method 201A. This curve was derived from size-penetration data published between 1978 and 1990 for Cyclone IV in the Southern Research Institute five-stage sampler.

The expected test aerosol partitioning in the WS2.5 sampling train was calculated based on the SEM photograph particle/cluster size counts and the size-penetration curve for the cyclone.

Following each test run, the sample analyses included (1) the fractions of the test aerosol greater than 2.5 micrometers in the probe, nozzle, and cyclone and (2) the test aerosol equal to or less than 2.5 micrometers in the filter and cyclone back-half tubing. The results of these WS2.5 sampling system test runs are summarized in Figure 3-21.

A comparison of the expected and measured $PM_{2.5}$ fractions in the WS2.5 sampling system is summarized in Figure 3-21. It is apparent that slightly lower-than-expected levels were measured for the 2.1 micrometer-sized silica spheres.

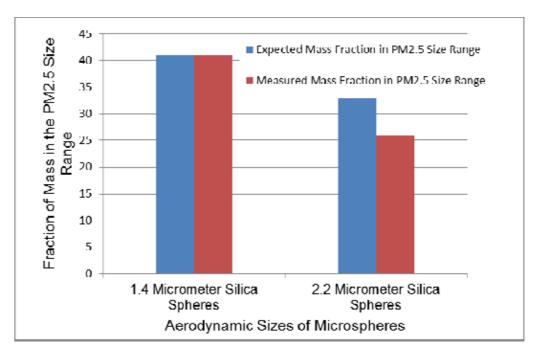


Figure 3-22. Comparison of the Expected and Measured PM_{2.5} Size Fractions

The differences in the expected and measured $PM_{2.5}$ mass fractions could be due to (1) slight non-representative areas of the photomicrographs counted to generate the cluster size distributions or (2) slight differences in the actual versus the assumed cyclone size-penetration curve.

Overall, the follow-up laboratory tests indicate that $PM_{2.5}$ particles losses in the nozzle and probe of the WS2.5 wet stack $PM_{2.5}$ sampling system are small and within the range of measurement error. These results are consistent with field sampling and sample SEM analyses conducted as part of the second refinery test program described in Section 4.3 of this report.

4. CATALYTIC CRACKER STACK TEST PROGRAM

4.1 TEST METHODS

This section summarizes the results of the tests that were completed in August 2009, February 2010, and May 2010 at API member company facilities. During the field test program, two sampling trains were operated simultaneously. A WS2.5 wet stack sampling train measured filterable PM_{2.5}. This sampling system operated in combination with Method 202 for condensable particulate matter. The second sampling train combined EPA Reference Methods 2, 3, 4, and 5B for total filterable particulate matter emissions with EPA 202 for condensable particulate matter emissions. At each facility, three test runs were conducted using both sampling trains.

Flue Gas Velocity and Volumetric Flow Rate Using EPA Method 2

The flue gas velocity and volumetric flow rates during the emission tests were determined according to the procedures outlined in U.S. EPA Reference Method 2. Velocity measurements were made using S-type Pitot tubes conforming to the geometric specifications outlined in Method 2. Accordingly, each Pitot tube was assigned a coefficient of 0.84. Velocity pressures were measured with fluid manometers. Effluent gas temperatures were measured with chromelalumel thermocouples equipped with digital readouts.

Flue Gas Composition and Molecular Weight Using EPA Method 3

A multi-point, integrated gas sample was extracted from the stack during each run and collected in a leak-free Tedlar® bag. The gas stream oxygen and carbon dioxide content were determined using an Orsat gas analyzer. When available, plant continuous emission monitors were also used to monitor oxygen and carbon dioxide. The flue gas dry molecular weight was calculated in accordance with EPA Reference Method 3.

Flue Gas Moisture Content Using EPA Method 4

The flue gas moisture content during the Method 5B/WS2.5 tests was determined in conjunction with each sampling train and according to the sampling and analytical procedures outlined in EPA Method 4. The impingers were connected in series, and their contents are listed in the EPA Method 202 description. The impingers were contained in an ice bath to assure condensation of the flue gas moisture. Any moisture that was not condensed in the impingers was captured in the silica gel; therefore, all moisture was weighed and entered into moisture content calculations.

Condensable Particulate Matter Using EPA 202

EPA Method 202 was used to measure the condensable particulate matter emissions. The impinger section of the sampling train consisted of a water-cooled indirect heat exchange coil, an initially dry knock-out impinger, an initially dry impinger, a Teflon membrane filter (CPM filter), an impinger containing 100 milliliters of water, and an impinger containing pre-weighed silica gel.

The initial knockout impinger and the initially dry impinger were maintained in a water bath at or below 85°F. The sample gas stream temperature exiting the second impinger and entering the CPM filter was monitored and recorded to ensure that the temperature was at or below 85°F. Following each test run, the sample gas stream moisture captured in the impingers upstream of the CPM filter was purged with ultra-high purity (UHP) nitrogen at a rate of twenty liters per minute for one hour to remove dissolved sulfur dioxide and other soluble gases. A schematic of the Method 202 sampling train is provided in Figure 4-1.

As part of the Method 202 tests, reagent blanks were prepared for the acetone, methylene chloride, and deionized water reagents. A field blank was prepared and analyzed. The sampling train used for the field blank was charged with 100 milliliters of deionized water. The water recovered from the field blank was purged with UHP nitrogen at 20 liters per minute for one hour during the clean-up procedures.

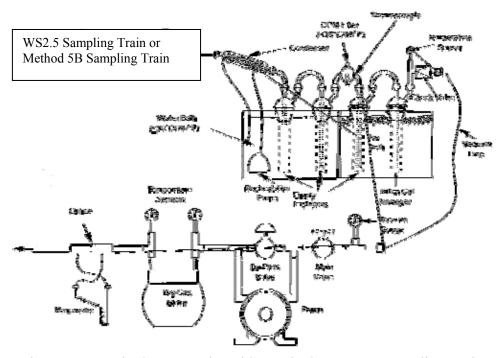


Figure 4-1. Method 202 Condensable Particulate Matter Sampling Train

The data quality objectives for the Method 202 test runs include the following parameters that were monitored and recorded.

- Post run leak check rates equal to or less than 0.02 CFM at maximum run vacuum
- CPM filter temperatures equal to or less than 85°F
- Nitrogen purge at 20 liters per minute for one hour
- Sampling train exit temperatures equal to or less than 68°F

Filterable Particulate Matter Using EPA Method 5B

Sampling System. EPA Reference Method 5B was used to determine the total filterable particulate matter emissions from each source. The testing was conducted in accordance with all applicable EPA sampling and quality assurance requirements. The test program consisted of a set of three test runs at the exhaust stack of each unit. The data quality objectives for the Method 5B tests include the following.

- Isokinetic sampling rates $\geq 90\%$ and $\leq 110\%$
- Sample volumes equal to or greater than 50 DSCF
- Post-test leak check equal to or less than 0.02 DSCFM at maximum run vacuum
- No Pitot tube leaks (A and B sides) equal to or greater than 3 inches W.C.
- Sampling train exit temperatures equal to or less than 68°F
- Filter and probe temperature equal to 320±25°F

Samples were withdrawn isokinetically ($100\% \pm 10\%$) from the source using an EPA Method 5B sampling train. The sampling train consisted of a stainless steel nozzle, a heated glass-lined probe with an S-type Pitot tube attached, a glass fiber filter, the Method 202 impinger train, and a metering console. The filterable particulate matter sample was collected on the filter supported by a Teflon® frit and maintained at a temperature of $320\pm25^{\circ}F$.

Following each test run, the sampling train was sealed and transferred to the recovery area. Each impinger was weighed and compared to the tare weight to determine the increase due to the moisture content of the gas stream. The weight of the condensed moisture was entered into moisture content calculations. The filter was removed from the filter holder and placed in a uniquely identified petri dish. The nozzle, probe, and front half of the filter holder were rinsed with acetone into a uniquely identified glass jar.

EPA Method 5B analytical procedures were used to analyze the filters and front-half acetone rinses for filterable particulate matter. The analytical procedures included drying, desiccating, and weighing with an analytical balance capable of measuring 0.1 milligrams.

Filterable PM_{2.5} Using the WS2.5 Wet Stack Sampling System

The WS2.5 sampling system shown in Figure 4-2 included a nozzle, a heated stainless steel probe, a heated PM_{2.5} cyclone, and a heated 47mm quartz filter. The WS2.5 sampling system was then connected to a Method 202 impinger train. High-purity nitrogen was heated in the probe and entered the gas stream at a point immediately after the nozzle. The nitrogen reduced the sample gas stream moisture content well below 100% relative humidity and helped to rapidly evaporate entrained droplets. The nitrogen injection rate was equal to the sample gas flow rate from the stack. The probe was a 1/2 inch (I.D.) stainless steel tube enclosed in a high temperature probe sheath. The sample gas stream with the nitrogen diluent was maintained at $320^{\circ}\text{F}\pm25^{\circ}\text{F}$ in this probe.

Sample gas flow was maintained within the $PM_{2.5}$ cyclone performance limits. The sample gas flow rate was adjusted to maintain a 2.5 ± 0.5 micrometer cut size. A total sample flow rate of approximately 0.32 cubic feet per minute was maintained. The stack sample gas flow rate was approximately 0.16 cubic feet per minute at a 1:1 nitrogen dilution rate.

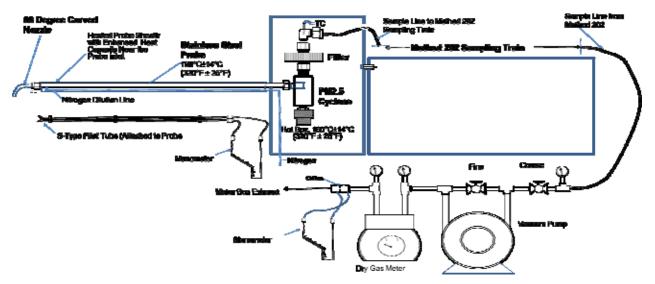


Figure 4-2. WS2.5 Sampling Train Used in FCCU Tests

The WS2.5 sampling system was used to measure both total particulate matter and $PM_{2.5}$. In a manner similar to Method 201A, total particulate matter included all of the solid material recovered from the nozzle, probe, cyclone, cyclone lines, cyclone cup, $PM_{2.5}$ filter holder (front), and $PM_{2.5}$ filter. The $PM_{2.5}$ particulate matter included only the solids recovered from the outlet tube of the $PM_{2.5}$ cyclone, the cyclone lines leading to the $PM_{2.5}$ filter holder, the $PM_{2.5}$ filter holder (front half) and the $PM_{2.5}$ filter.

The data quality objectives for the WS2.5 wet stack sampling system tests included the following.

- Isokinetic sampling rates $\geq 80\%$ and $\leq 120\%$
- Stack gas sample volumes equal to or greater than 36 DSCF
- Pre-run leak check rates equal to or less than 0.02 DSCFM at 5 psig (pre-run leak check of entire sampling train)
- Post-run leak check rates equal to or less than 0.02 DSCFM at maximum run vacuum (post-run leak check from outlet of the filter)
- Sampling train exit temperatures equal to or less than 68°F
- Filter and probe temperature equal to 320±25°F

The WS2.5 wet stack sampling system head was recovered using a nylon brush and ultra-pure acetone rinse. The particulate matter was divided into three separate sample jars.

Sample Jar #1, Particulate Matter > 2.5 micrometers

- Solids in acetone rinse of the sampling nozzle
- Solids in acetone rinse of the probe
- Solids in acetone rinse of the PM_{2.5} cyclone cup
- Solids in acetone rinse of the PM_{2.5} cyclone body

Sample Jar #2, Particulate Matter ≤2.5 micrometers

- Outlet tube of the cyclone body
- Solids in inlet pipe to PM_{2.5} filter
- Solids in inlet side of PM_{2.5} filter housing

Sample Jar #3, Particulate Matter ≤ 2.5 micrometers

PM_{2.5} Filter

The total particulate matter is the sum of all the particulate matter recovered from the cyclone sampling assembly (sample jars #1 through #3). PM_{2.5} particulate matter is the sum of the solids recovered from sample jars #2 and #3.

EPA Method 5 analytical procedures were used to analyze the filter and the front half acetone rinses for particulate matter. Standard EPA procedures were used to recover the samples. Sample recovery was performed in a sheltered location at the facility. Each sampling train was sealed to prevent contamination during transport to and from the clean-up area.

All chemicals used for sampling train preparation, sample recovery, and sample analyses were American Chemical Society (ACS), Optima grade. Deionized water exceeded the American Society for Testing Materials (ASTM) specifications for Type I reagent water.

The samples were uniquely numbered and identified. The test runs for the WS2.5 wet stack and the EPA Method 5B particulate matter sampling systems combined with the Method 202 condensable particulate matter sampling train were designated as follows.

WS2.5 wet stack sampling system – API2.5/202-1, API2.5/202-2, API2.5/202-3 EPA Method 5B sampling system – M5B/202-1, M5B/202-2, M5B/202-3

QA/QC SUMMARY

The tests were conducted using QA/QC procedures established by EPA for Method 5B, 201A and Method 202. Complete records concerning the QA/QC procedures were prepared.

Pre-test and post-test leak checks were conducted on each sampling train used during the test. The observed leak rates were below 0.02 actual cubic feet per minute. It should be noted that the WS2.5 train was post-test leaked checked from the impingers back so as not to displace solids in the $PM_{2.5}$ cyclone.

The dry gas meters were fully calibrated to determine the volume correction factor prior to field use. The post-test calibration checks were performed as soon as possible after the equipment was returned to the laboratory. Pre-and post-test calibrations agreed within ± 5 percent. The calibration procedure is documented in Section 3.3.2 of EPA Publication No. 600/4-77-237b.

The scale used at the test location to determine flue gas moisture content was calibrated using a standard set of weights.

4.2. TEST PROGRAM 1, SCRUBBER-CONTROLLED FCCU

System Description

Tests were conducted at a FCCU equipped with a set of electrostatic precipitators followed by an SO₂ spray tower scrubber. During the test program, the plant operated the process and each control unit at approximately the maximum rated capacity.

System Monitoring

Plant personnel monitored and recorded the FCCU process and control equipment systems during the tests to verify representative operations. Data collected during the emission tests are presented in Table 4-1.

Table 4-1. Field Test 1, Selected Operational Parameters					
Run #	Date	Time	Coke Burned lbs/hr	Scrubber Oxygen, %	Scrubber Slurry, pH
API 2.5/202-1 & M5B/202-1	8/5/09	1008-1318	35558	4.5	7.45
API 2.5/202-2 & M5B/202-2	8/5/09	1419-1724	35835	4.2	7.40
API 2.5/202-3 & M5B/202-3	8/6/09	0830-1200	34849	4.5	7.4

Sampling Location

The tests were conducted in the FCCU scrubber stack. The stack at the test site has a diameter of 138 inches, and the ports are located 88 feet (7.7 diameters) downstream of the nearest flow disturbance and 21' 8" feet upstream (1.9 diameters) of the stack discharge. Figure 4-3 provides a sketch of the sampling location and ports.

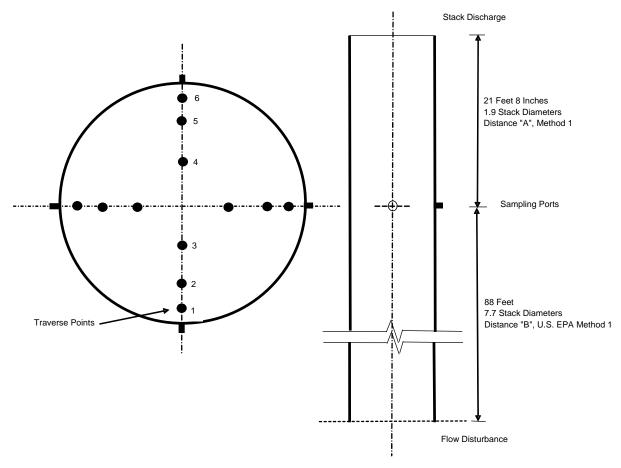


Figure 4-3. Field Test 1, FCCU Stack Sampling Ports (Sketch Not-to-Scale)

The number and location of the sampling and traverse points used in the Method WS2.5/5B tests were determined according to the procedures outlined in U.S. EPA Reference Method 1. There were twelve (12) traverse points and four sampling ports. Each port traverse consisted of 3 sampling points (4 ports, 3 points per port). The specific points sampled across each of the two complete stack traverses were at 4.4%, 14.6%, 29.6%, 70.4%, 85.4%, and 95.6% of the stack diameter, taking into account the length of the port nipple and the stack wall thickness.

During Run 2, microspheres were injected into the nozzle of the WS2.5 sampling train. No spiking was conducted during Runs 1 and 3. The microspheres were used in an attempt to evaluate capture of small particles in the probe. This evaluation was inconclusive due to problems in dispersing the microspheres into the nozzle.

Summary and Discussion of Results

Tables 4-2 and 4-3 present the test results. Emissions are presented in grains per dry standard cubic foot and pounds per hour. Quality assurance data applicable to the emission tests are presented in Tables 4-4 and 4-5.

33

Table 4-2. Field Test 1, Summary of Results, WS2.5 Method / Method 202							
Parameter	API 2.5/202 -1	API 2.5/202-2	API 2.5/202-3	Average			
Test date	8/5/09	8/5/09	8/6/09	N/A			
Test time	1008-1318	1419-1721	0830-1142	N/A			
Flue gas flow, DSCFM	144,800	142,500	157,060	148,120			
Total filterable particulate matter e	Total filterable particulate matter emissions						
Concentration, grains/DSCF	0.005	0.010^{1}	0.003	0.006			
Mass emission rate, lb/hr	6.33	11.7 ¹	4.01	5.17			
Condensable particulate matter em	issions						
Concentration, grains/DSCF	0.008	0.005	0.004	0.006			
Mass emission rate, lb/hr	9.87	6.70	5.81	7.46			
Filterable PM _{2.5} particulate matter emissions							
Concentration, grains/DSCF	0.0019	0.0005	0.0004	0.0010			
Mass emission rate, lb/hr	2.34	0.66	0.60	1.20			
Total particulate matter emissions							
Concentration, grains/DSCF	0.013	0.015^{1}	0.007	0.010^2			
Mass emission rate, lb/hr	16.2	18.41	9.82	13.0^{2}			

Notes: ¹ Value affected by spike of polydisperse microspheres into the nozzle during run 2. ² Based on test runs 1 and 3 only. Run 2 was affected by the microsphere spike.

Table 4-3. Field Test 1, Summary of Results, EPA Method 5B / Method 202					
Parameter	5B/202-1	5B/202-2	5B/202-3	Average	
Test date	8/5/09	8/5/09	8/6/09	N/A	
Test time	1008-1314	1419-1724	0830-1200	N/A	
Flue gas flow, DSCFM	143,090	145,970	144,730	144,600	
Total filterable particulate matter emissions					
Concentration, grains/DSCF	0.0031	0.0033	0.0033	0.0032	
Mass emission rate, lb/hr	3.80	4.15	4.09	4.02	
Condensable particulate matter emissions					
Concentration, grains/DSCF	0.0050	0.0070	0.0068	0.0061	
Mass emission rate, lb/hr	6.18	8.14	8.40	7.57	
Total particulate matter emissions					
Concentration, grains/DSCF	0.0081	0.0098	0.0100	0.0093	
Mass emission rate, lb/hr	9.98	12.3	12.5	11.6	

Table 4-4. Field Test 1, Quality Assurance Results WS2.5 Method / Method 202					
Parameter	Requirement	API 2.5/202 -1	API 2.5/202-2	API 2.5/202-3	
Isokinetic rate, percent	80-120	149.4	147.6	146.0	
Pre-test leak check, CFM	< 0.02	0.000 @ 15"	0.000 @ 15"	0.000 @ 15"	
Post-test leak check, CFM	< 0.02	0.000 @ 15"	0.000 @ 15"	0.000 @ 15"	
Particle cut size, micrometers	2.25-2.75	2.55	2.54	2.64	
Probe Temperature, °F	320±25	309-321	312-320	309-324	
Filter, Cyclone Temperature, °F	320±25	301-305	298-305	299-305	
CPM filter gas temp., °F	<85°F	71 – 76	71 – 78	66 – 72	
Impinger exit temp., °F	<68°F	62 – 66	54 – 64	58 – 65	
Measured Moisture, %	N/A	22.4	23.0	15.4	
Saturation Moisture, %	N/A	22.5	22.5	21.3	
Pre-test Pitot tube leak checks ¹					

Note: No Pitot tubes were affixed to the WS2.5 sampling probes.

Table 4-5. Field Test 1, Quality Assurance Results EPA Method 5B / Method 202						
Parameter	Requirement	5B/202-1	5B/202-2	5B/202-3		
Isokinetic rate, percent	90-110	100.8	102.9	99.7		
Pre-test leak check, CFM	< 0.02	0.000 @ 15"	0.000 @ 15"	0.000 @ 12"		
Post-test leak check, CFM	< 0.02	0.000 @ 8"	0.000 @ 8"	0.000 @ 8"		
Probe Temperature, °F	320±25	305-315	306-319	298-324		
Filter, Cyclone Temperature, °F	320±25	306-318	307-317	311-329		
CPM filter gas temp., °F	<85°F	75 - 83	76 - 77	64 - 70		
Impinger exit temp, °F	<68°F	63 – 66	62 - 65	59 – 63		
Measured Moisture, %	N/A	22.4	22.5	21.8		
Saturation Moisture, %	N/A	22.3	22.3	21.4		
Pre-test Pitot tube leak check						
Side A (Impact), in. H ₂ O	0.0 @≥3"	0.0 @ 4"	0.0 @ 6"	0.0 @ 6"		
Side B (Static), in. H ₂ O	0.0 @≥3"	0.0 @ 5"	0.0 @ 5"	0.0 @ 5"		
Post-test Pitot tube leak check						
Side A (Impact), in. H2O	0.0 @≥3"	0.0 @ 4"	0.0 @ 4"	0.0 @ 5"		
Side B (Static), in. H2O	0.0 <u>@</u> ≥3"	0.0 @ 4"	0.0 @ 5"	0.0 @ 5"		

As indicated in Table 4-4, all three test runs exceeded the maximum isokinetic sampling rate of 120%. This was due to the difficulty of operating two separate sampling computers to perform calculations needed to maintain the necessary cyclone cut size and the isokinetic sampling rate. The two computer systems were needed due to the complexity in sampling system control introduced by the nitrogen dilution line.

The high isokinetic sampling rates reduced the measured mass concentrations in the WS2.5 sampling train. The data sheets for Test Program 1 are provided in Volume I of this report.

4.3 TEST PROGRAM 2, ESP CONTROLLED FCCU

System Description

Tests were conducted at a FCCU equipped with a set of electrostatic precipitators. The primary purpose of these tests was to evaluate the sizes of particles captured in the nozzle, probe, cyclone, and filter.

System Monitoring

Plant personnel monitored and recorded the FCCU process and control equipment systems data during the tests to verify representative operations. Data collected during the emission tests are included in Table 4-6. These data are applicable to test runs 1, 3, and 4. Run 2 was not analyzed because the predicted $PM_{2.5}$ cut size was 2.90 micrometers—a value outside of the 2.25 to 2.75 micrometer cut size range for the WS2.5 sampling method.

Table 4-6. Field Test 2, Selected Operational Parameters						
Run#	Date	Time	Coke Burned lbs/hr	FCCU Feed BPD	SO ₂ ppm @ 0% O ₂	
API 2.5/202-1 & M5B/202-1	2/24/10	958-1304	24,003	41,982	54.4	
API 2.5/202-3 & M5B/202-3	2/25/10	0743-1043	23,844	42,482	58.3	
API 2.5/202-4 & M5B/202-4	2/25/10	1135-1435	23,845	42,440	63.1	

Sampling Location

The tests were conducted in the FCCU ESP stack. The stack diameter is 114 inches, and the ports are located 13 feet (1.37 diameters) downstream of the nearest flow disturbance and 51 feet upstream (5.37 diameters) of the stack discharge. Figure 4-4 provides a sketch of the sampling location, ports, and intended traverse points.

During the first test run, an internal stack support beam was encountered that prevented traversing the stack using the WS2.5 sampling train. Accordingly, both the Method 5B and WS2.5 tests were conducted at a single point that is indicated by the arrow in Figure 4-4. The single-point sampling did not impair the ability to compare the two sampling trains: however, it is not possible to determine if the emissions data from either sampling train were representative of actual emissions from the facility.

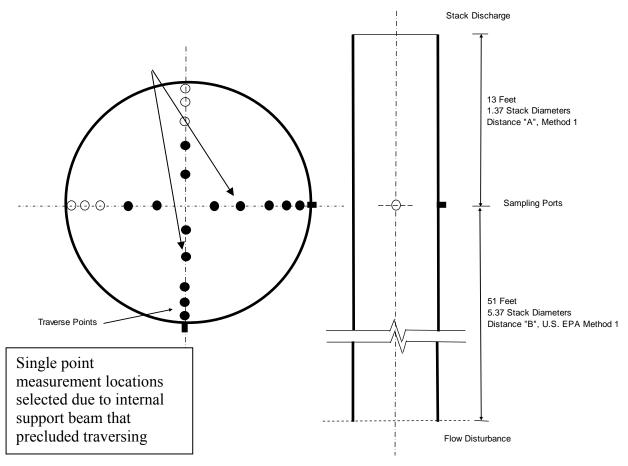


Figure 4-4. Field Test 2, FCCU Stack Sampling Ports (Open and Closed Circles Indicate Method 1 Requires Traverse Points)

Discussion of Results

Tables 4-7 and 4-8 present the test results for the Method 5B/202 and WS2.5/202 sampling trains. Emissions are presented in grains per dry standard cubic foot and pounds per hour.

The filterable PM_{2.5} emission rates were very low during all three of the WS2.5 test runs. Despite the relatively long 180-minute sampling runs, the PM_{2.5} catch weights varied from 0.9 to 1.0 milligrams in the three runs, values that are close to the minimum detectable levels. The filterable PM_{2.5} emission rates measured by the WS2.5 wet stack sampling train were 14% to 27% of the total filterable particulate matter emissions measured in the Method 5B sampling train. These results are consistent with previous tests using the WS2.5 sampling system at a FCCU. These results indicate that the WS2.5 is needed to avoid significant biases to higher-than-true levels inherently involved in using Method 5B total filterable particulate matter emissions as a surrogate for PM_{2.5} filterable particulate matter.

Due to gas flow rate changes and a limited number of sampling nozzle sizes, there were some problems in achieving both the isokinetic sampling rates and PM_{2.5} cut size requirements of the WS2.5 sampling system. During run 2, the PM_{2.5} cut size was 2.90 micrometers, a value that is

slightly outside of the desired 2.25 to 2.75 micrometer range. Accordingly, Air Control Technique, P.C. conducted a fourth test run.

The total filterable particulate matter emissions and filterable PM_{2.5} emissions as measured by the WS2.5 wet stack sampling system were calculated based on runs 1, 3, and 4. The average filterable particulate matter emission rate was 4.27 pounds per hour, a value approximately three times higher than the 1.48 pounds per hour emission measured by Method 5B. Considering that the condensable particulate matter concentrations were approximately a factor of ten above the filterable particulate matter concentrations, it is possible that (1) some sulfuric acid or other condensable compound was captured in the long probe and/or cyclone of the WS2.5 sampling system, or (2) some submicrometer-sized ammonium chloride or ammonium sulfate particles penetrated the lightly-loaded Method 5B filter.

As indicated in Tables 4-7 and 4-8, the condensable particulate matter concentrations measured using both sampling systems ranged from 21 to 27 pounds per hour. There were no significant differences introduced by the Method 5B and WS2.5 sampling trains upstream of the Method 202 condensable particulate matter sampling equipment. The quality assurance data for these tests are presented in Tables 4-9 and 4-10.

Table 4-7. Field Test 2, Summary of Results, WS2.5 Method / Method 202						
Parameter	API 2.5/202 -1	API 2.5/202 -3	API 2.5/202 -4	Average		
Test date	2-24-2010	2-25-2010	2-25-2010	N/A		
Test time	0958-1302	0741-1041	1135-1435	N/A		
Flue gas flow, DSCFM	77,475	104,188	85,887	89,183		
Total filterable particulate matter e	missions					
Concentration, grains/DSCF	0.00678	0.00547	0.00464	0.00563		
Mass emission rate, lb/hr	4.5	4.9	3.4	4.3		
Condensable particulate matter em	issions					
Concentration, grains/DSCF	0.0324	0.0307	ND	0.0316		
Mass emission rate, lb/hr	21.5	27.4	ND	24.4		
Filterable PM _{2.5} particulate matter	emissions					
Concentration, grains/DSCF	0.00036	0.00034	0.00033	0.00034		
Mass emission rate, lb/hr	0.239	0.299	0.240	0.259		
Total particulate matter emissions						
Concentration, grains/DSCF	0.03918	0.03617	ND	0.0377		
Mass emission rate, lb/hr	26.0	32.3	ND	29.1		

Table 4-8. Field Test 2, Summary of Results, EPA Method 5B / Method 202						
Parameter	5B/202-1	5B/202-3	5B/202-4	Average		
Test date	2-24-2010	2-25-2010	2-25-2010	N/A		
Test time	0958-1304	0743-1043	1135-1435	N/A		
Flue gas flow, DSCFM	81,534	86,511	82,558	83,534		
Total filterable particulate matter e	missions					
Concentration, grains/DSCF	0.00253	0.00149	0.00224	0.00209		
Mass emission rate, lb/hr	1.8	1.1	1.6	1.5		
Condensable particulate matter emi	issions					
Concentration, grains/DSCF	0.03566	0.03484	0.038695	0.0364		
Mass emission rate, lb/hr	24.9	25.8	27.4	26.0		
Total particulate matter emissions						
Concentration, grains/DSCF	0.03819	0.03633	0.04092	0.03848		
Mass emission rate, lb/hr	26.7	26.9	28.9	27.5		

Table 4-9. Field Test 2, Quality Assurance Results WS2.5 Method / Method 202					
Parameter	Requirement	API 2.5/202-1	API 2.5/202-3	API 2.5/202-4	
Isokinetic rate, %	80-120	117.4	103.4	114.1	
Pre-test leak check, CFM	< 0.02	0.000 @ 15"	0.000 @ 15"	0.000 @ 15"	
Post-test leak check, CFM	< 0.02	0.000 @ 15"	0.000 @ 15"	0.000 @ 15"	
Particle cut size, micrometers	2.25-2.75	2.66	2.74	2.66	
Probe Temperature, °F	320±25	311-424	387-423	362-424	
Filter, Cyclone Temperature, °F	320±25	311-328	310-325	312-327	
CPM filter gas temp., °F	<85°F	<61	<58	N/A	
Impinger exit temp., °F	<68°F	<60	< 58	<62	
Measured Moisture, %	N/A	16.6	No Data	13.2	
Saturation Moisture, %	N/A	100	100	100	
Pre test Pitot tube leak checks ¹					

Note: ¹No Pitot tubes were attached to the WS2.5 sampling probes.

Table 4-10. Field Test 2, Q	Table 4-10. Field Test 2, Quality Assurance Results EPA Method 5B / Method 202					
Parameter	Requirement	5B/202-1	5B/202-3	5B/202-4		
Isokinetic rate, %	90-110	98.5	98.5	97.9		
Pre-test leak check, CFM	< 0.02	0.000 @ 13"	0.000 @ 15"	0.000 @ 12"		
Post-test leak check, CFM	< 0.02	0.000 @ 10"	0.000 @ 8"	0.000 @ 8"		
Probe Temperature, °F	320±25	327-333	324-330	302-332		
Filter, Cyclone Temperature, °F	320±25	296-315	297-316	297-313		
CPM filter gas temp., °F	<85°F	< 59	< 63	<67		
Impinger exit temp, °F	<68°F	< 53	< 63	< 64		
Measured Moisture, %	N/A	12.3	12.7	12.9		
Saturation Moisture, %	N/A	100	100	100		
Pre test Pitot tube leak check						
Side A (Impact), in. H ₂ O	0.0 @≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		
Side B (Static), in. H ₂ O	0.0 @≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		
Post-test Pitot tube leak check	Post-test Pitot tube leak check					
Side A (Impact), in. H ₂ O	0.0 <u>@</u> ≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		
Side B (Static), in. H ₂ O	0.0 <u>@</u> ≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		

Scanning Electron Microscopy

In order to demonstrate that there was no PM_{2.5} particle capture before the filter which that would lead to a negative bias in the sampling results, samples were analyzed from the nozzle, probe, cyclone, and filter of the WS2.5 sampling train and from a collocated in-stack Method 17 filter. These samples were sent to the Research Triangle Institute (RTI) for analysis by scanning electron microscopy (SEM) and energy dispersive X-ray. Based on the SEM analyses, an attempt was made to determine if the PM_{2.5} particles were being captured in the nozzle, probe, or cyclone and thereby contributing to a negative bias in the PM_{2.5} sampling results. The absence of this bias would be demonstrated by (1) the presence of PM_{2.5} particles on the Method 17 stack gas filter sample and (2) the presence of PM_{2.5} particles only on the WS2.5 sampling system filter.

Figures 4-5 and 4-6 show the samples of the particulate matter obtained on the in-stack Method 17 polycarbonate filter. The sampling time was limited to obtain only a thin layer of particles on the filter and to avoid melting the filter in the hot gas stream. The particles sizes can be estimated by comparison with the 50 micrometer size index line shown in the lower right of Figure 4-5 and by comparison with the relatively uniform 3-micrometer-sized pores through the polycarbonate filter surface. In evaluating the particle size range, it is important to note that the observed sizes represent the physical diameters. The equivalent aerodynamic diameters can be

calculated by multiplying the observed physical diameter by the square root of the particle density. At an estimated particle density of 2.0 grams/cm³, the equivalent aerodynamic diameters are 1.4 times the observed physical diameters (an observed particle of 2 micrometers on the photomicrograph has an aerodynamic diameter of 2.8 micrometers).

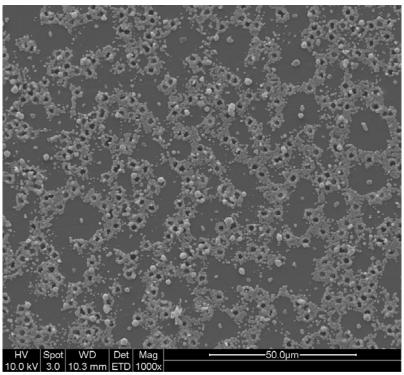


Figure 4-5. Stack Filter Sample, 1000X Magnification

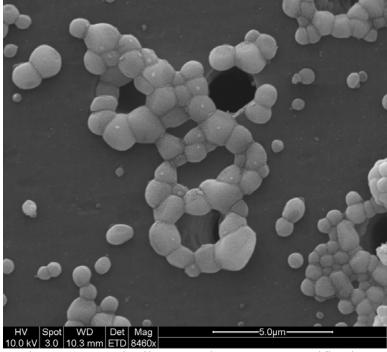
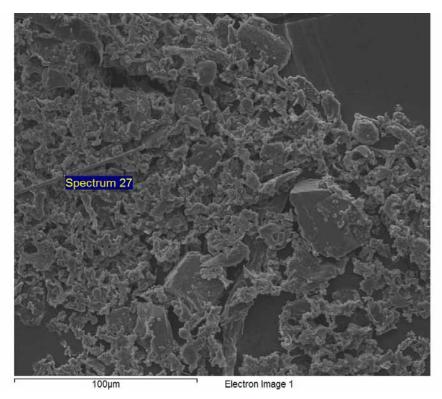
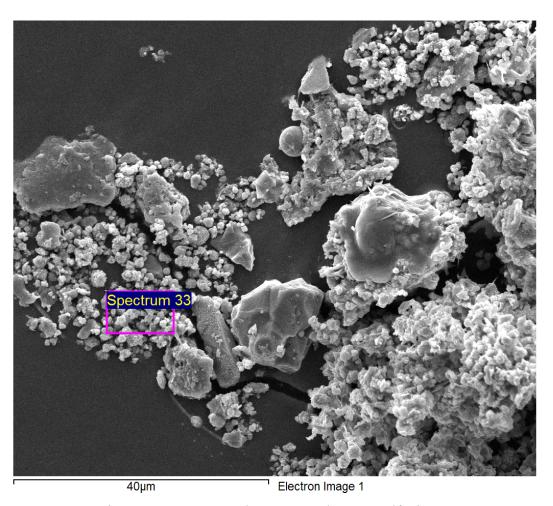



Figure 4-6. Stack Filter Sample, 8,640X Magnification

The electrostatic precipitator stack gas stream appears to have particles having aerodynamic diameters in the range of 1 to 5 micrometers. The clustering of small particles around most of the filter pores is unusual. It is possible that these particles arrived as agglomerates of fused-together particles. The agglomerated characteristics of the material surrounding the pores is shown is Figure 4-5. These clusters of smaller particles could form in the dust layers of the electrostatic precipitator collection plates where electrostatic fields of 10 to 20 kilovolts per centimeter can force the particles together prior to plate rapping. During collection plate rapping, the agglomerates can partially shatter and be reentrained back into the electrostatic precipitator outlet gas stream.

It is also possible that the agglomerates surrounding the filter pores were formed as small particles that were captured one-by-one on the filter surface; however, this filter deposition pattern is not typical of agglomeration around the pores.


Figures 4-7 and 4-8 show the WS2.5 sampling train nozzle and probe solids. These solids appear as large flakes and sheets of material. The individual particles captured in this part of the sampling train have fused into the flakes and sheets, possibly due to contact with the acetone rinse. The size range of the particles captured in this part of the sampling train cannot be adequately determined from this sample.

Figures 4-7. Probe and Nozzle Rinse

The solids present in the $PM_{2.5}$ cyclone catch cup and rinse are shown in Figure 4-8. This sample has some large flaked material that probably broke off from larger deposits in the probe. There are also a large number of agglomerated catalyst particles in the aerodynamic size range of 2 to 10 micrometers.

There are a large number of discrete particles in the center-left and upper right of the photomicrograph. The physical diameters of these particles range from approximately 1 to more than 5 micrometers. All of the particles having physical diameters smaller than approximately 1.75 micrometers have aerodynamic diameters less than 2.5. The presence of these $PM_{2.5}$ particles in the cyclone cup and front-half rinse clearly indicates that there is some capture of $PM_{2.5}$ particles in this part of the sampling system. The $PM_{2.5}$ fraction of the cyclone cup and front-half rinse is in the range of 1 to 5% of the total mass of the probe rinse. The presence of $PM_{2.5}$ particles in this part of the sampling train is expected considering the particle size-penetration curve shown in Figure 2-4.

Figures 4-8. PM_{2.5} Cyclone Cup and Front Half Rinse

The material present on the $PM_{2.5}$ filter is shown in Figures 4-9 and 4-10. Most of the individual particles and agglomerates of particles appear to be below 2 micrometers and, therefore, have an equivalent aerodynamic size of close to or below 2.5 micrometers. Figure 4-9 illustrates the presence of an agglomerated particle larger than 5 micrometers. This particle either penetrated the $PM_{2.5}$ cyclone or formed on the $PM_{2.5}$ filter from particles less than 2.5 micrometers. The presence of some larger-than- $PM_{2.5}$ particles on the $PM_{2.5}$ filter is expected due to the cyclone particle size-penetration curve shown in Method 201A for the $PM_{2.5}$ Cyclone.

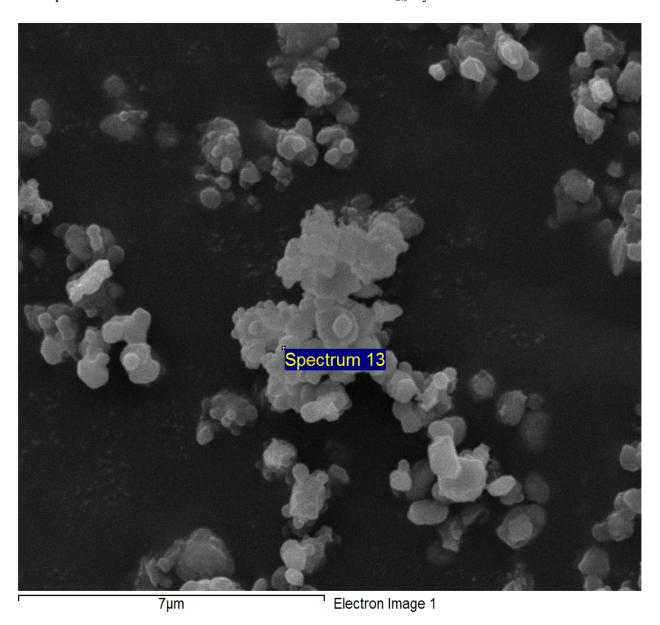


Figure 4-9. PM_{2.5} Filter Sample, Photomicrograph 1

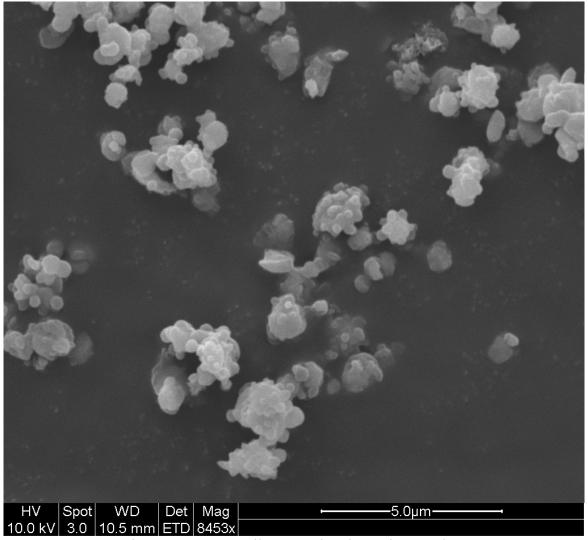


Figure 4-10. PM_{2.5} Filter Sample, Photomicrograph 2.

In summary, the agglomerating characteristics of the particles have limited the usefulness of the SEM analyses to confirm the proper operation of the WS2.5 sampling train. The fraction of the mass less than 2.5 micrometers (aerodynamic) cannot be determined from the Method 17 instack polycarbonate filter. The samples from the WS2.5 sampling train PM_{2.5} filter appear to demonstrate that the sampling train is performing properly—most of the PM_{2.5} particles appear to be only in this part of the sampling train; however, the samples from the nozzle/probe and the PM_{2.5} cyclone cup have fused/agglomerated particulate matter, and the initial particle sizes prior to capture in the sampling train cannot be accurately evaluated.

Based on the SEM analyses, it was especially important to conduct additional laboratory tests with NIST-traceable monodisperse spheres to accurately characterize the particle separation characteristics of the WS2.5 sampling train. These additional laboratory tests are discussed in Section 3.2 of this report. The data sheets for Test Program 2 are provided as Volume II of this report.

4.4 TEST PROGRAM 3, SCRUBBER CONTROLLED FCCU

System Description

Tests were conducted at an FCCU equipped with a set of electrostatic precipitators followed by an SO₂ spray tower scrubber.

System Monitoring

Plant personnel monitored and recorded the FCCU process and control equipment systems data during the tests to verify representative operations. Data collected during the emission tests are presented in Table 4-11.

Table 4-11. Field Test 3, Selected Operational Parameters					
Run#	Date	Time	Coke Burned lbs/hr	FCC Feed bbl/day	Scrubber Oxygen, %
API 2.5/028-1 & M5B/028-1	5/27/10	9:49-13:54	23,394	33,202	2.9
API 2.5/028-2 & M5B/028-2	5/27/10	14:58-18:07	22,354	32,296	3.1
API 2.5/028-3 & M5B/028-3	5/27/10	20:12-23:18	21,587	32,237	3.2

Sampling Location

The tests were conducted in the FCCU wet scrubber stack. The stack at the test site has a diameter of 98.5 inches, and the ports are located 73.8 feet (9.0 diameters) downstream of the nearest flow disturbance and 79.6 feet upstream (9.7 diameters) of the stack discharge. The stack diameter was confirmed using two separate sets of ports located 90 degrees apart. Figure 4-11 provides a sketch of the sampling location and ports.

The number and location of the sampling and traverse points used in the Method 5B/WS2.5 tests were determined according to the procedures outlined in U.S. EPA Reference Method 1. Eight traverse points were used (4 points in each of 2 traverses). The specific points sampled across each of the two complete stack traverses were at 4.4%, 14.6%, 29.6%, and 70.4% of the stack diameter, taking into account the length of the port nipple and the stack wall thickness.

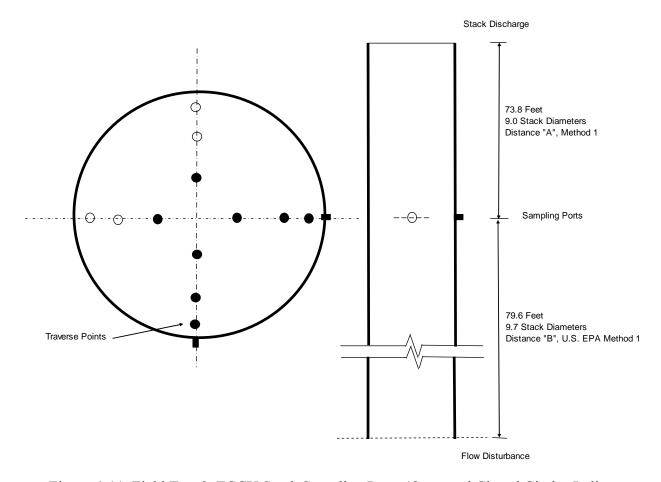


Figure 4-11. Field Test 3, FCCU Stack Sampling Ports (Open and Closed Circles Indicate Method 1 Required Traverse Points)

The normally-sampled points at the 85.4% and 95.6% positions of each traverse (shown as open circles) could not be reached with the presently available WS2.5 sampling probe. The Method 5B and WS2.5 sampling trains traversed the same eight points to facilitate a direct comparison of the test results.

Discussion of Test Results

Tables 4-12 and 4-13 present the test results for the Method 5B/202 and WS2.5 /202 sampling trains. Emissions are presented in grains per dry standard cubic foot corrected to 7% oxygen and in pounds per hour.

Table 4-12. Field Test 3, Summary of Results, EPA Method 5B/Method 202						
Parameter	5B/202-1	5B/202-2	5B/202-3	Average		
Test date	5/27/2010	5/27/2010	5/27/2010	NA		
Test time	0949-1354	1458-1807	2012-2318	NA		
Flue gas flow, DSCFM	96,515	96,667	95,628	96,270		
Total filterable particulate m	Total filterable particulate matter emissions					
Grains/DSCF @7%O ₂	0.0031	0.0023	0.0021	0.0025		
Mass emission rate, lb/hr	3.32	2.41	2.18	2.64		
Condensable particulate mat	ter emissions					
Grains/DSCF @ 7% O ₂	0.0026	0.0018	0.0019	0.0021		
Mass emission rate, lb/hr	2.79	1.94	2.03	2.25		
Total particulate matter emissions						
Grains/DSCF @ 7% O ₂	0.0057	0.0041	0.0040	0.0046		
Mass emission rate, lb/hr	6.11	4.35	4.22	4.89		

Table 4-13 Field Test 3, Summary of Results, WS2.5 Method / Method 202					
Parameter	API 2.5/202-1	API 2.5/202-2	API 2.5/202-3	Average	
Test date	5/27/2010	5/27/2010	5/27/2010	NA	
Test time	0949-1353	1458-1805	2012-2313	NA	
Flue gas flow, DSCFM	97,190	96,594	96,455	96,746	
Total filterable particulate m	natter emissions				
Grains/DSCF @ 7% O ₂	0.0043	0.0045	0.0053	0.0047	
Mass emission rate, lb/hr	4.61	4.73	5.54	4.96	
Filterable PM _{2.5} particulate 1	natter emissions	S			
Grains/DSCF @7% O ₂	0.0025	0.0031	NA	0.0028	
Mass emission rate, lb/hr	2.84	3.34	NA	3.09	
Condensable particulate mat	ter emissions				
Grains/DSCF@ 7%O ₂	0.0022	0.0051	0.0032	0.0035	
Mass emission rate, lb/hr	2.41	5.44	3.35	3.73	
Total particulate matter emissions					
Grains/DSCF @7% O ₂	0.0065	0.0096	0.0085	0.0082	
Mass emission rate, lb/hr	7.03	10.16	8.88	8.69	

The measured filterable particulate matter emissions based on EPA Method 5B averaged only 2.64 pounds per hour. The condensed particulate matter measured using Method 202 in the back half of the Method 5B sampling train averaged only 2.25 pounds per hour. These emissions were similar to or below those measured during Test Program 1.

The total particulate matter emissions measured using the WS2.5 sampling system were higher than those measured with Method 5B. The measured emissions of 4.96 pounds per hour are almost twice those measured with Method 5B. There was a bias to higher-than-true total particulate matter emissions due to the movement of solids-containing droplets down the outer surface of the 90 degree curved nozzle in the WS2.5 sampling train. Testing personnel observed these droplets being pulled into the nozzle. This bias is also indicated by the differences in the captured moisture levels during the runs. As indicated in Table 4-14, the captured moisture levels for the WS2.5 sampling train averaged 21.5% by volume, while the levels for the Method 5B train averaged 18.9%. Both trains captured more moisture than possible in a saturated gas stream as expected due to the presence of entrained droplets. The WS2.5 captured a larger quantity of droplets than the Method 5B sampling system. The droplet capture issue was especially significant in Test Program 3 due to the high droplet loadings in the stack of this unit.

	Table 4-14. Field Test 3, Captured Moisture Levels, WS2.5 and Method 5B Sampling Trains					
Sampling Train	Parameter Run 1 Run 2 Run 3 Average					
	Measured Moisture, % Volume	19.5	18.2	18.9	18.9	
Method 5B	Saturation Moisture, % Volume	18.5	18.4	18.1	18.3	
	Difference, % Volume	1.0	-0.2	0.8	0.5	
	Measured Moisture, % Volume	21.7	21.6	21.3	21.5	
WS2.5	Saturation Moisture, % Volume	18.4	18.4	18.4	18.4	
	Difference, % Volume	3.3	3.2	2.9	3.1	

The excessive moisture levels observed in the WS2.5 test runs would account entirely for the difference in the total filterable particulate matter emission rates if the droplets entrained in the stack gas stream had a total solids content of approximately 0.025% by weight. This total solids concentration is within the typical range.

The behavior of droplets on the WS2.5 sampling system nozzle during the tests at Plant 3 was similar to the conditions observed in the wet stack of Plant 1. The retained/captured droplet condition in Plant 3 was even greater than in Plant 1 due to the significantly greater entrained droplet levels in the stack gas stream of Plant 3.

Based on the results from the wet stack tests at Plant 1 and 3, it was apparent that the small diameter nozzle used in the WS2.5 sampling train is vulnerable to excessive droplet capture. This could be due to water drainage down the sloped nozzle or due to a droplet inertia problem that especially affects the small nozzle. A conventional button hook nozzle would be less vulnerable to this bias to higher-than-true total filterable particulate matter concentrations.

If solids-containing droplets can evaporate to reform entrained solid particles by Rayleigh shattering, the excess droplet capture problem could contribute to a positive bias in the filterable $PM_{2.5}$ emission measurements. However, the laboratory tests conducted previously demonstrated that solid particle formation due to evaporating droplets contributed negligible particulate matter back into the sample gas stream moving through the probe. Accordingly, this bias is limited to total filterable particulate matter measurements and does not affect the accuracy of the $PM_{2.5}$ filterable particulate matter concentrations.

QA/QC Checks for Data Reduction, Validation, and Reporting

Daily quality audits were conducted using data quality indicators that require the review of the recording and transfer of raw data, calculations, and documentation of testing procedures. All data and calculations for airflow rates and isokinetic-sampling rates were recorded manually and then transferred to a portable computer. The calculations were verified by independent, manual checks. Tables 4-15 and 4-16 present QA/QC summaries for the emission test runs.

Table 4-15. Field Test 3, Quality Assurance Results WS2.5 Method / Method 202					
Parameter	Requirement	WS2.5/202-1	WS2.5/202-2	WS2.5/202-3	
Isokinetic rate, %	80-120	83.2	107.7	102.2	
Sample volume, DSCF	>36	42.086	41.368	41.955	
Probe temperature, °F	320±25	298-313	312-319	296-309	
Filter/cyclone temperature, °F	320±25	314-320	310-320	296-332	
Pre-test leak check, CFM	< 0.02	0.000 @ 10"	0.000 @ 15"	0.000 @ 15"	
Post-test leak check, CFM	< 0.02	0.000 @ 10"	0.000 @ 8"	0.000 @ 8"	
Particle cut size, micrometers	2.25-2.75	2.55	2.64	2.49	
Measured moisture content, %	N/A	21.73	21.63	21.25	
Saturation moisture content, %	N/A	18.4	18.4	18.4	
CPM filter gas temp., °F	<85°F	55-67	53-60	53-55	
Impinger exit temp., °F	<68°F	46-55	44 – 56	46 – 60	
Pretest Pitot tube leak checks ¹					

No Pitot tubes were attached to the WS2.5 sampling probes.

Table 4-16. Field Test 3, Quality Assurance Results EPA Method 5B / Method 202						
Parameter	Requirement	5B/202-1	5B/202-2	5B/202-3		
Isokinetic rate, %	90-110	101.1	99.9	97.8		
Sample volumes	>50 DSCF	102.335	102.927	99.693		
Filter temperature, °F	320±25	304-322	300-331	297-324		
Pre-test leak check, CFM	< 0.02	0.000 @ 10"	0.000 @ 8"	0.000 @ 14"		
Post-test leak check, CFM	< 0.02	0.000 @ 10"	0.000 @ 12"	0.000 @ 3"		
Measured moisture Content, %	N/A	19.51	18.21	18.91		
Saturation moisture Content, %	N/A	18.47	18.35	18.07		
CPM filter gas temp., °F	<85°F	49-67	54-61	49-55		
Impinger exit temp, °F	<68°F	48-59	54-61	44-52		
Pre test Pitot tube leak check						
Side A (Impact), in. H ₂ O	0.0 @≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		
Side B (Static), in. H ₂ O $0.0 @ \ge 3$ " $0.0 @ 3$ " $0.0 @ 3$ " $0.0 @ 3$ "			0.0 @ 3"			
Post-test Pitot tube leak check	Post-test Pitot tube leak check					
Side A (Impact), in. H ₂ O	0.0 <u>@</u> ≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		
Side B (Static), in. H ₂ O	0.0 <u>@</u> ≥3"	0.0 @ 3"	0.0 @ 3"	0.0 @ 3"		

The data sheets for Test Program 3 are provided as the appendix of this report.

5. COMPARISION OF FIELD TEST PROGRAMS 1, 2, AND 3

5.1 COMPARISION OF EMISSIONS

The field tests all show that the total filterable particulate matter collected by the new sampling system is higher than that collected by Method 5B. The results are summarized in Table 5-1. This positive bias is highest for results obtained on wet stacks (Tests 1 and 3) and is believed to be due to excessive droplet capture by the probe nozzle. In addition, partial capture of condensable particulate matter may have occurred in all test programs, particularly in Test 2 where extremely high SO₂ levels were probably accompanied by excess sulfuric acid, which may have condensed to increase the filterable catch for those runs.

The new sampling system does not appear to affect the measured condensable particulate levels as the Method 202 results for both sample systems agree well.

	Table 5-1. Combined Data, Test Programs 1, 2, and 3						
Dlant	Comming Crystons	Total Filterable	Condensable	Total Particulate			
Plant	Sampling System	Particulate Matter, lbs/hr	Particulate Matter, lbs/hr	Matter, lbs/hr			
1	Method 5B/202	4.00	7.56	11.56			
1	WS2.5/202	5.17	7.46	12.63			
2	Method 5B/202	1.50	26.0	27.5			
2	WS2.5/202	4.30	24.4	28.7			
2	Method 5B/202	2.64	2.25	4.89			
3	WS2.5/202	4.96	3.73	8.69			

The PM_{2.5} emission test results summarized in Table 5-2 indicate that the filterable PM_{2.5} emissions ranged from 6% to 61% of the total filterable particulate matter emissions. The average value for the test program was 30.1%.

Table 5-2. PM _{2.5} Test Results, Test Programs 1, 2, and 3											
Plant Particulate Matter, lbs/hour Filterable PM _{2.5} PM _{2.5} Particulate Matter, Total Filterable PM _{2.5} Particulate Matter,											
1	5.17	1.20	23.2								
2	4.30	0.26	6.0								
3	4.96	3.03	61.1								
	Average 30.1										

Both the Method 5B and WS2.5 sampling trains operated within the 320 ± 25 °F temperature range. The WS2.5 sampling train had no significant problems with temperature control despite the heavy droplet loadings in the stack of Plant 3 and the heavy rain hitting the exterior portions of the probe.

5.2 RECOMMENDATIONS CONCERNING THE WET STACK FILTERABLE $PM_{2.5}$ SAMPLING SYSTEM

Based on this development and testing program, Air Control Techniques, P.C. recommends that the wet stack $PM_{2.5}$ sampling system consist of a precutter nozzle, a modified glass-lined probe with high capacity probe electrical resistance heaters, and a heated sampling box with a $PM_{2.5}$ cyclone and $PM_{2.5}$ filter. Quartz filters should be used. The sampling system should operate at a sample gas flow rate of 0.4 to 0.65 ACFM and a temperature of $320\pm25^{\circ}F$. Runs should be two to three hours.

The results of the laboratory and refinery tests demonstrate that the WS2.5 wet stack PM_{2.5} sampling system can meet the following performance objectives of this method development project.

- Isokinetic sampling rates in the range of $100\% \pm 20\%$
- Droplet 50% cut point of 20 micrometers in the nozzle and probe
- Temperatures in the range of 320 ± 25 °F in the probe, PM_{2.5} cyclone, and PM_{2.5} filter even when sampling gas streams with droplet loadings of 0.40 grams per cubic meter
- Minimal positive bias caused by evaporative shattering of solids-containing droplets
- Measurement of filterable PM_{2.5} independently from condensable PM_{2.5}
- Minimal loss of dry PM_{2.5} particles in the nozzle and probe

The WS2.5 wet stack filterable PM_{2.5} sampling method is a logical extension of Method 201A promulgated on December 21, 2010. Testing firms capable of properly using Method 201A will have no difficulty in conducting tests with the WS2.5 sampling train. The probe must be specially constructed; however, all the necessary components for the sampling train are readily available from established testing equipment vendors. The WS2.5 wet stack filterable PM_{2.5} sampling system is compatible with standard EPA-based reference test methods and quality assurance procedures.

The need for the WS2.5 wet stack filterable PM_{2.5} sampling method is clearly demonstrated by the results of the Method 5B and WS2.5 sampling system tests at three refineries. As indicated in Table 5-2, the measured filterable PM_{2.5} emissions ranged from 6 to 61% of the total filterable particulate matter emissions as measured by Method 5B. The use of Method 5B total filterable particulate matter emissions data as a surrogate for filterable PM_{2.5} emissions introduces a large bias to higher-than-true filterable PM_{2.5} emissions.

The WS2.5 wet stack filterable $PM_{2.5}$ sampling method should be adopted by the EPA in order to avoid the development of inaccurate emissions inventories that can contribute to ineffective control strategies for $PM_{2.5}$ reduction.

REFERENCES

- 1. U.S. EPA, Method 201A Method for Measurement of PM_{10} and $PM_{2.5}$ Emissions Promulgated December 21, 2010.
- 2. U.S. EPA, Method 202 Method for Measurement of Condensable Particulate Matter Promulgated December 21, 2010.
- 3. Richards, J. "Test Protocol: PCA PM₁₀/PM_{2.5} Emission Factor and Chemical Characterization Testing." Portland Cement Association Research Publication SP2081, July 1996.
- 4. Research Triangle Institute, Desert Research Institute, and Baldwin Environmental. "Quality Assurance Project Plat for Pre-field Laboratory Quality Assurance Evaluations of PM_{2.5} Dilution Monitoring Device." February 17, 2009.

VOLUME I Appendix A – Test Results

Air Control Techniques, P.C.

Plant API Site # 1
Project 1436
Sampling Location FCC Stack

PARAMETER	NOMENCLATURE	API-2.5-1	API-2.5-2	API-2.5-3
Sampling Location				
Date		8/5/2009	8/5/2009	8/6/2009
Run Time	Theta	187.15	177.59	183.96
Nozzle Diameter	inches	0.171	0.173	0.171
Pitot Tube Coefficient	Ср	0.84	0.84	0.84
Meter Calibration Factor	Υ	0.9962	0.9962	0.9962
Barometric Pressure, inches Hg	Bp - in Hg	29.60	29.60	29.70
Meter Box Pressure Differential	DH - in. H2O	0.3267	0.3375	0.3200
Volume of Gas Sampled	Vm - cu. ft.	64.376	60.602	62.768
Dry Gas Meter Temperature	Tm - °F	88.9	87.5	74.5
Nitrogen Added	cu. Ft	30.8	29.2	30.3
Total Volume of Gas Metered	cu. Ft	61.077	57.647	61.363
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	30.283	28.426	31.094
Liquid Collected	ml	185.8	180.6	120.4
Volume of Water Vapor	Vwstd - cu. ft.	8.75	8.50	5.67
Moisture Content	%H20	22.41	23.02	15.42
Saturation Moisture	%H20	22.5	22.5	21.3
Dry Mole Fraction	Mfd	0.776	0.775	0.846
Carbon Dioxide	%CO2	14.9	15.5	15.4
Oxygen	%O2	2.8	2.6	2.6
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N2	82.3	81.9	82
Fuel Factor	Fo	1.215	1.181	1.188
Gas Molecular Weight, Dry	Md	30.496	30.58	30.57
Gas Molecular Weight, Wet	Ms	27.696	27.749	28.630
Static Pressure	Pg - in. H2O	-0.15	-0.15	-0.15
Stack Pressure	Ps	29.59	29.59	29.69
Stack Temperature	Ts - °F	144.75	144.83	143.16
Cyclone Temperature		302.8	300.5	303.6
Average Velocity Head	Δp in H2O	0.32	0.31	0.32
Gas Velocity	vs - ft./sec.	34.70	34.20	34.29
Stack Area	As - sq. ft.	103.87	103.87	103.87
Volumetric Air Flow, Actual	Qaw - ACFM	216,228	213,123	213,714
Volumetric Air Flow, Standard	Qsd - DSCFM	144,802	142,508	157,061
Isokinetic Sampling Rate	%I	72.78	71.47	70.09
Total Filterable PM Catch	mg	10	17.7	6
Condensible Particulate	mg	15.6	10.1	8.7
PM2.5 Catch	mg	3.7	1	0.9

Air Control Techniques, P.C.

Plant API Site # 1
Project 1436
Sampling Location FCC Stack

		API-2.5-1	API-2.5-2	API-2.5-3
Total Filterable Particulate Ma	atter Emissions			
Grains/DSCF	gr/DSCF	0.005	0.010	0.003
Grains/DSCF at 7% O2	gr/DSCF@7%O2	0.004	0.007	0.002
Pounds/Hour	lb/hr	6.325	11.738	4.009
Condensible Particulate Matte	er Emissions			
Grains/DSCF	gr/DSCF	0.008	0.005	0.004
Grains/DSCF at 7% O2	gr/DSCF@7%O2	0.006	0.004	0.003
Pounds/Hour	lb/hr	9.867	6.698	5.813
Filterable PM2.5 Emissions				
Grains/DSCF	gr/DSCF	0.0019	0.0005	0.0004
Grains/DSCF at 7% O2	gr/DSCF@7%O2	0.0014	0.0004	0.0003
Pounds/Hour	lb/hr	2.340	0.663	0.601
Total Particulate Matter Emiss	sions			
Grains/DSCF	gr/DSCF	0.013	0.015	0.007
Grains/DSCF at 7% O2	gr/DSCF@7%O2	0.010	0.011	0.006
Pounds/Hour	lb/hr	16.192	18.436	9.822
Filterable PM2.5/Total Filter	rabla DRA Deáis	07.0	5.0	4= 0
Filterable Paiz.5/10tai Filter	rabie Fini Katio	37.0	5.6	15.0
Cut Sizes				
Gas viscosity, (micropoise)	μ	173.0	172.5	177.6
Gas sampling rate, ACFM	Qs	0.242	0.241	0.230
Reynolds number, (dimensionless)	Nre	2402	2411	2359
Cunningham correction factor	С	1.086	1.086	1.083
PM2.5 cut diameter, (microns)	D50 Nre<3162 - PM2.5	2.55	2.54	2.64
PM2.5 cut diameter, (microns)	D50 Nre>3162 - PM2.5	2.30	2.30	2.36
Percent Difference in D50's	%	0.00	0.54	-0.12
Iterative steps		55	53	64
Iterative steps		2.55	2.53	2.64

Plant Name API Site # 1

City, State N/A Project # 1436

Test Location FCC Scrubber Stack

	PARAMETER	NOMENCLATURE	5B/O28-1	5B/O28-2	5B/O28-3
Nozzle Diameter	Date		8/5/2009	8/5/2009	8/6/2009
Nozzle Diameter inches 0.238 0.24 0.238 Stack Area As - sq. ft. 103.869 103.869 103.869 103.869 103.869 103.869 103.889 103.889 103.889 103.889 103.889 103.889 103.884 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.9941 0.915 76.8 29.59 29.60 29.60 29.59 29.59 29.69 80.62 0.86 69	Run Time	θ	180	180	180
Stack Area As - sq. ft. 103.869 103.869 103.869 Pitot Tube Coefficient Cp 0.84 0.84 0.84 Meter Calibration Factor Y 0.9941 0.9941 0.9941 Barometric Pressure, inches Hg Bp - in Hg 29.60 29.60 29.70 Stack Pressure Ps 29.59 29.59 29.59 Stack Pressure Differential Δ H - in. H2O 0.55 0.63 0.54 Average Velocity Head Δ P - in. H2O 0.3078 0.3214 0.3078 Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % CO 0 0 0 0 Oiltrogen % N2 82.3	Nozzle Diameter	inches	0.238	0.24	0.238
Pitot Tube Coefficient	Stack Area	As - sq. ft.			
Meter Calibration Factor Y 0.9941 0.9941 0.9941 0.9941 0.9940 29.60 29.60 29.60 29.60 29.60 29.60 29.60 29.60 29.60 29.60 29.60 29.59 29.69 29.59 29.69 Meter Sox Pressure Differential Δ H - in. H₂O 0.355 0.63 0.54 0.3078 A0.3214 0.3078 0.3214 0.3078 A0.3214 0.3078 A0	Pitot Tube Coefficient	•			
Barometric Pressure, inches Hg Bp - in Hg 29.60 29.70 Static Pressure Pg - in. H₂O -0.15 -0.15 -0.15 Stack Pressure Ps 29.59 29.59 29.69 Meter Box Pressure Differential Δ H - in. H₂O 0.55 0.63 0.54 Average Velocity Head Δ P - in. H₂O 0.3078 0.3214 0.3078 Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % CO 0 0 0 Nitrogen % N² 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 </td <td>Meter Calibration Factor</td> <td>•</td> <td></td> <td></td> <td></td>	Meter Calibration Factor	•			
Static Pressure Pg - in. H₂O -0.15 -0.15 -0.15 Stack Pressure Ps 29.59 29.59 29.59 Meter Box Pressure Differential Δ H - in. H₂O 0.55 0.63 0.54 Average Velocity Head Δ p - in. H₂O 0.3078 0.3214 0.3078 Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % CO2 2.8 2.6 2.6 Carbon Monoxide % CO2 14.9 15.5 15.4 Oxygen % CO 0 0 0 0 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77	Barometric Pressure, inches Hg	Bp - in Hg			
Stack Pressure Ps 29.59 29.59 29.69 Meter Box Pressure Differential Δ H - in. H₂O 0.55 0.63 0.54 Average Velocity Head Δ P - in. H₂O 0.3078 0.3214 0.3078 Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % C2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Water Vapor Vmstd - cu. ft. 27.205 81.807 77.233 Volume of Water Vapor Wstd - cu. ft. 22.31 23.749	Static Pressure	•	-0.15		
Meter Box Pressure Differential	Stack Pressure	•			
Average Velocity Head Δ p - in. H2O 0.3078 0.3214 0.3078 Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Tm - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % CO2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Sas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Volume of Water Vapor Wstd - cu. ft. 22.232 22.34 21.39 Dry Mole Fraction Mfd 0.777 <t< td=""><td>Meter Box Pressure Differential</td><td>Δ H - in. H2O</td><td></td><td></td><td></td></t<>	Meter Box Pressure Differential	Δ H - in. H2O			
Volume of Gas Sampled Vm - cu. ft. 81.662 86.592 79.321 Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % C2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.29 22.34 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.77 0.777	Average Velocity Head	∆ p - in. H2O			
Dry Gas Meter Temperature Tm - °F 90.0 90.5 75.8 Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % CO 0 0 0 0 Nitrogen % N2 82.3 81.9 82 82 6.6 2.6 Fuel Factor Fo 1.215 1.181 1.188 77.233 81.9 82 82 8.807 77.233 81.9 82 82 8.6 2.0 2.0 2.0		•			
Stack Temperature Ts - °F 144.6 144.7 143.1 Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % O2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.777 0.777 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00	•				
Liquid Collected grams 473.4 503.7 455.9 Carbon Dioxide % CO2 14.9 15.5 15.4 Oxygen % O2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 0.777 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.02 <td></td> <td></td> <td></td> <td></td> <td></td>					
Carbon Dioxide % CO₂ 14.9 15.5 15.4 Oxygen % O₂ 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 Nitrogen % N₂ 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.777 0.777 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Solvinetic Air Flow, Actual Solvinetic Air Flow, Standard Gas Poly Flow 143	•				
Oxygen % O2 2.8 2.6 2.6 Carbon Monoxide % CO 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 </td <td>•</td> <td>_</td> <td></td> <td></td> <td></td>	•	_			
Carbon Monoxide % CO 0 0 0 Nitrogen % N2 82.3 81.9 82 Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8					
Nitrogen					
Fuel Factor Fo 1.215 1.181 1.188 Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.776 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch					
Volume of Gas Sampled, Dry Vmstd - cu. ft. 77.205 81.807 77.233 Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible C	_				
Volume of Water Vapor Vwstd - cu. ft. 22.321 23.749 21.496 Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSI					
Moisture Content % H20 22.43 22.50 21.77 Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS CONDEN					
Saturation Moisture % H20 22.29 22.34 21.39 Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.00320 0.006774	•				
Dry Mole Fraction Mfd 0.777 0.777 0.786 Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS 0.003098 0.003220 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS					
Gas Molecular Weight, Dry Md 30.50 30.58 30.57 Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF 0.005037 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Gas Molecular Weight, Wet Ms 27.71 27.77 27.88 Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr	•				
Gas Velocity vs - ft./sec. 34.21 34.92 34.00 Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.00320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403	<u> </u>				
Volumetric Air Flow, Actual Qaw - ACFM 213,198 217,654 211,923 Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	- .				
Volumetric Air Flow, Standard Qsd - DSCFM 143,090 145,972 144,732 Isokinetic Sampling Rate % I 100.8 102.9 99.7 Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403	-	Qaw - ACFM	213,198		
Sokinetic Sampling Rate	·			•	•
Filterable Particulate Catch mg 15.5 17.6 16.5 Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS		% I	· ·		•
Organic Condensible Catch mg 0.6 0.6 0.4 Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS		mg			
Inorganic Condensible Catch mg 24.6 33.9 33.5 Total Condensible Catch mg 25.2 34.5 33.9 33.5	Organic Condensible Catch	•	0.6	0.6	
Total Condensible Catch mg 25.2 34.5 33.9 FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS		=	24.6		
FILTERABLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	_	•			
Grains/DSCF gr/DSCF 0.003098 0.003320 0.003297 Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS					
Pounds/Hour lb/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	FILTERABLE PARTICULATE EM	IISSIONS			
Pounds/Hour ib/hr 3.800 4.154 4.090 CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	Grains/DSCF	gr/DSCF	0.003098	0.003320	0.003297
CONDENSIBLE PARTICULATE EMISSIONS Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	Pounds/Hour	•			_
Grains/DSCF gr/DSCF 0.005037 0.006508 0.006774 Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS					
Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	CONDENSIBLE PARTICULATE I	EMISSIONS			
Pounds/Hour lb/hr 6.178 8.143 8.403 TOTAL PARTICULATE EMISSIONS	Grains/DSCF	gr/DSCF	0.005037	0.006508	0.006774
TOTAL PARTICULATE EMISSIONS		₹			
					333
	TOTAL PARTICULATE EMISSIO	NS			
			0.008135	0.009828	0.010071
Pounds/Hour Ib/hr 9.978 12.297 12.493					
2.3.0		·	2.0,0		, .00
OTM-036 Page 132 of 643 4/11/2016	OTM-036	Page 132 of 643			4/11/2016

VOLUME I Appendix B – Example Calculations

EXAMPLE CALCULATIONS

Run Number: 5B/028-1

Stack Gas Temperature, °R

$$T_s = 460 + ts$$

$$T_s = 460 + 144.6 = 604.6$$

Volume of Dry Gas Sampled at Standard Conditions, Dry Standard Cubic Feet

$$V_{mstd} = [17.64] \gamma V_{m} \begin{bmatrix} P_{bar} + \frac{\Delta H}{13.6} \\ T_{m} + 460 \end{bmatrix}$$

$$V_{\text{mstd}} = [17.647] [0.9941] [81.662] \boxed{\frac{\left(29.60 + \frac{0.55}{13.6}\right)}{550}}$$

$$V_{mstd} = 77.205 \text{ ft}^3$$

Volume of Water Sampled, SCF

$$V_{wstd} = 0.04715$$
 [Weight of Condensed Moisture]

$$V_{wstd} = 0.04715 [473.4]$$

$$V_{wstd} = 22.321 \text{ ft}^3$$

Fraction of Water Vapor in Sample Gas Stream

$$\%H_2O = \left[\frac{V_{\text{wstd}}}{V_{\text{mstd}} + V_{\text{wstd}}}\right] \times 100$$

$$\%H_2O = \left[\frac{22.321}{77.205 + 22.321}\right] \times 100$$

$$\%$$
H₂O = 22.43

Dry Mole Fraction of Flue Gas

$$M_{fd} = 1-\%H2O/100$$

$$M_{fd} = 1-[22.29/100]$$
 Must use saturation moisture for Mfd calculation.

$$M_{fd} = 0.777$$

Molecular Weight of Sample Gas, Dry

$$M_d = 0.44[\%CO_2]+0.32[\%O_2]+0.28[100-\%O_2-\%CO_2]$$

$$M_d = 0.44[14.9] + 0.32[2.8] + 0.28[100 - 2.8 - 14.9]$$

 $M_d = 30.50$ pounds/pound-mole

Molecular Weight of Sample Gas, Actual Conditions

$$M_s = [M_d \times M_{fd}] + [0.18 \times \% H_2 O]$$

$$M_s = [30.50 \times 0.777] + [0.18 \times 22.29]$$

 $M_s = 27.71$ pounds/pound-mole

Average Stack Gas Velocity, Feet/second

$$vs = K_p C_p \left(\sqrt{(\Delta p)} \right)_{avg} \left[\sqrt{\frac{T_s + 460}{P_s M_s}} \right]$$

vs =
$$(85.49)(0.84)(\sqrt{0.3078})\left[\sqrt{\frac{604.6}{(29.59)(27.71)}}\right]$$

vs = 34.21 feet/second

Wet Volumetric Flue Gas Flow Rate at Stack Conditions, Cubic Feet per Minute

$$Q_{aw} = 60 \times vs \times A$$

$$Q_{aw} = 60 \times 34.21 \times 103.868907$$

Q_{aw} = 213,198 Actual Cubic Feet per Minute

Dry Volumetric Flue Gas Flow Rate at Standard Conditions, Cubic Feet per Minute

$$Q_{sd} = 60 \times Mfd \times vs \times A \times \left[\frac{528}{ts + 460}\right] \left[\frac{Ps}{29.92}\right]$$

$$Q_{sd} = 60 \times 0.777 \times 34.21 \times 103.868907 \left[\frac{528}{604.6} \right] \left[\frac{29.59}{29.92} \right]$$

Q_{sd} =143,073 Dry Standard Cubic Feet per Minute

Isokinetic Sampling Rate, Percent

$$I = \left(\frac{100 \text{ (T s)(V mstd)(29 .92)}}{(60 \text{)(vs)(}\theta \text{)(An)(P s)(M fd)(528)}}\right)$$

$$I = \left(\frac{100 (604.6)(77.205)(29.92)}{(60)(34.21)(180)(0.00030895)(29.59)(0.777)(528)}\right)$$

$$I = 100.8 \%$$

Filterable Particulate Matter Concentration, Grains per Dry Standard Cubic Foot

$$gr/DSCF = \left[\frac{CatchWeight(mg/1000)}{V_{mstd}}\right] \left[\frac{7000}{453.592}\right]$$

$$gr/DSCF = \left[\frac{0.0155}{77.205}\right] \left[\frac{7000}{453.592}\right]$$

$$gr/DSCF = 0.000310$$

Filterable Particulate Matter Emission Rate, Pounds per hour

$$1b/hr = \left(\frac{mg/1000}{453.592}\right) \times \left(\frac{Qsd}{Vmstd}\right) \times 60$$

$$1b/hr = \left(\frac{0.0155}{453.592}\right) \times \left(\frac{143,090}{77.205}\right) \times 60$$

$$lb/hr = 3.80$$

VOLUME I Appendix C – Field Data

PRELIMINARY CHECKS AND DATA 7,316 73335 7,392 T4314 Combined Cyclone PM10 & PM2.5 Run Data Sheet T2 285 T4 296 @ 12:05 IDENTIFICATION INFORMATION Plant Name [OTM-036 Page 139 of 643

Run ID Condition

Actual Req'd Vacuum SFM O < 0.02 or 4% 5	posttest leak check t leak check during	neck N/A N/H	Static Pressure, In. W.C15	& GAS COMPOSITION	Moisture, %	Md_run	Mw_run	QA Checks	Filter / Cyclone CPM Filter D	Temp., (°F) Temp., (°F) Rate, LPM	997 74 66	173		300 74 446	44			706 74 706	303 45 4.65	t9h 5h tB	1305 74 4.67			microns
Full Train Pretest Leak Check, ACFM Partial Train Postfast Leak Check, ACFM	sampling head be or to recovery.) D	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	ure, In., Hg. <mark>137. С</mark>	ACTUAL MOISTURE &	red, grams	CO ₂ %	02 %		Prob	(in. H ₂ O) (°F)	320 320	5	0.34 6.3 315	90,33 3	0.32 318			0.37			0.32 317			in H2O
Full Train Pret	(Remove cyclone head upright pri	Pitot Tu Pitot Tu	Barometric Pressure, In., Hg.	97	Water Recovered, grams				Sample Impinger		م	.33		63				100		73)			,	
				mild a line of the second of t					Stack S		160	145 B	6 SH	145 I J		145 12	$\exists \Gamma$	11.2 42.28	ľ	至	149 12			J.
	8/5/69	<u>``</u>	Tare		7	•		Sampling Informatio	Meter	Temp. (°F)	86	87	87	8	90	8	1 2 2 2	207	25	20	71			1.
		dots :	Filter ID					Sampling	G G	(in. H ₂ O)	0.34 0.34	0.3%	6.31			0.26	0.31	0.33 0.74	0.33	0,34	0.27			in. H20
	Scrubbe		የ ፍነ	API#)		1				Volume	AT OTH	767.05	刊92	178.24I	7%,87	150,50	五元の	₹ 1.5¢	25.45	84.43	819.63		Average	Avel ages
	FCC S板は		1,703	10.9962	1210	N/A			Elapsed	Time,	0	6.53	33:31	18:58	1:65:3%	1:2:32	25:40	いいない	32.5	13.834	B-52:45	18:04:0d	Total Volume, ACF	
Plant Name City	Source Number Sampling Location	lest Personnel	Meterbox ID △ H @	Gamma, ۲ Nozzle ID	Nozzle Diameter	Orsat/Fyrite			Dwell		+=	16.64	15.44	16.64	15.93	<u></u>	15.44	13.59	5 53	1617	144	Run Time	Total Voi	and have been designed by the control of the contro
<u>a</u>	Source Impling	lest	Ĭ	.	Nozzle	Ō				Port Point	-	4	3	100	~	دم	~ '	7 0	-		3	Total Run		Rim

Dilution Flow Rate, LPM Vacuum (Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. 4 microns Static Pressure, In. W.C. < 0.02 or 4% CPM Filter Temp., (°F) Moisture, % Red'd Mw_run Md_run ACTUAL MOISTURE & GAS COMPOSITION QA Checks 会は大変社会 PRELIMINARY CHECKS AND DATA Probe Temp., Filter / Cyclone (°F) Temp., (°F) Actual Condition 8 Full Train Pretest Leak Check, ACFM QC@0 Run ID Partial Train Posttest Leak Check, ACFM 6.722 Pitot Tube Pretest Leak Check N/III Pitot Tube Posttest Leak Check AAAARESEE Barometric Pressure, In., Hg. 197.6 8 13336 Ty 305 02% T, 307 16.398 Water Recovered, grams CO₂ % in H20 (in. H₂O) Ŧ 0.0% 0.34 0.34 0.32 Impinger Exit Gas Temp., (°F) एक शिथिश यह व Train Vac. (In. Hg) Sample Stack Temp., Sampling Information Meter Temp. (°F) Combined Cyclone PM10 & PM2.5 Run Data Sheet Tare 73333 74399 Stop Date | { Start in. H20 «Р (In. H₂O) IDENTIFICATION INFORMATION Filter ID 0.24 Averages Meter Volume Total Volume, ACF Elapsed h:m:s TIme, 玩 Meterbox ID <u>7023</u> ∆ H @ I,103 Gamma, y 099/ Nozzle ID HOLZ Orsat/Fyrite Test Personnel State Sampling Location Nozzle Diameter Source Number Plant Name (Min.) 15.45 Point otal Port OTM-036 Page 140 of 643 4/11/2016

Dilution Flow Rate, LPM Vacuum Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. B Ź Static Pressure, In. W.C. 6.15 microns < 0.02 or 4%CPM Filter Temp., (°F) % Red'd Moisture, Mw_run Mid_run ACTUAL MOISTURE & GAS COMPOSITION QA Checks 200 tle tti o PRELIMINARY CHECKS AND DATA Filter / Cyclone Temp., (°F) Actual 20:010 Condition % Run ID Partial Train Posttest Leak Check, ACFM 0,000 SEZEZEZEZEZEZEZEZEZEZE Full Train Pretest Leak Check, ACFM 0.000 Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check Probe Temp., E) 74 297 73 330 Barometric Pressure, In.,Hg. |27.チ るるでのよう 383 O₂ % Water Recovered, grams CO₂ % in H20 (in. H₂O) 9000 8000 885 Impinger Exit Gas Temp., (°F) 1-4 ভুমু 2200 Sample Train Vac. (in, Hg) Stack Temp., 認 5 3 Sampling Information Meter Temp. (°F) Tare Combined Cyclone PM10 & PM2.5 Run Data Sheet Ų. Date 8/7/09 Stop[[14]] SANTATATANS Start in. H20 IDENTIFICATION INFORMATION (In. H₂O) Filter ID 00,34 なら 73339 74348 21473 Averages Meter Volume £ Source Number FCC Scrubb & Total Volume, ACF 2 A: 33 Run Time 3:03:58 Elapsed 2 22 28 28 0:18:10 h:m:s 22 Tíme, 発売 Gamma, **1/0:9**46.7 Meterbox ID 103353 △ H @ 1.303 2 37:53 Nozzle Diameter 0.1 커 Nozzle ID (40万) Orsat/Fyrite N /A الكر Sampling Location State Test Personnel Plant Name Time, (Min.) 6.00 元式の対 6:45 Vo.22 5.3.7 330 379 Polnt **Total** 4 Port Page 141 of 643 OTM-036 4/11/2016

Method 4 - Air Control Techniques, P.C.

Date 8/4/09

Source Information	
Client Plant Name City, State Sampling Location FCCU Scrubber Stack	Job# 1436 Process Oil Personnel TEH
Sampling Information	
API A	PI API 028-2 2.5 028-3 7-874 SF47-875 5/09 8/6/09
Moisture Data	
Impinger 1 Contents - Final Weight, grams 635.0 5	67.8 5669 76.9 460.0
	07.6 605.5 07.8 605.5 -0.21 0.01
Impinger 3 Contents - Final Weight, grams 606,9 5 Initial Weight, grams 607.4 5 Condensed Water, grams -0.5	795.6 607.5 796.2 607.5 -0.64 0.01
	96.2 594.1 96.1 594.5 0.11 -0.41
Initial Weight, grams 855.5 8 Adsorbed Water, grams 11,0v	392.0 880.4 381.6 866.5 10.41 13.91
4	180.61 120.41 5.5 5.5

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Percent Moisture = 100 * Bws

OTM-036 PW 96

1355-145\$age 1740-1840 1200-1300

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet Job# 11436

Run ID 58 p≥8-1

Ĭ	IDENT	IFICATION	<u>INFORMA</u>	NTION			PRELI	MINARY	CHEC	KS AND	DATA	
	Plan		, ,							Actual	Req'd	Vacuum
}	City, State						Prele	eak Chec	< ACEM		< 0.02	15
	Oity, Otale	_	,					ak Check				8
]			·	_		,	. 1 031 E0	an Onco	(, , (0) , (,	ا بن مسا		
Tes	t Location	SCRUEBER	2.5714CK	Date	3509		•			Α	E	
	Personnel	DIS IT	8.R7	Start	1008	Pito	t Pre Lea	k Check	/ ~	4	100	5
	. 0.00,			Ston	314			k Check		4	vel	
l			_	Crop[1 1.01		.,, •		. \	<u> </u>	·
M	eterbox ID	802012		Filter ID	Tare							1
	ΔHe	1566					Static	Pressure	, in. H₂O	-0.15	5	1
G	amma (Y)		1 1			В	arometrio	: Pressur	e, In. Hg	29.6	,0	
	al Nozzle		1									i
	ozzle Dia.		ļ l			Δ	TITAL	IOISTUI	RE & GA	AS COM	POSITIO	5N7
l '`		(U-252)	}	K Factor	1971			d, grams			sture, %	17 42
	Nozzle ID	172	1			AAGIGL	(CCOAGI G			.,,,,,,	02 %	
Pito	ot Tube ID	44	I ICKS	adout ID	2014	·		CO2 %	17.9]	OZ 70	4.0
					i di manananan mengelik Mengenjangan menangkan			and the second second second second	erana a superior de la la la de como		r Vinnig agentin ass. Proceeds were the Asse	
į		:		Sa.	mpling	Informa	tion	and the same of th	and the state of t	parties and the contract of th	warming was a second	
Port/	Elapsed	Volume		Meter	Stack	ΔН	Probe	Filter	Exit	Ашх	Vac	Lk
Point	Time	Metered	ΔΡ	Temp	Temp	Δħ	Temp	Temp	Temp	Temp		Chcks
93		641.845	D 24	87	三八		305	368	lola	83	3	LC1
7		125 A 1 2 1 3 2 1 3 2 2 1 3 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 2	0.37	88			307	312	65	20	3	i
Z,	15	64885 1885			147		-	31-	7	E)()		
	<i>30</i>	655.85	0.27	89	145	0457	300	511	(<u>/-</u> -	172	3	
B3	45	106221	0.34	90	145	0.6)	3	319	64	177	3	LC-2
2	700/0	11971	0.37	92	11	01-7	307	3,-7	64	76	3	
	(cd)0	100.00		32		0.07			14	1.0	3	
1911	15	516.66	0.24	9	144 (<u>543</u>	307	317	64	16		
23	ŠO.	682.70	034	90	45	n(1)	312	31.5	163	77	3	LC-3
F 5	45	10000	0.34	90	145	7-1	315	315	63	70	3	
	_	105100	0.55		 	CIO	202	1			3	
	120/0	(A)7.07	0.29	90	45	054	315	318	0	100		
03	15	703.65	0.33	191	144	0.59	306	<u> おにし</u>	(05	178	3	LC-4
Z	30	710.70	0.29	91	144 0	557	709	306	66	180	3	
-		77.29		91		043	357	314	777	80	2	
	45		0.27		177	<u>U ()</u>	1221	<u> </u>	1010			105
OFF	180	723.507						<u> </u>		<u></u>		LC-5
							ļ				,	
		<u> </u>								}		
		-				 		 		 		LC-6
			<u> </u>	<u> </u>		 	 	ļ	<u> </u>			-0-0
					<u> </u>		<u> </u>					
									1	1		
-		 				 	 					LC-7
			 	 		 	 		-	 	 	
				<u> </u>				<u> </u>	<u> </u>	<u> </u>		
		'				31		1				
-		1				**						LC-8
			-	 		 v	 		 	1		
<u></u>			ļ			 	ļ ·		 			<u></u>
1"	'				<u> </u>							
	7											
1	 	 		1		<u> </u>			وف حجب الما	and the second second	A CONTRACTOR OF THE PARTY OF TH	A AND DE COMMENTS
			 						e=	100	127.1	PP _ 1 _ 1
				Avera	ages		l l	√ax / Min	[*]	ISO	High	Total
	Vm	i	1	1		i	1		i	i	1	i
	Vmstd	and the second s	in. H ₂ O	°F	°F	i⊓. H₂O	1			%	in. Hg	Cu. Ft.
	1 AITIOIG		1 111.1120	į I	, ,	11111112		1	1	ii		1

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# [1436]

Run ID 58628-2 Cond.

, oo																
IDENTIFICATION INFORMATION							PRELIMINARY CHECKS AND DATA									
i	Plant	t			*******	Ì				Actual	Req'd	Vacuum				
	City, State	,					Pre Le	eak Chec	k, ACFM	්රීවර	< 0.02	15				
Ì	, ,	I						eak Chec				25				
_		16		I 5.	- 0											
Tes		SOUBREA	STACK	3	B509	<u></u>				<u>A</u>		B				
ı	Personnel	015,11	BIRS	3	1419	-8		ak Check			Ves	2				
2		'	ı	Stop	1724	Pitot	Post Lea	ak Check	10	ц	1000	>				
М	eterbox ID	POZO17_	1	Filter ID	Tare											
	ΔH@		1		1	1	Static	Pressure	. In. H ₂ O	-0.15						
	Samma (Y)	100	1	-		l B		c Pressur								
	eal Nozzle		†		 	_		• • • • • • • • • • • • • • • • • • • •	-,		<u>~</u>	ı				
	lozzle Dia.		1			A	CTUAL	MOISTL	IRE & G	AS COMP	OSITIO	N				
	Nozzle ID	7. 12	1	K Factor	194			d, grams		and the second second second	sture, %	أستحدث والمتناث				
Dif	ot Tube ID		-		2020		100010.0	CO2 %	155		O2 %					
	OL TUDO ID		1 10110	uuout ib	Syrch-			001 70	1010	 	O 2 / V					
				S	ampline	g Inform	ation			***************************************						
					1	1		,	Exit							
Port/	Elapsed	Volume	ΔΡ	Meter	Stack	ΔН	Probe	Filter	Temp <	Aux Temp	Vac	Lk Chcks				
Point	Time	Metered		Temp	Temp		Temp	Temp	68°F	remp		Cricks				
03	0	724,517	031	89	144	069	306	311	65	76	Z	LC 1				
Z	15	732.30	0.37	91	145	~77 ·	310	314	64	77	7_					
<u> </u>	— 			a)	1177	<u> </u>	2 7	<u> </u>								
	30	739.98	0.24		1199	041	30 L	307	64	16	<u> </u>					
CB	45	1746.17	036	91	1145	070	310	309_	64	$\neg \neg$	<u>ン</u> マ	LC-2				
7	6010	753.69	035	90	145	0/2	312	309	64	76	Z					
<u></u>		2 8 3		91	100		33		63	71	2					
	15	76173	021		1177	$\bigcirc 2$				16						
1B3	30	768.180	0.34	91	144	0.66	3(5	312	64		ユ	LC-3				
ここ	45	1775.53	b37	92	1145	0.72	317	1314	104	77	7					
1	12010	783.17	0.26	91	14	050	219	317	6	76	2					
NZ	100	789 61	0.34	90	145	211	318	316	103	7/-	Z	LC-4				
H.S.		log pl	U.27		11. 2	0.66	210			76						
2	30	14-111	035	29	145	0.68	27	316	62	16	2					
\	45	1204.65	h 26	40	145	050	319	3(7	64_	76	7_					
TI	100	811.169					•		,			LC-5				
CAT		011.161				 		<u> </u>								
<u> </u>					<u> </u>	-		<u> </u>				ļ				
					<u> </u>											
1												LC-6				
			 		 			<u> </u>								
					 	<u> </u>	 	 								
						<u> </u>		<u> </u>				LC-7				
								l		L						
					1							,				
 					†			<u> </u>				LC-8				
<u> </u>			 	ļ	 	 		 				10-0				
			<u> </u>				-	 	<u> </u>							
<u> </u>				<u> </u>	1	<u> </u>	<u> </u>	<u> </u>								
			Method 5	* - *		ter Tem				M028 Filte						
·			<u> </u>	Aver	ages		N	lax / Min	°F	ISO	High	Total				
	Vm		<u> </u>	,												
	Vmstd		in. H₂O	٥F	٩F	in. H ₂ O				%	in. Hg	Cu. Ft.				

Air Contro	l Techniqu	ies, P	.C.		
Isokinetic	Sampling	Train	Field	Data S	heet

Job# 14360

Run ID 58/028-3

	IDEN	TIFICATION	INFORM	ATION			PREL	IMINAF	RY CHEC	CKS AND	DATA	
	Pian		-				establika kun kanggan pangati da		entre es estar es especies d'abbar	Actual	Regid	Vacuun
ď	City, State	≱ Ł	_					eak Chec			< 0.02	(2
		1	ا د ماساده	7	പ മ		Post L	eak Chec	K, AUFIVI	. O(x)	<u> </u>	B
Te	st Locatior Personne	SERVRBELL DLS IT	2714 F	Date Start	80009		 of Pro Lea	ak Check		A /		<u>B</u> .
	i croomic	1 1 1 1 1	211		1200	48 .		ak Check		26	Ve	\$
M	leterbox ID	802012	.]	Filter ID	Tare							
	ΔH@									-0.1	5]
	Samma (Y) Ieal Nozzle	09941	1			E	Barometri	c Pressu	re, In. Hg	29.7	<u> </u>	J
	Nozzle Dia.		1			A	CTUAL	MOIST	JRE & G	AS COM	POSITIC	5N
	Nozzle ID]	K Factor		Water l	Recovere	d, grams	455.9	Мо	isture, %	
Pit	tot Tube ID	14] TC Re	adout ID	12012			CO2 %	15,4		O2 %	2.6
				S	amplin	g Inform	ation					
Port/	Elapsed	Volume	ΔP	Meter	Stack	411	Probe	Filter	Exit	Aux		Lk
Point	Time	Metered	ΔΡ	Temp	Temp	ΔН	Temp	Temp	Temp < 68°F	Temp	Vac	Chcks
43	0	826023	0.35	73	144	0.61	307	324	<i>(03</i>	67	3	LC 1
2	15	83287	035	73	143	0.6	Z98	3(1	59	64	ろ	
\	30_	83988	<u> </u>	74	1430	D54_	324	32	59	64	3	
33	47	846.50	032	74_	143	659	324	37	59	64	3	LC-2
2	600	853.25	031	74	143	054	323	322_	58	65	3	
1	15	854.89	0.24	<u> </u>	143	042	29	323	58	65	3	<u> </u>
<u>(3</u>	36_	85 78	034	10	143	060	37	32	63	70	3	LC-3
4	닉의	672.57	03Z	70	1143	<u> </u>	325	322	6	67	3	<u> </u>
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1500	819.48 885.31	0.35	70		0.92	227	319	62	68	3	
<u>リン</u> フ_	30	B9252	0.22	180	143	0.02	327	320	63	70	3	LC-4
1	135	00941	0.25	80	143	6300 644	37.I	217	-	7-7	3	
OFF	100	905.344	0.20		117	$O: (\cdot)$	22	ر المال	6	61		LC-5
$O(L_L)$		100011										10-0
											†	
												LC-6
	.,											LC-7
					<u> </u>							
												LC-8
			B.4 - 41. 1 =	D. D	1	<u> </u>	0000=	100 =			<u></u>	
L			Method 5	B Probe Aver a		er Temp				M028 Filt	والنصيب فيستنين	
F	Vm		<u> </u>	Avera	ıyes		(V)	ax / Min	· [-	ISO	High	Total
	Vmstd		in. H ₂ O	°F	°F	in. H₂O				%	in. Hg	Cu. Ft.
L			·	<u> </u>	<u> </u>		<u></u>	1	l		1	

Method 4 - Air Control Techniques, P.C. Date Source Information Client Plant Name Job# 1436 City, State **Process** FCCU Scrubber Stack Sampling Location Personnel Sampling Information Run Number M 5 B 028-1 M51098-7 Filter Identification R05763 RQ5762 RQ 5741 Sampling Date 815 109 8/6/09 815109 Recovery Date 11 Moisture Data Impinger 1 Contents -Final Weight, grams Initial Weight, grams Condensed Water, grams Impinger 2 Contents -Final Weight, grams 618.0 Initial Weight, grams 6180 Condensed Water, grams 0.01 Impinger 3 Contents -Final Weight, grams 620. Initial Weight, grams 619.8 620. Condensed Water, grams 0.01 Impinger 4 Contents -Final Weight, grams 610.8 Initial Weight, grams 577.4 610.3 Condensed Water, grams Silica Gel -Final Weight, grams Initial Weight, grams

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

5.5

Percent Moisture = 100 * Bws

Adsorbed Water, grams

Total Water, grams

OTM-030 UVGE

1405-1505 Page 1735-1835 1210-1310

5°, 0

Method 3 -	Air Control T	echniques	, P.C.		
Identification In	formation				
Client	API	4.44,4,,		Date	8/5/69
Plant Name				Job	436
City, State				Process	Oil
Personnel				Fuel Type(s)	
Run Data					
Run Number	m5/028-1		Leak √		
Sample Time	Time of Analysis	CO ₂	O ₂ , Reading	O ₂ , %	
1008	1330	14.9	17.7	2,8	
↓	₩ .	14.9	17.7	2.8	
1320	1345	14.9	17.7	2.8	F 1715
	Average	[4.9	<u> </u>	2.8	F. <u>1.215</u>
Orsat ID	<u> ACT-1</u>	Bag ID	7	- Contract of the Contract of	
Run Data					
Run Number	m5/028-2		Leak √ V		
Sample Time	Time of Analysis	CO ₂	O ₂ , Reading	O ₂ , %	
1419	173 <i>0</i>	15.5	18.1	2.6	
1723	1745	15.5	18.1	26	
14.3	Average	15.5		2.6	F。 <u>1.181</u>
Orsat ID	A	Bag ID	16		
Run Data					
Run Number	m5/028-3		Leak √		
Sample Time	Time of Analysis	CO ₂	O ₂ , Reading	O ₂ , %	
0830	1215	15.4	18.0	2.6	,
J.	₽	15.4	18.0	2.6	
1200	1330	15,4	1810	2.6	- / 100
]]	Average	15.4	_	26	F. <u>1.188</u>
Orsat ID	ACT-1	Bag ID	_15_		
Fuel Factor (F	,) Calculations				
			Fuel Type		F _o Range
ł			Coal: Anthrac	ite & Lignite	1.016 - 1.130
F _o =	20.9 - %O ₂		Bitumino		1.083 - 1.230
' o -	%CO2		Oil: Distillate		1.260 - 1.413
			Residua Gas: Natural	<u> </u>	1.210 - 1.370 1.600 - 1.836
			Propane)	1.434 - 1.586
I k V			Butane		1.405 - 1.553
			Wood Pork		1.000 - 1.120 1.003 - 1.130
			Wood Bark		1.003 - 1.130

1

VOLUME I Appendix D – Calibration Data

Date 2-11-69

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

		and the state of t	5-POINT ENC	5-POINT ENGLISH UNITS		Angles and Angles	11/2 4/2
Meter Console Information	ation		Calibration	Calibration Conditions			Factors/Conversions
Console Model Number	522	Date	Time	02/11/09		Std Temp	528
Console Serial Number	. 702233	Barometric Pressure	sure	29.80	in Hg	Std Press	29.92
DGM Model Number	- RW 110	Theoretical Critical Vacuum	al Vacuum¹	14.07	in Hg	K	17.647
DGM Serial Number	1014753	Calibration Technician	niclan	DLS			

in Hg

Por valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orlice Coefficient, K', must be entered in English units, (K**R")/(In.Hg*min).

7	7				,					
		Actual	Vacuum		in Hg	22	21	19	18	15
		Атр Тепр	Final	(t _{emb})	ሁ	68	89	68	68	88
	Critical Office	Amb Temp	Initial	(t _{amb})	护	99	89	68	89	68
		Coefficient		×	see above2	0.2387	0.3483	0.4592	0.5907	0.8085
		Serial	Number			FO 40	FO 48	FO 55	FO 63	FO 73
Calibration Data		Outlet Temp	Final	(t _m)	4	70	71	71	73	73
:		Outlet Temp	Initial	(f _m)	ŗ	69	70	71	72	73
Motoring Connection	mercing consore	Volume	Final	(V _{mt})	cubic feet	133,446	139.297	145.297	153,645	159,660
in the second se		Volume	initial	(V _{rol})	cubic feet	127.850	133,599	139.560	145.500	153.820
		DGM Orifice	ЧΥ	(P _m)	in H ₂ O	0.28	0.61	1.10	1.80	3.40
Ruo Timo			Elapsed	(e)	riin	18,0	12.5	9.5	10.5	5,5

Standardized Data
Critical Orifice
(Vcr _(sta)) (Q _{cr(sta)})
cubic feet cfm
5.572 0.310
5.646 0.452
5.658 0.595
8.044 0.766
5.767 1.049

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

aled in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 certify that the above Dry Gas Meter was calibr

000

Signature

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	tion	11,1	Calibration	Calibration Conditions			Factors/Co
Console Model Number	522	Date	Time	09/02/09	and the state of t	Std Temp	5.
Console Serial Number	702233	Barometric Pressure	e	30.00	in Hg	Std Press	29
DGM Model Number	RW 110	Theoretical Critical Vacuum ¹	Vacuum1	14.2	in Hg	조	17.
DGM Serial Number	961167	Calibration Technician	clan	DLS			

oR/in Hg 린 Conversions 29.92 7.647 228

Por valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Oritice Coefficient, IC, must be entered in English units, (ft^{3,0}R¹⁷³///in.Hg*min).

			Actual	Vacuum		in Hg	18.00	18.00	18.00			
			Amb Temp	Final	(t _{amb})	4	76	76	76			
and the second s		Critical Orifice	Amb Temp	Initlal	(t _{smb})	J,	76	76	76			
			Coefficient		ĸ	see above2	0.5907	0.5907	0.5907			
			Serial	Number			FO 63	FO 63	FO 63			
7-0	Calibration Data		Outfet Temp	Final	(t _{m1})	뇨	81	81	82			
		Metering Console	Metering Console	Metering Console	Metering Console	Outlet Temp	Initial	(t _m)	٥,5	79	81	81
d						Metering Console	Metering Console	Metering Console	Volume	Final	(V _m t)	cubic feet
			Volume	Initial	(V _{ml})	cubic feet	209.730	215.222	220.693			
		•	DGM Orifice	Нδ	(P _m)	in H ₂ O	1.80	1.80	1.80			
		Run Time		Etapsed	(e)	min	7.0	7.0	7.0			

	AH @	Variation	(AAH@)		0,003	-0.001	-0.002	∆H@ Average	
			0.75 SCFM	(AH@)	in H2O	1.711	1.707	1.706	1.708
Dry Gas Meter	Flowrate	Std & Corr	(Omistalicon)	cſm	0.765	0.765	0.765		
	n Factor	Variation	(AY)		-0.003	0.003	0,000	Y Average	
	Calibration Factor	Value	(λ)		0.991	966'0	0,993	0.993	
		Orifice	(Qer(std))	cfm	0,765	0.765	0.765	0.3	
zed Data		Critical Orifice	(Vcr _(std))	cubic feet	5,358	5,358	5.358	% Deviation	
Standardized Data		Meter	(Q _{m(std)})	cfm	0.773	0.768	0.771	0.9962	
		Dry Gas Meter	(Vm(std))	cubic feet	5,408	5.377	5.395	Pretest Gamma	

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.00.

I certify that the above Dry Das Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

9-02-09 Date

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

5-POINT ENGLISH UNITS

Meter Console Information	tlon	L		Calibration Conditions	Conditions			, i	Factors/Conversion
Console Model Number	522	<u></u>	Date	Time	02/25/09		Std.	Std Temp	528
Console Serial Number	. 802012	_ ш ј	Barometric Pressure	G)	30.20	in Hg	Std	Std Press	29.92
DGM Model Number	. RW 110	FI	Theorotical Critical Vacuum	Vacuum¹	14.25	in Hg	, ¥		17.647
DGM Serial Number	964447	0	Calibration Technician	an	DLS				
For valid test results, the Actual Vacuum should be 1	cuum should be 1	to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.	an the Theoretica	I Critical Vacuum	shown above.				
² The Critical Oritice Coefficient. K'. must be entered in English units. (ft ^{3,} R ¹² ///in He ⁴ min)	t be entered in Enait	sh units. (ft ^{3,0} R ^{1/2})//in.l	Ho*min)						

oR/in Hg in Hg

²The Critical Orifice Coefficient, K', must be entered in English units, (R^{3,}°R¹²)/(in.Hg⁺min).

		Actual	Vacuum		in Hg	23	21	19	18	16	
the same and the s		Amb Temp	Final	(t _{amb})	-t-	89	89	68	89	68	
	Critical Orifice	Атр Тетр	Initiaí	(t _{amb})	상	89	89	89	89	68	
		Coefficient		ž	see above2	0,2387	0,3483	0.4592	0.5907	0.8085	
		Sertal	Number			FO 40	FO 48	FO 55	FO 63	FO 73	
Callbration Data		Outlet Temp	Final	(t _{ml})	4 。	73	72	72	73	73	
		Outlet Temp	Initial	(t _{ral})	坮。	73	7.3	72	72	73	
	tering Console	Metering Console	Volume	Final	(V _{mt})	cubic feet	512.531	518.638	524,552	530,158	535,859
	2	Volume	Initial	(V _{rsl})	cubic feet	507,050	512,900	519.100	524.700	530.540	
		DGM Orifice	ΔH	(P _m)	in H ₂ O	0.26	0.57	1.05	1.70	3.15	
	Run Time		Elapsed	(e)	min	17.5	12,5	9.0	7.0	5.0	

s Dry Gas Meter alibration Factor Flowrate AH @ AH @ Addition Std & Corr 0.75 SCFM (AH @) (A		,						- 1	- 1		 -	
Standardized Data Calibration Factor Calibration Factor Flowrate Calibration Factor Flowrate Calibration Factor Flowrate Calibration Factor Flowrate Calibration Factor Calibr			0	Variation	(@HVV)		-0.105	-0.029	0.068	0.037	0.029	∆H@ Average
Standardized Data Calibration Factor Cameral			Н∇	0.75 SCFM	(AH@)	in H2O	1,460	1.537	1.634	1.602	1,594	1.566
Standardized Data Results		Dry Gas Meter	Flowrate	Std & Corr	(Qru(sld)(corr))	cfm	0.314	0.458	0.604	0.776	1.063	
Standardized Data Standardized Data Critical Orifice Valuarian Critical Orifice Critical Orifice Critical Orifice Critical Orifice Critical Original Origi			n Factor	Variation	(AY)		0.007	0.001	-0.002	-0.003	-0.003	Y Average
Standardized Data Oritical Or	Results		Calibration	Value	(λ)		1.001	0,995	0,992	0,991	0.991	0.994
Standardized Data ry Gas Meter Cfm Cumcin) Coubic le 0.313 5.490 0.460 5.722 0.608 5.432 0.784 5.434				Orifice	(Q _{cr(sta)})	cfm	0.314	0,458	0.604	0.776	1.063	
100 O O O O O O O O O O O O O O O O O O		ed Data		Critical ((VCr ₍₆₁₄₎)	cubic feet	5.490	5.722	5.432	5.434	5.313	
Dry Gas (V _{ricelal}) cubic feet 5.484 5.751 5.485 5.485		Standardiz		Meter	(Q _{m(std)})	ctm	0.313	0.460	0.608	0.784	1.072	
				Dry Gas	(Vintsidi)	cubic feet	5.484	5.751	5.476	5.485	5.359	

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	tion	The state of the s	Calibration	Calibration Conditions			Factors/Conversion
Console Model Number	522	Date	Time	60/60/60		Std Temp	528
Console Serial Number	802012	Barometric Pressure	ıre	30.00	in Hg	Std Press	29.92
DGM Model Number	RW 110	Theoretical Critical Vacuum	I Vacuum ¹	14.2	in Hg	Ā	17.647
DGM Serial Number	964447	Calibration Technician	clan	DLS			

in Hg oR/in Hg

Por valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orifice Coefficient, K', must be entered in English units, (R³4°R¹12)/(In.Hg³mln).

		Actual	Vacuum		in Hg	17.00	17.00	17.00
		Атр Тетр	Final	(l _{emb})	냚	76	76	76
	Critical Orifice	Amb Temp	Initial	(l _{zmb})	ᅪ	76	76	76
		Coefficient		Ж	see above2	0.5907	0.5907	0.5907
		Serial	Number			FO 63	FO 63	FO 63
Calibration Data		Outlet Temp	Final	(t _{mf})	ᆄ	80	81	83
		Outlet Temp	Initial	(t _{ml})	유	80	80	82
	Metering Console	Volume	Final	(V _{mt})	cubic feet	21.178	27.034	32.941
		Volume	Initial	(V _{rd})	cubic feet	15,300	21.178	27.034
		DGM Orifice	ЧΥ	(P _m)	in H ₂ O	1.70	1.70	1.70
	Run Time		Ekipsed	(0)	nim	7.5	7.5	7.5

	Results Dry Gas Meter Callbration Earter Floureds	0	Variation	(@H∇∇)		0.003	0.001	-0.004	ΔH@ Average
		H♥	0.75 SCFM	(ØH∇)	in H2O	1.615	1.613	1.607	1.612
		Flowrate	Std & Corr	(Qmisto)(con)	cím	0.765	0.765	0.765	
		ation	(AY)		-0.001	0.003	-0.002	Y Average	
Results		Callbratio	Value	(λ)		0.992	0.997	0,992	0.993
		413	Orifice	(Qerisia)	cfm	0.765	0.765	0.765	0.1
	d Data		Critical Orifice	(Vcr _(std))	cubic feet	5.741	5.741	5.741	% Devlation
	Standardized Data		Meter	(Q _{myeld)})	cfm	0.772	0.768	0.772	0.9941
			Dry Gas Meter	(V _{m(etd)})	cut-ic feet	5.787	5.760	5.789	Pretost Gamma

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meler was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

9-03-09

Type S Pitot Tube Inspection

Air Control Techniques, P.C.	Date 5-06-02
Identification Information	
Client TN HOUSE Plant Name NA City CARY Pitot ID 4A	Job NA Process NA State NC
Inspection Results	
Degree ladicating level position for determining Cu and Cu. Degree indicating level position for determining \$\beta\$ and \$\beta\$.	Inspection Data Level and Perpendicular? Obstruction? Damaged? $α1 (-10^{\circ} ≤ α1 ≤ + 10^{\circ})$ $α2 (-10^{\circ} ≤ α2 ≤ + 10^{\circ})$ $β1 (-5^{\circ} ≤ β1 ≤ + 5^{\circ})$ $β2 (-5^{\circ} ≤ β2 ≤ + 5^{\circ})$ $γ$ $θ$ $z=A tan γ (≤0.125 inches) ω ω At an θ (≤0.03125 inches) ω ω At an ω ω ω ω ω ω ω ω $
Degree Indicating level position for determining © Degree Indicating level position for determining Y then calculate Z	Notes
Pitot Coefficient	
Coefficient of 0.84 Assigned 2 N. s. S.	Notes

Form ACTPC PI-2

Inspection Personnel Dus

Type S Pitot Tube Inspection Air Control Techniques, P.C.

Air Control Techniques, P.C.		Date	5-06-02	
Identification Information				
Client Tu House	Job	NA		
Plant Name NA	Process	NA		
City CARY	State	NC		
Pitot ID 4B				

Inspection Results		

·	Inspection Data	
	Level and Perpendicular?	18.5
1 1 a	Obstruction?	NO
	Damaged?	No
	$\alpha 1 (-10^{\circ} \le \alpha 1 \le + 10^{\circ})$	1
	$\alpha 2 (-10^{\circ} \leq \alpha 2 \leq + 10^{\circ})$	
	$\beta 1 (-5^{\circ} \leq \beta 1 \leq +5^{\circ})$	
Dagree Indicating lavel position for	$\beta 2 (-5^{\circ} \leq \beta 2 \leq +5^{\circ})$	1
determining as end as	γ	
, hand	0	
	z=A tan γ (≤0.125 inches)	
	w=A tan θ (≤0.03125 inches)	
	D1 (3/16 inch ≤ D1 ≤ 3/8 inch)	0.375
Degree indicating level position for	A	0.370
determining \$1 and \$1.	A/2D1 (1.05 ≤ PA/D1 ≤ 1.5)	6.20
	A2D1 (1:05 \$1 AD1 \$1:0)	1.1
Degree indicating level position for determining Q	Notes	
Degree Indicating level position for determining? then opticulate Z.		
Pitot Coefficient		
Coefficient of 0.84 Assigned? VES	Notes	
Inspection Personnel DLS		

Form ACTPC PI-2

Stainless Steel Nozzle Calibration and Condition Air Control Techniques, P.C.

Nozzle	Nozzle ID	Average		Measureme	nts	High-Low	Condition	Date
Set ID	NOZZIE ID	Average	1	2	3	Tilgii-Low	Condition	Inspected
ACT-N-1	1-1	0.123	0.123	0.124	0.122	0.002	OK	3/11/07
ACT-N-1	1-2	0.180	0.180	0.180	0.181	0.001	OK	3/11/07
ACT-N-1	1-3	0.238	0.238	0.238	0.238	0.000	OK	3/11/07
ACT-N-1	1-4	0.299	0.300	0.300	0.298	0.002	OK	3/11/07
ACT-N-1	1-5	0.368	0.368	0.368	0.368	0.000	ОК	3/11/07
ACT-N-1	1-6	0.427	0.427	0.427	0.428	0.001	OK	3/11/07
ACT-N-1	1-7	0.491	0.492	0.491	0.490	0.002	OK	3/11/07

Nozzle	Nozzle ID	Average		Measureme	ents	High-Low	Condition	Date
Set ID	MOZZIE ID	Average	1	2	3	1 light-Low	Condition	
ACT-N-2	2-1	0.128	0.128	0.127	0.128	0.001	OK	3/11/07
ACT-N-2	2-2	0.177	0.176	0.177	0.178	0.002	OK	3/11/07
ACT-N-2	2-3	0.240	0.240	0.240	0.240	0.000	OK	3/11/07
ACT-N-2	2-4	0.298	0.297	0.298	0.298	0.001	ОК	3/11/07
ACT-N-2	2-5	0.373	0.373	0.374	0.373	0.001	OK	3/11/07
ACT-N-2	2-6	0.441	0.440	0.442	0.440	0.002	OK	3/11/07
ACT-N-2	2-7	0.497	0.498	0.497	0.497	0.001	OK	3/11/07

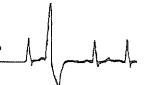
Nozzle	No-de ID	Averege		Measureme	ents	High-Low	Condition	Date
. Set ID	Nozzle ID	Average	1	2	3	rigii-Low	Condition	
ACT-N-3	3-1	0.120	0.120	0.121	0.120	0.001	OK	3/11/07
ACT-N-3	3-2	0.189	0.188	0.189	0.189	0.001	OK	3/11/07
ACT-N-3	3-3	0.240	0.240	0.239	0.240	0.001	OK	3/11/07
ACT-N-3	3-4	0.254	0.254	0.254	0.255	0.001	OK	3/11/07
ACT-N-3	3-5	0.365	0.366	0.365	0.365	0.001	OK	3/11/07
ACT-N-3	3-6	0.996	0.996	0.997	0.995	0.002	OK	3/11/07
ACT-N-3	3-7	0.494	0.494	0.494	0.494	0.000	OK	3/11/07

Nozzle	Nozzle ID	Average		Measureme	ents	High-Low	Condition	Date
Set ID	NOZZIE ID	Average	1	2	3	1 light-Low	Condition	
ACT-N-4	4-1	0.301	0.300	0.301	0.302	0.002	OK	3/11/07
ACT-N-4	4-2	0.178	0.178	0.178	0.177	0.001	OK	3/11/07
ACT-N-4	4-3	0.299	0.299	0.299	0.299	0.000	OK	3/11/07
ACT-N-4	4-4	0.248	0.248	0.248	0.248	0.000	OK	3/11/07
ACT-N-4	4-5	0.364	0.364	0.364	0.363	0.001	OK	3/11/07
ACT-N-4	4-6	0.497	0.496	0.497	0.497	0.001	OK	3/11/07
ACT-N-4	4-7	0.498	0.497	0.498	0.499	0.002	ОК	3/11/07

Name

DANNY SPEER

Signatura


Glass Nozzle Calibration and Inspection Air Control Techniques, P.C.

Nozzle				Measureme	ents .	Maximum		Date
Set ID	Nozzle ID	Average	1	2	3	Variance	Condition	Inspected
Misc. G	GL 923	0.863	0.863	0.863	0.863	0.000	ОК	8/19/08
Misc. G	GL 473	0.996	0.996	0.996	0.996	0.000	ОК	8/19/08
Misc. G	GL 475	0.996	0.996	0.996	0.996	0.000	ОК	8/19/08
Misc. G	GL 3008	0.997	0.996	0.997	0.997	0.001	OK	8/19/08
Misc. G	GL 474	0.999	0.999	0.999	0.999	0.000	ОК	8/19/08
Misc. G	GL 3006	1.020	1.020	1.020	1.021	0.001	OK	8/19/08
Misc. G	GL 471	1.028	1.028	1.027	1.028	0.001	ОК	8/19/08
Misc. G	GL 472	1.029	1.029	1.029	1.029	0.000	ОК	8/19/08
Misc. G	GL 516	1.042	1.042	1.042	1.042	0.000	OK	8/19/08
Misc. G	GL 517	1.042	1.042	1.042	1.042	0.000	ОК	8/19/08
Misc. G	GL 3007	1.050	1.050	1.050	1.050	0.000	OK	8/19/08
Misc. G	GL 3005	1.061	1.061	1.060	1.060	0.001	OK	8/19/08
Misc. G	GL 3010	1.248	1.248	1.248	1.248	0.000	OK	8/19/08
Misc. G	GL 3013	1.255	1.255	1.255	1.255	0.000	OK	8/19/08
Misc. G	GL 3011	1.259	1.259	1.259	1.259	0.000	ОК	8/19/08
Misc. G	GL 3014	1.335	1.334	1,335	1.335	0.001	OK	8/19/08
Misc. G	GL 3015	1.343	1.343	1.343	1.344	0.001	OK	8/19/08
Misc. G	GL 519	1.453	1.453	1.453	1.453	0.000	OK	8/19/08
Misc. G	GL 128	1.456	1.456	1.456	1.456	0.000	OK	8/19/08
Misc. G	GL 130	1.459	1.459	1.459	1.459	0.000	OK	8/19/08
Misc. G	GL 520	1.459	1.459	1.459	1.459	0.000	OK	8/19/08
Misc. G	GL 3009	1.574	1.574	1.574	1.574	0.000	OK	8/19/08
Misc. G	GL 102	1.838	1.838	1.838	1.839	0.001	OK	8/19/08
Misc. G	GL 100	1.841	1.841	1.841	1.841	0.000	OK	8/19/08
	API-1	0.171	0.171	0.171	0.171	0.000	OK	8/3/09
Misc. G	API-2	0.173	0.173	0.173	0.172	0.001	OK	8/3/09

VOLUME I Appendix E – Analytical Data

RESOLUTION ANALYTICS, INC.

Specialists in Air Emission Analysis

ANALYTICAL REPORT

- CONDENSIBLE PARTICULATE MATTER (EPA METHOD OTM-028)
- PM2.5 FILTERABLE PARTICULATE (EPA METHOD OTM-027)
- FILTERABLE PARTICULATE (EPA METHOD 5B (40 CFR. PART 60))

CLIENT: AIR CONTROL TECHNIQUES

RFA#: 1436

Chain of Custody Air Control Techniques, P.C. PAGE 1 of 2

P.O# \$ 9142-1436

Plant Name	t API		Job Brosse ECC	Comphan Clark
Plant Name City		 -	Process	Scrubber Stack
Run Number	Sample Type	Container	Date Sampled	Notes
M5B/028-1	Front Half Acetone Rinse	250 ml amber jar	8/5/09	
M5B/028-1	Imp Acetone Rinse	250 ml amber jar	8/5/09	
M5B/028-1	Imp MeCl2 Rinse	250 ml amber jar	8/5/09	-
M5B/028-1	Imp Soln. + DI Rinse	1L Nalgene Bottle	8/5/09	
M5B/028-1	Filter	Dish	8/5/09	
M5B/028-1	CPM Filter	Dish	8/5/09	
M5B/028-2	Front Half Acetone Rinse	250 ml amber jar	8/5/09	
M5B/028-2	Imp Acetone Rinse	250 ml amber jar	8/5/09	
M5B/028-2	Imp MeCl2 Rinse	250 ml amber jar	8/5/09	
M5B/028-2	Imp Soln. + DI Rinse	1L Nalgene Bottle	8/5/09	
M5B/028-2	Filter	Dish	8/5/09	
M5B/028-2	CPM Filter	Dish	8/5/09	
M5B/028-3	Front Half Acetone Rinse	250 ml amber jar	8/6/09	
M5B/028-3	Imp Acetone Rinse	250 ml amber jar	8/6/09	
M5B/028-3	Imp MeCl2 Rinse	250 ml amber jar	8/6/09	
M5B/028-3	Imp Soln. + DI Rinse	1L Nalgene Bottle	8/6/09	
M5B/028-3	Filter	Dish	8/6/09	
M5B/028-3	CPM Filter	Dish	8/6/09	
API2.5/028-1	Probe & Nozzle Rinse	250ml glass jar	8/5/09	
API2.5/028-1	' > 2,5 µm Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-1	≤ 2.5 µm Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-1	Imp Soln. + DI Rinse	0.5L Nalgene Bottle	8/5/09	
API2.5/028-1	Imp Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-1	Imp MeCl2 Rinse	250 ml amber jar	8/5/09	
API2.5/028-1	Filter	Dish	8/5/09	
API2.5/028-1	CPM Filter	Dish	8/5/09	
API2.5/028-2	Probe & Nozzle Rinse	250ml glass jar	8/5/09	
API2.5/028-2	> 2.5 µm Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-2	≤ 2.5 µm Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-2	Imp Soln. + DI Rinse	0.5L Nalgene Bottle	8/5/09	
API2.5/028-2	Imp Acetone Rinse	250 ml amber jar	8/5/09	
API2.5/028-2	Imp MeCl2 Rinse	250 ml amber jar	8/5/09	
API2.5/028-2	Filter	Dish	8/5/09	
API2.5/028-2	CPM Filter	Dish	8/5/09	
SEE PAGE 2				

Relinguished By; (Signature and Printed Name)	Date: , / / a	
Mely sun	2/11/09	
Rec#ived By://Signature & Printed Name	Date: 1	
WAMIALII	8/11/09	
100000		
OFFICE AGE	D 450 0640	4/44/004/

Chain of Custody Air Control Techniques, P.C.

PAGE 2 of 2

P.O.# 9142-1436

Identification Info	ormation			
Client	API	1	Job	1436
Plant Name			Process	FCC Scrubber Stack
City	ı.			·
Run Number	oampic type	Container	Date Sampled	Notes
API2.5/028-3	Probe & Nozzle Rinse	500ml glass jar	8/6/09	
API2.5/028-3	> 2.5 µm Acetone Rinse	250 ml amber jar	8/6/09	
API2.5/028-3	≤ 2.5 µm Acetone Rinse	250 ml amber jar	8/6/09	
API2.5/028-3	Imp Soln. + DI Rinse	1 L Nalgene Bottle	8/6/09	
API2.5/028-3	Imp Acetone Rinse	250 ml amber jar	8/6/09	
API2.5/028-3	Imp MeCl2 Rinse	250 ml amber jar	8/6/09	
API2.5/028-3	Filter	Dish	8/6/09	
API2.5/028-3	CPM Filter	Dish	8/6/09	
028-FB	Imp Soln. + DI Rinse	0.5L Nalgene Bottle	8/5/09	
028-FB	Imp Acetone Rinse	250 ml glass jar	8/5/09	
028-FB	Imp MeCl2 Rinse	250 ml amber jar	8/5/09	
028-FB	CPM Filter	Dish	8/5/09	
Blank	Acetone Reagent Blank	250 ml glass jar	8/5/09	
Blank	MeCl2 Reagent Blank	250 ml glass jar	8/5/09	
Blank	H2O Reagent Blank	0.5L Nalgene Bottle	8/5/09	
Blank	CPM Filter Blank	Dish	8/5/09	
Run 1	FCC Scrubber H2O	1 L Glass Jar	8/5/09	Total Solids Analysis
Run 2	FCC Scrubber H2O	1 L Glass Jar	8/5/09	Total Solids Analysis
Run 3	FCC Scrubber H2O	1 L Glass Jar	8/6/09	Total Solids Analysis
THE ALL	Signature and Printed Name	Date:	111/09	
Received-By://(Sign	nature/&/Printed/Vame	Date:	11/09	

REPORT SUMMARY FRES

RFA#: 1436

SAMPLE ID	TOTAL FILTERABLE PARTICULATE
ACETONE BLANK	1.0 mg (210 mL)
M5B-028-1	15.5 mg
M5B-028-2	17.6 mg
M5B-028-3	16.5 mg

Analytical Narrative RFA # 1436

Page 1 of 1

Client/Plant Name: Air Control Techniques

Date Rec'd in lab: 08/11/09

Analyst: BNL

Date of Analysis: 08/23/09

Analysis Method: EPA Method 5B

Analyte(s): Filterable Particulate

Sample Matrix & Components:

Dry Filters, Front Acetone Rinses and solvent blanks

Summary of Sample Prep:

The acetone rinses and pre-tared filters were transferred to pre-tared teflon "baggies" in a low humidity environment. Acetone rinses were then evaporated overnight. Rinses and filters were oven dried at 325°F for 6 hours then placed in a low humidity environment for 2 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ±0.5 mg.

All weights were recorded to the nearest 0.1 mg. The total catch reported for each run is a sum of the filterable and condensible (organic and inorganic) catches. The solvent blank catch weights have been subtracted out of sample catches in proportion with their respective solvent volumes.

Summary of Instrumentation:

Denver Pinnacle Series model analytical balance

Analytical Detection Limit(s):

0.5 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

See Data Sheets for individual sample descriptions.

Confirmation of Data Review:

Brue Denot Date 8/25/09

QA Officer Signature

Bruce Nemet, Lab QA Officer)

OTM-036 Page 162 of 643 4/11/2016

Plant Name: Method: 55 Date Received: 08				Page 1 of	2		File Palhway:	RFA # Filename: C:WOBS\1436\A		1436 ACT 1
Run Number				M5B-028-1			M5B-028-2			M5B-028-3
Filter Container #	Date	Init	_	1451		Date	62	Date	_	780
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	08/23	BNL RQ-576:	3	3.900 3.505 0.383 0.011	<u> 18</u>	08/23 RQ-5762	3.8869 3.4820 0.3886 0.0163	08/23 RQ-5741	- -	4.0113 3.5960 0.3992 0.0161
Rinse Container# 	Date	Init	-	659	_	Date	207	Date	<u>-</u>	444
Tare Wt., g. RINSE SAMPLE WT., g.	08/23 08/22	BNL BNL (120	@ @ ml)	3,498 3,495 3,495 0,005	32 11	08/23 08/22 @ (120 ml)	3,5636 3,5635 3,5616 0,0019	08/23 08/22 (90	@ ml) _	3,6063 3,6052 0,0008
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, i Net Rinse Catch, mg.	ng.			11. 5. 0. 4.	1 6		16.3 1.9 0.6 1.3			16.1 0.8 0.4 0.4
FILTERABLE PARTICUL	AΤΕ, mg.			15.	5		17.6			16.5
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml.	1011 3.6891 3.6881 210 785.0	r r)		Visual Insp	Run ID Color. Texture Foreign	1	M5B-028-1 BROWN STAIN NONE MEDIUM	M5B-028-2 BROWN STAIN NONE MEDIUM		M5B-028-3 BROWN STAIN NONE MEDIUM
	6.1E-05 1.0E-05 = Final We F = Filter R = Rinse	5		Visual Insp	Run ID Color: Texture Foreign		M5B-028-1 BROWN FILM NONE HIGH	M5B-028-2 BROWN FILM NONE MEDIUM		M5B-028-3 BROWN FILM NONE LOW

Printing Date;

23-Aug-09

Printing Time:

04:34 PM

REAGENT BLANK LABORATORY RESULTS (Version 04.28.92) Plant Name: + 1436 RFA# Method: 5B Filename: ACT Date Received: 08/11/09 Page File Pathway: C:\JOBS\1436\ACT.WB1 Run Number ACETONE BLANK Sample ID/Container# 1011 Date BNL BNL (210 3.6894 3.6891 08/23 @ Tare Wt., g. SAMPLE WT., g. 3.6881 0.0010 ml)

REPORT SUMMARY ROLD

RFA#:

1436

METHOD OTM-027 SAMPLE ID	Particulate ≤2.5 µm	Particulate >2.5µm	Probe & Nozzle Rinse	Total Filterable Particulate
ACETONE BLANK		1.0 mg (210 mL)		
API2.5-028-1	3.7 mg	0.9 mg	5.4 mg	10.0 mg
API2.5-028-2	1.0 mg	1.1 mg	15.6 mg	17.7 mg
API2.5-028-3	0.9 mg	1.3 mg	3.8 mg	6.0 mg

Analytical Narrative

RFA # 1436

Page 1 of 1

Client/Plant Name: Air Control Techniques

Date Rec'd in lab: <u>08/11/09</u>

Analyst: BNL

Date of Analysis: 08/23/09

Analysis Method: EPA OTM-027

Analyte(s): PM2.5 micron

Sample Matrix & Components:

Dry Filters, Acetone Rinses (Precutter/Cyclone and Front rinses weighed separately), Acetone Blank

Summary of Sample Prep:

The acetone rinses and pre-tared filters were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated overnight, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The filters were oven dried at 105°C for 2 hours and weighed immediately afterwards. All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The total catch reported for each run is a sum of the filter and rinse catches. The acetone blank catch has been subtracted out of sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver Pinnacle Series model analytical balance

Analytical Detection Limit(s):

0.5 mg

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made.

See Data Sheets for individual sample descriptions.

Confirmation of Data Review:

QA Officer Signature

Maruce Nemet, Lab QA Officer)

Date 8/25/09

PARTICULATE SAMPLING LABORATORY RESULTS Plant Name. RFA # 1436 Method: OTM-027 ACT Filename: Date Received: 08/11/09 Page 1 of File Pathway: C:\UOBS\1436\ACT.WB1 Run Number API2.5-028-1 Filter Container # 730 (< = 2.5 um) Date Init 08/23 BNL 3,6900 Baggie Tare Wt., g. 3.5735 Filter Tare Wt., g. SF47-873 0.1139 FILTER SAMPLE WT., g. 0.0026 NO Sample I.D. 676 1469 (Probe & Nozzle Rinse) (< = 2.5 um)(>2.5 um) Date Init Date Date 08/23 BNL 3.7933 08/23 3.6769 08/23 3.8268 @ BNL 3.7930 08/20 3.6770 08/20 3,8264 08/20 @ @ Tare Wt., g. 50 ml) 3.7917 60 3.6757 (250 ml) 3.8198 ml) (RINSE SAMPLE WT., g. 0.0013 0.0012 0.0066 Filter Catch, mg. 2.6 NΑ NA Rinse Catch, mg. 1.3 1,2 6.6 Blank Residue, mg. 0.2 0.3 1.2 Net Rinse Catch, mg. 0,9 5.4 FILTERABLE PARTICULATE, mg. 3.7 0.9 5.4 Blank Beaker# Visual Inspection: 1011 3,6891 Run ID 2.5-10 Rinse >10 Rinse Final wt., mg. In Stack Filter 2.5 Rinse WHITE BROWN 3.6881 BROWN WHITE Tare wt., mg. Color: Residue, mg. Texture: STAIN FILM FILM FILM 1.0 NONE NONE NONE Volume, ml. 210 Foreign Matter: NONE Density, mg/ml Conc., mg/mg Upper Limit, mg/mg 785.0 Relative Comp: MEDIUM LOW LOW HIGH 6.066E-06 <--1.000E-05 Miscellaneous Notes & Comments:

Printing Date:

Legend:

25-Aug-09

@ ≈ Final Weight

F = Filter R = Rinse

Printing Time:

03:43 PM

PARTICULATE SAMPLING LABORATORY RESULTS Plant Name: RFA# 1436 ACT Method: OTM-027 Filename: Date Received: 08/11/09 Page 2 of File Pathway: C:\JOBS\1436\ACT.WB1 Run Number API2.5-028-2 Filter Container # 1495 (< = 2.5 um) Date Init 08/23 BNL 3,7615 Baggie Tare Wt., g. 3.6463 Filter Tare WL, g.
FILTER SAMPLE WT., g. SF47-874 0.1142 0.0010 NO Sample I.D. 1268 377 1226 (Probe & Nozzie Rinse) (< = 2.5 um) (>2.5 um) Date Date init Date 3,5059 3.3719 08/23 @ 3.9399 BNL 08/23 08/23 @ 08/20 3.9399 08/20 3,5059 08/20 3.3718 @ BNL @ @ Tare Wt., g. RINSE SAMPLE WT., g. 3.5058 3.3704 (150 ml) 3.9236 40 60 ml) (mi) 0.0163 0.0001 0.0014 Filter Catch, mg. NA 1.0 NA Rinse Catch, mg. 16.3 0.1 1.4 Blank Residue, mg. 0.2 0.3 0.7 Net Rinse Catch, mg. 0.0 1.1 15.6 FILTERABLE PARTICULATE, mg. 1.0 1.1 15.6 Blank Beaker# 1011 Visual Inspection: Final wt., mg. >10 Rinse 3.6891 Run ID In Stack Filter 2.5 Rinse 2,5-10 Rinse 3,6881 Color: BROWN WHITE WHITE WHITE Tare wt., mg. FILM Residue, mg. 1.0 Texture: STAIN FILMFILM NONE Volume, ml. 210 Foreign Matter: NONE NONE NONE Density, mg/ml 785.0 Relative Comp: MEDIUM LOW LOW MEDIUM Conc., mg/mg 6.066E-06 <-Upper Limit, mg/mg 1.000E-05 Miscellaneous Notes & Comments: Adjusted Catch (Negative Results Reported As Zero) @ = Final Weight Logend: F = Filler R = Rinse

Printing Time:

03:43 PM

OTM-036

Printing Date:

25-Aug-09

PARTICULATE SAMPLING LABORATORY RESULTS (OTM-027) Plant Name: RFA# 1436 Method: OTM-027 ACT Filename: Date Received: 08/11/09 Page 3 of 4 C:\UOBS\1436\ACT.WB1 File Pathway: Run Number API2.5-028-3 Filter Container# 1247 (< = 2.5 um) Date Init 08/23 BNL 4.0251 Baggie Tare Wt., g. 3.9121 Filter Tare Wt., g. SF47-875 0.1128 FILTER SAMPLE WT., g. 0.0002 ND Sample I.D. 1249 1405 863 (Probe & Nozzle Rinse) (< = 2.5 um) (>2.5 um) Date Init Date Date 08/23 BNL 3.4062 08/23 3.5318 08/23 3.5005 08/20 BNL 3.4063 08/20 @ 3.5316 08/20 @ 3.5004 Tare Wt., g. RINSE SAMPLE WT., g. 40 ml) 3.4053 50 ml) 3.5301 (140 ml) 3.4959 0.0009 0.0015 0.0045 Filter Catch, mg. 0.2 NA NA Rinse Catch, mg. 0.9 1,5 4.5 Blank Residue, mg. 0.2 0,2 0.7 Net Rinse Catch, mg. 0.7 1.3 3.8 FILTERABLE PARTICULATE, mg. 0.9 1.3 3.8 Blank Beaker# Visual Inspection: 1011 2,5 Rinse Final wt., mg. 3,6891 Run ID >10 Rinse In Stack Filter 2.5-10 Rinse **BROWN** BROWN WHITE BROWN Tare wt., mg. 3,6881 Color: Residue, mg. Texture: STAIN FILM FILM FILM 1.0 Volume, ml. 210 Foreign Matter: NONE NONE NONE NONE LOW MEDI<u>UM</u> Density, mg/ml 785 O Relative Comp: LOW LOW Conc., mg/mg 6.066E-06 <--Upper Limit, mg/mg 1.000E-05 Miscellaneous Notes & Comments: @ = Final Weight Legend: F = Filter R = Rinse

Printing Time:

Printing Date:

25-Aug-09

03:43 PM

REAGENT BLANK LABORATORY RESULTS

Plant Name; Method; Date Received;	OTM-027		Pag	∌ 4 of	4	File Pathway:	RFA # Filename: C:\JOBS\1436\	1436 ACT ACT.WB1
Run Number				ACETONE BLANK				
ontainer#	Date	Init		1011				
Tare Wt., g. AMPLE WT., g.	08/23 08/20	BNL BNL (210	. @	3,6894 3,6891 3,6881 0,0010				

REPORT SUMMARY FRANKS

RFA#: 1436

OTM-028 Sample id	ORGANIC Condensible PM	INORGANIC Condensible PM	(NH ₄) ₂ SO ₄ Correction	FIELD BLANK Correction *	TOTAL Condensible PM
ACETONE/MECL ₂ BLANK	0.3 mg (180 mL)				
H ₂ O BLANK		0.9 mg (310 mL)			
FIELD BLANK	0.5 mg	2.4 mg	0.17 mg	N/A	2.9 mg
M5B-028-1	0.6 mg	24.6 mg	1.02 mg	2.0 mg	23.2 mg
M5B-028-2	0.6 mg	33.9 mg	1.70 mg	2.0 mg	32.5 mg
M5B-028-3	0.4 mg	33.5 mg	1.70 mg	2.0 mg	31.9 mg
API2.5/028-1	0.7 mg	16.9 mg	1.02 mg	2.0 mg	15.6 mg
API2.5/028-2	0.6 mg	11.5 mg	0.51 mg	2.0 mg	10.1 mg
API2.5/028-3	0.6 mg	10.1 mg	0.51 mg	2.0 mg	8.7 mg

^{*} A maximum of 2.0 mg were deducted from the Total Condensable Particulate Matter (CPM) for each run.

Analytical Narrative

RFA # 1436

Page 1 of 1

Client/Plant Name: Air Control Techniques

Date Rec'd in lab: 08/11/09

Analyst: BNL

Date of Analysis: 08/23/09

Analysis Method: EPA OTM-028

Analyte(s): Condensible Particulate

Sample Matrix & Components:

 $\rm H_2O$ (dry) Impinger samples, Back Acetone/Methylene Chloride Rinses, Back CPM Filter, and solvent blanks.

Summary of Sample Prep:

CPM Filter was extracted by sonication twice first with water, then by methylene chloride per OTM-028. Each aliquot following 2 minutes sonication was transferred to water and methylene chloride field containers, respectively.

The $\rm H_2O$ field samples were then extracted with methylene chloride using the Back½ rinse as the first extract. Methylene Chloride rinses were evaporated overnight at ambient temperature then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The $\rm H_2O$ samples were evaporated at 85°F (at ambient pressure) until completely dry. $\rm H_2O$ samples were then resuspended in 50 mL deionized water and titrated to neutral pH using 0.1 N NH₄OH, allowed to dry again then desiccated for 24 hours and finally weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg. The total catch reported for each run is a sum of the condensible organic and inorganic catches minus total field blank catch weight or 2.0 mg, whichever is less.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.5 mg

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

1) See data sheets for individual sample descriptions.

Confirmation of Data Review:

QA Officer Signature

Bruce Nemet, Lab QA Officer)

lens Date & pg fog

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

Plant Name:				RFA#	1436
Method:	OTM-028			Fileneme:	ACT
Date Received:	08/11/09 Pa	ge 1 of 4	File Pathway:	C:\JOB\$\1436\ACT.WE	31
Run Number	Ms	5B-028-1	M5B-028-2	-	M5B-028-3

DI H2O Container #	Date	Init		2176		Date		1675		Date		963
_			_		•		-		-		_	
	08/23 08/22	BNL BNL	@ @	3.8085 3.8085		08/23 08/22	@	3,6363 3,6361		08/23 08/22	@	3,4134 3,413 3
Tare Wt., g. SAMPLE WT., g.	(ml)	3.7829 0.0256	(575	ml)	3.6005 0.0356	ſ	515	ml) _	3.3761 0.0352
Acetone/MeCl2 Container# —	Date	Init	_	1255		Date	-	1494	_	Date		1006
	08/23	BNL		3.8829		08/23	@	3,6800		08/23		3.9873
Tare Wt., g. AMPLE WT., g.	08/22 (BNL 160	@ ml)	3.8827 3.8821 0.0006		08/22 140	@ ml)	3,6800 3,6794 0,0006	(08/22 145	@ ml) _	3,9872 3,9868 0,0004
Organic Fraction Catch, mg.				0.6				0.6				0.4
rganic Fraction Catch, mg. Prganic (MeCl2/Acetone) Field	Blank Correction	on, mg.		0.6				0.0				0.4
rganic Fraction Catch, mg.				0.6				0.6				0.4
norganic Fraction Catch, mg.				25.6				35.6				35,2
norganic (H2 O) Field Blank Col				0.0				0.0				0.0
norganic Fraction Catch, mg. Yolume (Vt) of NH4OH added (25.6 0.60				35.6 1.00				35.2 1.00
Correction for ammonia added,				1.02				1.70				1.70
djusted Inorganic Fraction C				24.6				33,9				33,5
				*A maximum of 2	mg d	educted :	for field	d blank correction p	er O1	ГМ-028		
OTAL OTM-028 CONDEN	ISIBLE PART	TICULAT	E, mg.	23.2				32.5				31.9
fiscellaneous Notes & Comme	nts:			Visual Inspectio	n of F	120]				
				Rui	n ID			M5B-028-1	_	M5B-028-2		M5B-028-3
				Col				BROWN		BROWN		BROWN
				1	dure: eion N	latter:		FILM NONE		FILM NONE		FILM NONE
					ative (HIGH		HIGH		HIGH
				Visual Inspectio	n of N	feCI2		j				
				Rui	ı ID	feCI2		M5B-028-1		M5B-028-2		M5B-028-3
				Rui Col	n ID lor.	feCI2		WHITE		WHITE		WHITE
				Rui Col Tex	n ID or. dure:	feCI2						

Printing Date:

23-Aug-09

Printing Time:

02:30 PM

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

Plant Name: Method: QTM-028			RFA # Filename:	1436 ACT
Date Received: 08/11/09	Page 2 of 4	File Pathway:	C:UOBS\1436\A(OT.WB1
Run Number	API2.5/028-1	API2.5/028-2		API2.5/028-3

DI H2O Container #		1		1345		1491	D-4-	_	973
-	Dale	Init	_		Date		Date	_	
	08/23 08/22	BNL BNL	©	3.7916 3.7915	08/23 @ 08/22	3.2388 3.2389	08/23 08/22	@	3.6603 3.6603
Tare Wt., g. SAMPLE WT., g.		(285	ml)	3.7736 0.0179	(245 ml)	3.2268 (0.0120	165	ml) _	3.6497 0.0106
Acelone/MeCl2 Container#	Date	Init		60	Date	1062	Date	_	186
-						•		_	
	08/23	BNL	@	3.6437	08/23	3.4501	08/23	@	3.4127
	08/22	BNL	@	3.6437	08/22 @	3.4500	08/22	@	3.4127
Tare Wt., g. SAMPLE WT., g.		(160	ml)	3.6430 0.0007	(125 ml)	3.4494 (0.0006	135	ml) _	3.4121 0.0006
Organic Fraction Catch, mg.				0.7		0.6			0.6
Organic (MeCl2/Acetone) Field	Blank Correct	ion, mg.		0.0		0.0			0.0
Organic Fraction Catch, mg.		, 5		0.7		0.6			0.6
norganic Fraction Catch, mg				17,9		12.0			10.6
norganic (H2O) Field Blank Co				0.0		0.0			0.0
norganic Fraction Catch, mg				17.9		12.0			10,6 0.30
/olume (Vt) of NH4OH added Correction for ammonia added				0.60 1.02		0.30 0.51			0.51
Adjusted Inorganic Fraction				16.9		11.5			10.1
TOTAL OTM-028 CONDE	SIBLE PAR	TICULA	TE, mg.	15.6		10.1			8.7

Miscellaneous	Notes 8	Comments:
induction local	1101000	Common.

Jisual Inspection of H2O			
Run ID	API2.5/028-1	API2.5/028-2	API2,5/028-3
Color:	WHITE/YELLOW	WHITE/YELLOW	WHITE
Texture:	FILM	FILM	FILM
Foreign Matter:	NONE	NONE	NONE
Relative Comp:	MEDIUM	MEDIUM	MEDIUM
Visual Inspection of MeCI2			
visual maperaon of mediz			
Run ID	API2,5/028-1	API2.5/028-2	API2.5/028-3
·	API2,5/028-1 WHITE	API2.5/028-2 WHITE	API2.5/028-3 WHITE
Run ID			
Run ID Golor:	WHITE	WHITE	WHITE

Printing Date:

23-Aug-09

Printing Time:

02:30 PM

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

Date Received:	08/11/09	Page 3 of FIELD BLAI	 File Pathway:	C:\JOBS\143	SVACT.WB1
Plant Name: Method:	•			RFA # Filename:	1436 ACT

DUU00 04-2#										
I H2O Container#	Date	Init	_	51	Date	_		Date	_	
Tare Wt., g. AMPLE WT., g.	08/23 08/22	BNL BNL (355	@ ml)	3.3993 3.3994 3.3967 0.0026	(ml)	0.0000 0.0000 0.0000	(ml) _	0.0000 0.0000 0.0000
cetone/MeCl2 Container#	Date	Init		824	Date			Date	_	
•	20.0	1	_			_			_	
Tare Wt., g. SAMPLE WT., g.	08/23 08/22	BNL BNL (110	@ ml)	3.5154 3.5153 3.5148 0.0005	(ml)	0.0000 0.0000 0.0000	(ml) _	0.0000 0.0000 0.0000
Organic Fraction Catch, mg. Organic (MeCl2/Acetone) Field B Organic Fraction Catch, mg.	lank Correction	, mg.		0.5 0.0 0.5			0.0 0.0 0.0			0.0 0.0 0.0
norganic Fraction Catch, mg. norganic (H2O) Field Blank Com norganic Fraction Catch, mg. /olume (Vt) of NH4OH added (N				2.6 0.0 2.6 0.10			0.0 0.0 0.0 0.00			0.0 0.0 0.0 0.00
correction for ammonia added, nidjusted Inorganic Fraction Ca	ng			0.17 0.17 2.4	,		0.00	.		0.00
TOTAL OTM-028 CONDENS	IBLE PARTIC	ULATE, I	mg.	2.9			0.0			0.0
Miscellaneous Notes & Comment	s:			Visual Inspe	ction of H2C Run ID Color: Texture: Foreign Matt		FIELD BLANK WHITE FILM NONE	0		0
				Visual Inspe	Relative Cor	np:	LOW			
					Run ID Color: Texture: Foreign Matt Relative Cor		FIELD BLANK WHITE FILM NONE LOW	0	-	0
District Date:							00:20 PM			

REAGENT BLANK LABORATORY RESULTS (Version 04.28.92)

MANORIT DEM	VIL EMBONATION	7 1 C C C C C C C C C C C C C C C C C C	CIOIOII CHILOIOL		
Plant Name:				RFA #	1436
Method: OTM-028				Filaname:	ACT
Date Received: 08/11/09	Page	4 of 4	File Pathway:	C:UOBS\1436\ACT	T.WB1
			Methylene		
Blank Type			Chtoride/Acetone		Water
Sample ID/Container#			2177		2279
		Date Init	_	<u>Date</u>	
		08/23 08/22	@ 3.8229 3.8231	08/23 08/22 @	3,5733 2 3,5731
Tare Wt., g.		(180	ml) 3,8226		il) 3.5722
SAMPLE WT., g.		(700	0,0003	, 515	0,0009
Blank Beaker II			2177		2279
Final wt., mg.			3.8229		3.5731
Fare wt., mg.			3.8226		3,5722
Residue, mg.			0.300		0.900
/olume, ml.			180		310 1000,0
D#:/-/					
Density, mg/ml Conc., mg/mg			1315,0 1.267E-06 @	`	2.903E-06 (

REPORT SUMMARY ROOM

RFA#: 1436

SAMPLE ID	Suspended Solids	Dissolved Solids
SRS-Run 1	303.6 mg/L	1.2 %
SRS-Run 2	322.3 mg/L	1.3 %
SRS-Run 3	295.1 mg/L	1.3 %

	AIR CONTRO		-	JES				RFA#		1436
	Suspended/Disolv	ed Solid:	3	0			51.5.4	Filename:	OT	ACT
Date Received:	08/11/09			Page 1 of 1			File Pathway:	C:UOBS\1436VA	CT.WE	31
Run Number				SRS-Run 1			SRS-Run 2			SRS-Run 3
Suspended Solids	Date	Init		3	Date	-	284	Dale		919
Baggie Tare Wt., g.	08/24	JSC 3	_	5.0160 3.8017	08/24	-	4.6837 3.4685	08/24	_	4.4511 3.2386
Filter Tare Wt., g. Juspended Solid Wt., g.	Sample Volume	NJ-67 980	ml	0.9168 0.2975	NJ-68 940	ml -	0.9122 0.3030	NJ-69 930	ml .	0.9381 0.2744
Dissolved Solids	Date	Init	_	2300			2282	Date		2314
Baggie Tare Wt., g. Dissolved Solid Wt., g.	08/24	JSC 50	ml)	4.0376 3.4507 0.5869	08/24 (50	ml) _	4.2141 3.5702 0.6439	08/24 (50	mi) .	3.998(3.332 <u>!</u> 0.665
uspended Solids, mg/L				303,6			322.3			295.
issolved Solids, % w/v				1.2			1.3			1.3
**************************************				Visual Inspectio	n of Filter:	· T				
				Run	ID		SRS-Run 1	SRS-Run 2		SRS-Run 3
				Colo			BROWN	BROWN		BROWN
				Text Fore	ure: ign Matter:		STAIN NONE	STAIN NONE		STAIN NONE
					tive Comp:		MEDIUM	MEDIUM		LOW
				Visual Inspectio	n of Rinse	s				
				Run			SRS-Run 1	SRS-Run 2		SRS-Run 3
			_	Colo	r.		YELLOW	YELLOW		YELLOW
Legend:	@ = Final Weight			Text			FLAKES	FLAKES		FLAKES
	F = Filter R = Rinse				ign Matter: tive Comp:		NO N E HIGH	NONE HIGH		NONE HIGH
fiscellaneous Notes & Con			•	, , , , ,						

Printing Time:

09:33 AM

PARTICULATE WORKSHEET

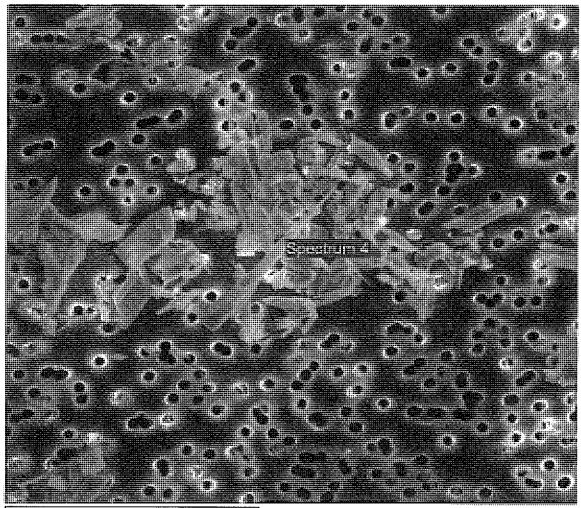
DATE 8/11/109 RFA # 1436 METHOD NIA CLIENT ANT SUM ANALYST PALL

7		! !						MEGLZTOLUENE_	TOLUENE		
# Z = Z		FILTER		ACETONE RINSE		Nozzle Gyclone	CYCLONE	CHLOROFORM/ETHER	M/ETHER	DI HZO IMPINGER	MPINGER
	#.TNDD	FILTER # TARE		WT.(6) CONT.# Vo	VOL.(ML)	#*±NDD	VOL.(ML)	#.FNDD	VOL.(ML)	#. □UNH.#	(IM)
SKS-Kun	2	N.T-67	D.9116 W							7286	9811
											1
	2	NT-68	0.9122							2282	94%
			4					77.11.1			2
		NT- 009	- XSX 0							7187	20K
				772				-			
					- -						
	-				-				7,74.		
									TO ALLON		
						į.		i i			
7.000											
								1			
							-	I was		_	

PARTICULATE WORKSHEET

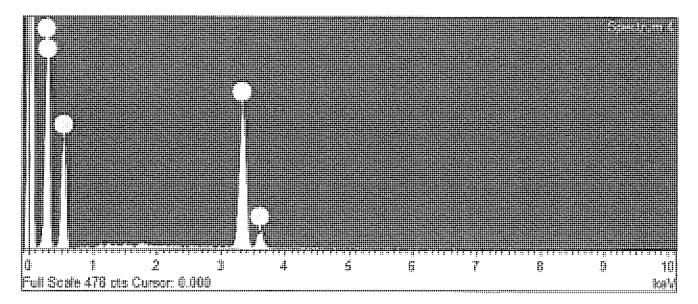
VOL.(ML) DI HZO IMPINGER 575 515 285 245 355 165 318 #.FN00 1675 1345 2176 bt27 12 12) 963 51 VOL. (ML) CHLOROFORM/ETHER DATE 8/11/19 TOLUENE _ RFA # 1436 125 145 140 160 7. 1.3 × = 18 CONT,# 1255 0)00 1494 1862 4417 MEGLZ 428 186 Z en CONT.# VOL.(ML) Nozzle Gyblone ØΦ) (h (K 75 2,5.16 МЕТНОО <u>58/0</u>24/028 1226 1469 1まら CONT.# FILTER # TARE WT.(G) CONT.# VOL.(ML) ACETONE RINSE 126 78 <u>~</u> 156 150 三 十 14-1 \times 58 7 2.5 659 11 Cotto ተቀተ 207 1249 863 1268 377 10 Ra-5763 0.3838 0886 1 20ES-0 Ro. 5741 6.3997 0.1139 6.1142 543:th55 FILTER 一十5 448 835 5047 GLIENT ACT -5 780 150 七九乙 1451 1465 ANALYST MIL 5 N RUN # 125-125 MEB-028. 1 Phink سر جمعاً جمعاً

OTM-036

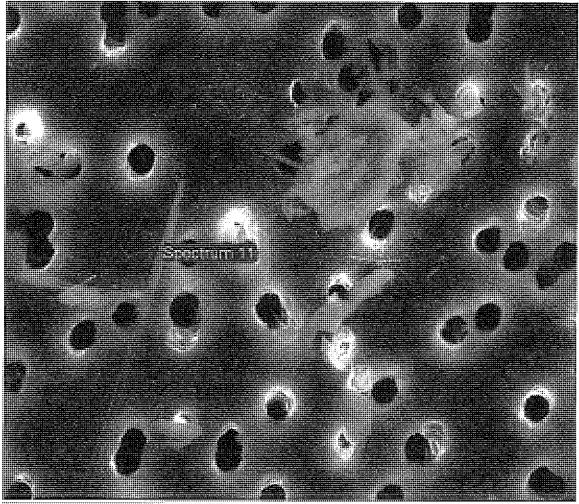

Page 180 of 643

4/11/2016

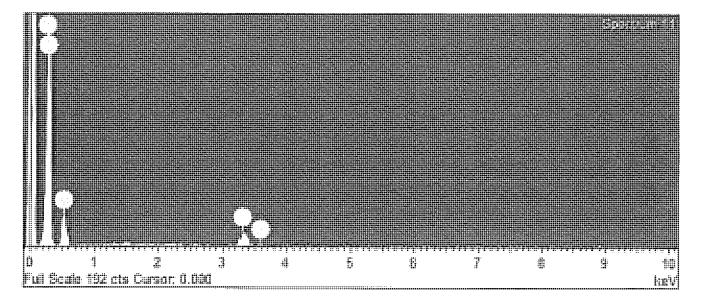
VOLUME I


Appendix F – Research Triangle Institute Report

60µm

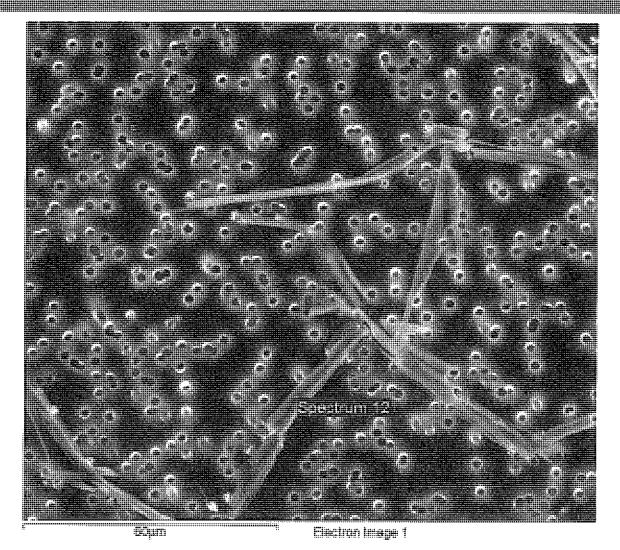

Electron Image 1

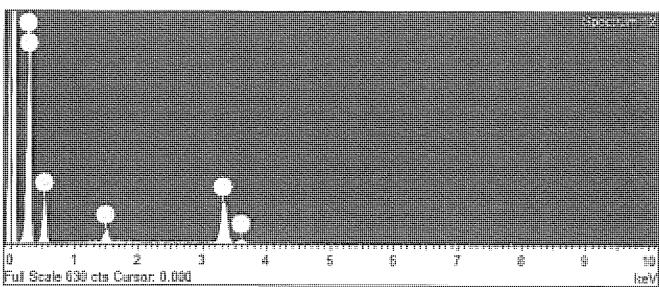
Comment: Particles and fibers sample 1.



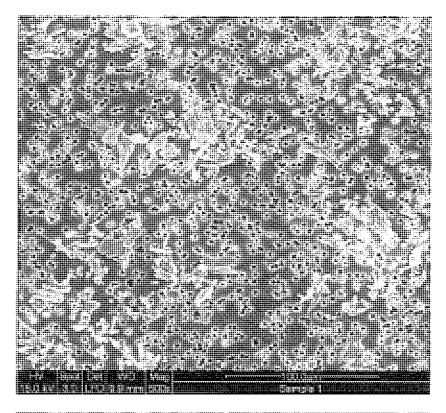
"20,271

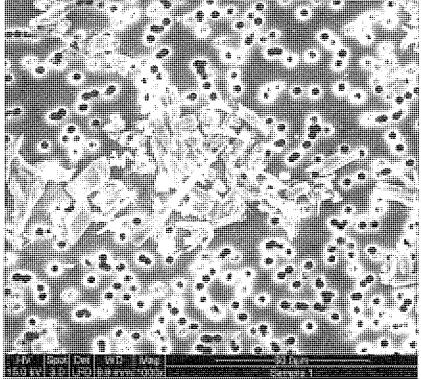
Decima Iraje 1

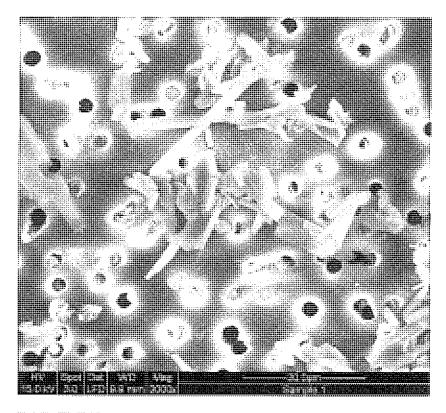

Comment: Fiber sample 2.

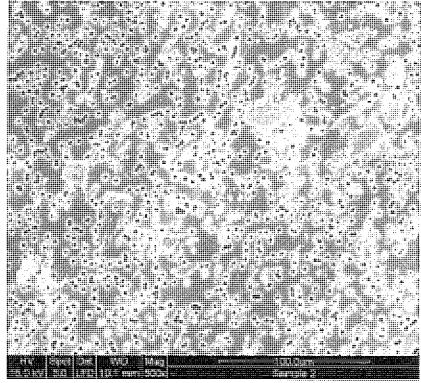

(Inca)

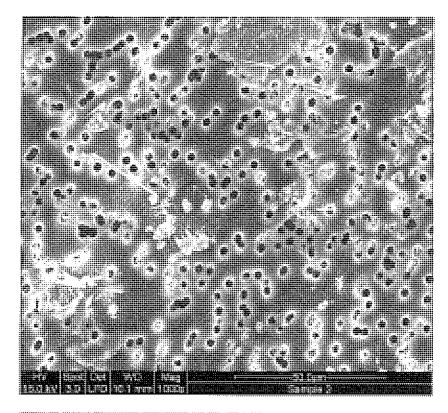
OTM-036 Page 183 of 643 4/11/2016

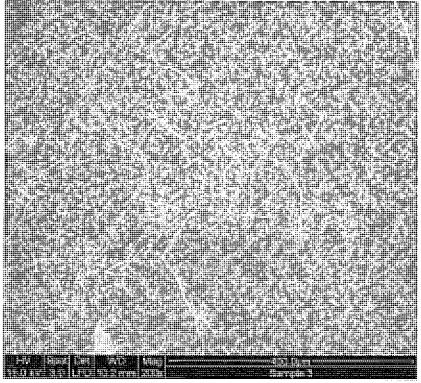


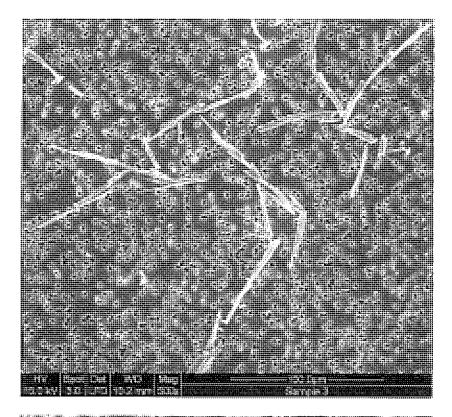


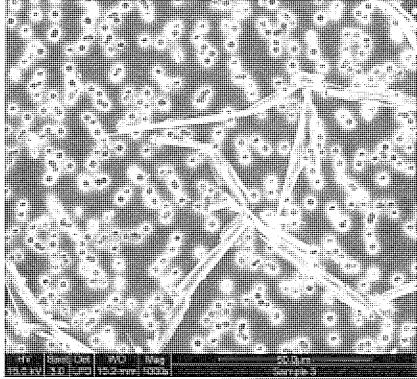



Comment: Fiber sample 3.


(INCa)







APPENDIX II Data Sheets for Test Program 2

VOLUME II

VOLUME II Appendix A – Test Results

PARAMETER	NOMENCLATURE	PM10-2.5-1	PM10-2.5-3
Sampling Location Date		2-24-10	2/25/2010
Run Time	Theta	180.00	180.00
Nozzle Diameter	inches	0.182	0.182
Pitot Tube Coefficient	Ср	0.84	0.84
Meter Calibration Factor	Y	1,0206	1.0206
Barometric Pressure, inches Hg	Bp - in Hg	29.90	29.90
Meter Box Pressure Differential	ΔH - in. H2O	0.40166667	0.400833333
Volume of Gas Sampled	Vm - cu. ft.	58.523	56.148
Dry Gas Meter Temperature	Tm - °F	59.9	50.1
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	42.804	41.463
Liquid Collected	ml	181	0
Volume of Water Vapor	Vwstd - cu. ft.	8.520	0.000
Moisture Content	%H₂0	16.600	0.00
Saturation Moisture	%H₂0	100.0	100.0
Dry Mole Fraction	Mfd	0.834	1.000
Carbon Dioxide	%CO₂	15.5	15.5
Oxygen	%O ₂	2.7	2.7
Carbon Monoxide	%CO	0	0
Nitrogen	$%N_2$	81.8	81.8
Fuel Factor	Fo	1.174	1.174
Gas Molecular Weight, Dry	Md	30.588	30.59
Gas Molecular Weight, Wet	Ms	28.498	30.588
Static Pressure	Pg - in. H ₂ O	0.51	0.68
Stack Pressure	Ps	29.94	29.95
Stack Temperature	Ts - °F	424.0	430.8
Average Velocity Head	∆p - in H₂O	0.25	0.34
Gas Velocity	vs - ft./sec.	36.55	41.29
Stack Area	As - sq. ft.	70.8821842	70.88218425
Volumetric Air Flow, Actual	Qaw - ACFM	155,439	175,609
Volumetric Air Flow, Standard	Qsd - DSCFM	77,475	104,188
Total Particulate Catch	mg	18.8	14.7
Probe and Nozzle	mg	16.8	12.9
Cyclone and Cup	mg	1.0	0.9
PM2.5 Catch (Filter)	mg	1.0	0.9
Condensable PM catch	mg	89.7	82.3

Sampling Loc	ation of	ack	PM10-2.5-1	PM10-2.5-3
Total Darticulate Emissis			1 101 10-2.5-1	1 10110-2.5-5
Total Particulate Emission	ons			
Grains/DSCF	gr	/DSCF	0.006778	0.005471
Grains/DSCF at 7% O ₂	gr	/DSCF@7%O₂	0.005177	0.004179
Pounds/Hour	lb.	/hr	4.501	4.886
PM ₁₀ Emissions				
Grains/DSCF	gr	/DSCF	0.000361	0.000335
Grains/DSCF at 7% O₂	gr	/DSCF@7%O₂	0.000275	0.000256
Pounds/Hour	lb,	hr /	0.239	0.299
PM _{2.5} Emissions				
Grains/DSCF	gr	/DSCF	0.000361	0.000335
Grains/DSCF at 7% O₂	gr	/DSCF@7%O₂	0.000275	0.000256
Pounds/Hour	lb	/hr	0.239	0.299
Condensable Particulate	Emissi	ons		
Grains/DSCF	gr	/DSCF	0.03236823	0.0306579
Grains/DSCF at 7% O ₂	gr	/DSCF@7%O ₂	0.02472079	0.02341455
Pounds/Hour	lb	/hr	21.495	27.379

PARAMETER Sampling Location	NOMENCLATURE	PM10-2.5-4
Date Run Time Nozzle Diameter Pitot Tube Coefficient Meter Calibration Factor Barometric Pressure, inches Hg Meter Box Pressure Differential Volume of Gas Sampled Dry Gas Meter Temperature Volume of Gas Sampled, Dry	Theta inches Cp Y Bp - in Hg ΔH - in. H2O Vm - cu. ft. Tm - °F Vmstd - cu. ft.	2/25/2010 180.00 0.182 0.84 1.0206 29.90 0.421666667 58.254 59.4 42.586
Liquid Collected	mi	138
Volume of Water Vapor Moisture Content	Vwstd - cu. ft. %H₂0	6.496 13.23
Saturation Moisture	%H ₂ 0	100.0
Dry Mole Fraction	Mfd	0.868
Carbon Dioxide	%CO ₂	15.5
Oxygen	%O ₂	2.7
Carbon Monoxide	%CO	0
Nitrogen	$%N_{2}$	81.8
Fuel Factor Gas Molecular Weight, Dry	Fo Md	1.174 30.59
Gas Molecular Weight, Wet	Ms	28.922
Static Pressure	Pg - in. H ₂ O	0.68
Stack Pressure	Ps	29.95
Stack Temperature	Ts - °F	430.3
Average Velocity Head	Δp - in H_2O	0.29
Gas Velocity Stack Area Volumetric Air Flow, Actual Volumetric Air Flow, Standard Total Particulate Catch Probe and Nozzle Cyclone & Cup Catch PM2.5 Catch Filter	vs - ft./sec. As - sq. ft. Qaw - ACFM Qsd - DSCFM mg mg mg	39.20 70.88218425 166,734 85,887 12.8 11.4 0.5 0.9
· ···		3.0

camping Location	Otaon	PM10-2.5-4
		FIVI 10-2.5-4
Total Particulate Emissions		
Grains/DSCF	gr/DSCF	0.004638
Grains/DSCF at 7% O ₂	gr/DSCF@7%O ₂	0.003543
Pounds/Hour	lb/hr	3.415
PM ₁₀ Emissions		
Grains/DSCF	gr/DSCF	0.000181
Grains/DSCF at 7% O₂	gr/DSCF@7%O ₂	0.000138
Pounds/Hour	lb/hr	0.133
PM _{2.5} Emissions		
Grains/DSCF	gr/DSCF	0.000326
Grains/DSCF at 7% O₂	gr/DSCF@7%O ₂	0.000249
Pounds/Hour	lb/hr	0.240

Plant Name City, State Project # 1436 Test Location

PARAMETER	NOMENCLATURE	M5B/028-1	M5B/028-3	M5B/028-4
Date		2/24/2010	2/25/2010	2/25/2010
Run Time	θ	180	180	180
Nozzle Diameter	inches	0.299	0.299	0.298
Stack Area	As - sq. ft.	70.882	70.882	70.882
Pitot Tube Coefficient	Ср	0.84	0.84	0.84
Meter Calibration Factor	Υ	0.9602	0.9602	0.9602
Barometric Pressure, inches Hg	Bp - in Hg	29.90	29.90	29.90
Static Pressure	Pg - in. H2O	0.51	0.68	0.68
Stack Pressure	Ps	29.94	29.95	29.95
Meter Box Pressure Differential	Δ H - in. H ₂ O	0.88	1.02	0.93
Average Velocity Head	Δ p - in. H2O	0.2563	0.2904	0.2655
Volume of Gas Sampled	Vm - cu. ft.	103.762	108.048	103.553
Dry Gas Meter Temperature	Tm - °F	69.8	59.9	68.8
Stack Temperature	Ts - °F	424.3	430.8	430.3
Liquid Collected	grams	296.3	324.7	312.8
Carbon Dioxide	% CO2	15.5	15	15
Oxygen	% O2	6	2.1	2.1
Carbon Monoxide	% CO	0	0	0
Nitrogen	% N ₂	78.5	82.9	82.9
Fuel Factor	Fo	0.961	1.253	1.253
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	99.452	105.553	99.451
Volume of Water Vapor	Vwstd - cu. ft.	13.971	15.310	14.749
Moisture Content	% H ₂ 0	12.32	12.67	12.91
Saturation Moisture	% H ₂ 0	100.00	100.00	100.00
Dry Mole Fraction	Mfd	0.877	0.873	0.871
Gas Molecular Weight, Dry	Md	30.72	30.48	30.48
Gas Molecular Weight, Wet	Ms	29.15	28.90	28.87
Gas Velocity	vs - ft./sec.	36.60	39.26	37.55
Volumetric Air Flow, Actual	Qaw - ACFM	155,652	166,964	159,683
Volumetric Air Flow, Standard	Qsd - DSCFM	81,534	86,512	82,558
Isokinetic Sampling Rate	% I	98.5	98.5	97.9
Filterable Particulate Catch	mg	16.3	10.2	14.4
Condesible Particulate Catch	mg	229.8	238.3	249.3
FILTERABLE PARTICULATE EN		0.0005	0.0045	
Grains/DSCF	gr/DSCF	0.0025	0.0015	0.0022
Grains/DSCF at 12% CO2	gr/DSCF@12% CO2	0.0020	0.0012	0.0018
Grains/DSCF at 7% O2	gr/DSCF@7% O2	0.0024	0.0011	0.0017
Pounds/Hour	lb/hr	1.77	1.11	1.58
CONDENSABLE PARTICULATE		0.0057	0.00.10	
Grains/DSCF	gr/DSCF	0.0357	0.0348	0.0387
Grains/DSCF at 12% CO2	gr/DSCF@12% CO2	0.0276	0.0279	0.0309
Grains/DSCF at 7% O2	gr/DSCF@7% O2	0.0333	0.0258	0.0286
Pounds/Hour	lb/hr	24.92	25.84	27.38

VOLUME II Appendix B – Example Calculations

EXAMPLE CALCULATIONS

Run Number: M5B/028-1

Stack Gas Temperature, °R

$$T_s = 460 + ts$$

$$T_s = 460 + 424.3 = 884.3$$

Volume of Dry Gas Sampled at Standard Conditions, Dry Standard Cubic Feet

$$V_{mstd} = [17.64] \gamma V_{m} \left[\frac{P_{bar} + \frac{\Delta H}{13.6}}{T_{m} + 460} \right]$$

$$V_{mstd} = [17.647][0.9602][103.762] \left[\frac{(29.90 + \frac{0.88}{13.6})}{529.8} \right]$$

$$V_{mstd} = 99.452 \text{ ft}^3$$

Volume of Water Sampled, SCF

 $V_{wstd} = 0.04715$ [Weight of Condensed Moisture]

$$V_{wstd} = 0.04715 [296.3]$$

$$V_{wstd} = 13.971 \text{ ft}^3$$

Fraction of Water Vapor in Sample Gas Stream

$$\%H_2O = \left[\frac{V_{wstd}}{V_{mstd} + V_{wstd}}\right] \times 100$$

$$\%H_2O = \left[\frac{13.971}{99.452 + 13.971} \right] \times 100$$

$$%H_2O = 12.32$$

Dry Mole Fraction of Flue Gas

$$M_{fd} = 1-\%H2O/100$$

$$M_{fd} = 1-[12.32/100]$$
 Must use saturation moisture for Mfd calculation.

$$M_{fd} = 0.877$$

Molecular Weight of Sample Gas, Dry

$$M_d = 0.44[\%CO_2]+0.32[\%O_2]+0.28[100-\%O_2-\%CO_2]$$

$$M_d = 0.44[15.5] + 0.32[6] + 0.28[100 - 6 - 15.5]$$

$$M_d = 30.72$$
 pounds/pound-mole

Molecular Weight of Sample Gas, Actual Conditions

$$M_s = [M_d \times M_{fd}] + [0.18 \times \% H_2 O]$$

$$M_s = [30.71 \times 0.877] + [0.18 \times 12.32]$$

$$M_s = 29.15$$
 pounds/pound-mole

Average Stack Gas Velocity, Feet/second

$$vs = K_p C_p \left(\sqrt{(\Delta p)} \right)_{avg} \left[\sqrt{\frac{T_s + 460}{P_s M_s}} \right]$$

vs =
$$(85.49)(0.84)(\sqrt{0.2563})\left[\sqrt{\frac{884.3}{(29.94)(29.15)}}\right]$$

vs = 36.60 feet/second

4/11/2016

Wet Volumetric Flue Gas Flow Rate at Stack Conditions, Cubic Feet per Minute

$$Q_{aw} = 60 \times vs \times A$$

$$Q_{aw} = 60 \times 36.60 \times 70.882$$

 $Q_{aw} = 155,652$ Actual Cubic Feet per Minute

Dry Volumetric Flue Gas Flow Rate at Standard Conditions, Cubic Feet per Minute

$$Q_{sd} = 60 \times Mfd \times vs \times A \times \left[\frac{528}{ts + 460} \right] \left[\frac{Ps}{29.92} \right]$$

$$Q_{sd} = 60 \times 0.877 \times 36.60 \times 70.882 \left[\frac{528}{884.3} \right] \left[\frac{29.94}{29.92} \right]$$

Q_{sd} =81,534 Dry Standard Cubic Feet per Minute

Isokinetic Sampling Rate, Percent

$$I = \left(\frac{100 \text{ (T s)(V mstd)(29.92)}}{(60 \text{)(vs)(}\theta \text{)(An)(P s)(M fd)(528)}}\right)$$

$$I = \left(\frac{100 (884.3)(99.452)(29.92)}{(60)(36.60)(180)(0.000488)(29.94)(0.877)(528)}\right)$$

$$I = 98.5 \%$$

Filterable Particulate Matter Concentration, Grains per Dry Standard Cubic Foot

$$gr/DSCF = \left[\frac{CatchWeight(mg/1000)}{V_{mstd}}\right] \left[\frac{7000}{453.592}\right]$$

$$gr/DSCF = \left[\frac{0.0163}{99.452}\right] \left[\frac{7000}{453.592}\right]$$

$$gr/DSCF = 0.0025$$

Filterable Particulate Matter Emission Rate, Pounds per hour

$$1b/hr = \left(\frac{mg/1000}{453.592}\right) \times \left(\frac{Qsd}{Vmstd}\right) \times 60$$

$$lb/hr = \left(\frac{0.0163}{453.592}\right) \times \left(\frac{81,534}{99.452}\right) \times 60$$

$$1b/hr = 1.77$$

VOLUME II Appendix C – Field Data

Comb	Combined Cyclone PM10 & PM2.5 Run Data Sheet	one PM10	& PM2.5	Run Dat	a Sheet					-	Run ID Condition	PM10-2.5-3		
	IDENT	IDENTIFICATION INFORMATION	N INFOR	WATION					PRELIMII	PRELIMINARY CHECKS AND DATA	KS AND D	ATA		
	Plant Name	a									Actual	Regʻd	Vacuum	
	City						u <u>. </u>	-ull Train Pre	etest Leak C	Full Train Pretest Leak Check, ACFM	0	< 0.02 or 4%	15	
	State	0)					Parti	al Train Pos	ttest Leak C	Partial Train Posttest Leak Check, ACFM	0	0.020		
Š	Source Number	r FCC 135		Date	2/25/2010		(Rem	ove cyclon	e sampling	head before	posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cvclone	
Samp	Sampling Location	0		Start	0741		hea	d upright p	rior to recov	/ery.) Do no	t leak check	head upright prior to recovery.) Do not leak check during port changes.	anges.	
¥	Test Personnel	TTB		Stop	1041					.	∢)	
								Pitot	Fube Pretest	Pitot Tube Pretest Leak Check	0	0		
	Meterboy ID	000033		Eiltor ID	L G			Pitot To	ube Posttest	Pitot Tube Posttest Leak Check	0	0		
	© H∇			בוופו	ש ש		Baro	metric Pres	Barometric Pressure, In., Hg.	29.90	Static Pres	Static Pressure, In. W.C.	0.68	
	Gamma, γ	у 1.0206												
	Nozzle ID					1		AC	ACTUAL MOISTURE	⋖ర	GAS COMP	COMPOSITION	Account a construction of the state of the s	
Noz	Nozzle Diameter	r 0.182					5	later Recov	Water Recovered, grams			Moisture, %	12.600	
	Orsat/Fyrite	e FYR							CO ₂ %	15.5			29.81	
			ī						O ² %	2.7		Mw_run	28.77	
						_								
			S	Sampling Informa	Informati	tion					QA (Checks		
	Dwell Time	Elapsed	Meter Volume	Δ¢	Meter	Stack	Sample Train Vac	Impinger Evit Gas	Ηψ	Target &H	00 %	Run Cummulative	re D ₅₀ s,	
Port	Point (Min.)		(fft³)	(In. H ₂ O)	Temp. (°F)	(°F)	(in. Hg)	Temp., (°F)	(in. H ₂ O)	(in.H ₂ O)	200	PM ₁₀	nis PM _{2.5}	
۱ ۲	1 15.00	0 1	931.3	0.34	46	429	2	46	0.41	0.427	104.9	10.18	2.28	
	2 15.00	_	936.09	0.34	48	430	2	44	0.4	0.429	100.6	10.33	2.34	
	1	_	940.7	0.34	48	430	2	45	9.4	0.429	101.9	10.35	2.34	
	+	-	945.37	0.34	49	431	2	46	0.4	0.430	101.8	10.36	2.35	
	5 15.00	-	950.04	0.34	20	431	2	47	0.4	0.431	102.0	10.36	2.35	
m	1	-	954.73	0.34	90	431	2	47	0.4	0.431	102.2	10.36	2.35	
			959.43	0.34	50	432	2	48	0.4	0.431	102.5	10.36	2.35	
	\dashv		964.14	0.34	50	432	2	50	0.4	0.431	102.5	10.36	2.35	
	┪		968.85	0.34	51	431	2	48	0.4	0.432	101.6	10.36	2.35	
		-	973.53	0.34	52	431	2	51	0.4	0.433	101.6	10.37	2.35	
	5 15.00		978.22	0.34	53	431	2	54	0.4	0.433	100.1	10.38	2.35	
	6 15.00		982.85	0.34	54	431	2	58	0.4	0.434	99.2	10.40	2.36	
°F	Total Run Time	3:00:00	987.448 56.178											
	- Cla - C	I old Volume, ACF	00.140 A	*00	707	0 007			, ,	-				

OTM-036

Page 204 of 643

4/11/2016

2.74

11.49

103.4 %

0.401 in H2O

50.1

0.34 in. H2O

Averages 56.148

microns

_	Combined Cyclone PM10 & PM2.5 Run Data Sheet	Cyclo	ne PIM10	& PM2.5	Run Data	a Sheet						Run ID	PM10-2.5-4	
L					:							Condition		
	QI	ENTI	IDENTIFICATION INFORMATION	N INFOR	MATION					PRELIMIN	PRELIMINARY CHECKS AND DATA	KS AND D	ATA	
	Plant	Plant Name										Actual	Req'd	Vacuum
		CitA						Щ	'ull Train Pre	stest Leak C.	Full Train Pretest Leak Check, ACFM	0.001	< 0.02 or 4%	10
		State						Partis	al Train Posi	ttest Leak C	Partial Train Posttest Leak Check, ACFM	0	0.020	5
	Source Number FCC	umber			Date	2/2		(Remc	ove cyclone	sampling	head before	posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone
	Sampling Location Test Personnel	sonnel	Stack		Start	1135		heac	d upright pr	ior to recov	rery.) Do noi	t leak check	head upright prior to recovery.) Do not leak check during port changes.	anges.
))	1	aum.	2				Pitot T	iihe Prefect	Pitot Tuhe Pretest Leak Obeck	τ c	a c	
	•	-							Pitot Tu	be Posttest	Pitot Tube Posttest Leak Check	0	0	
	Meterl	Meterbox ID	٧.		Filter ID	Tare								
	7 }	ΔH @	- 1					Baror	Barometric Pressure, In., Hg.	ure, In.,Hg.	29.90	Static Pre	Static Pressure, In. W.C.	0.68
	Gan	сатта, ү	1.0206											
	Noz	Nozzle ID							AC	ACTUAL MOISTURE &		GAS COMPOSITION	OSITION	
	Nozzle Diameter	ameter	0.182					M	Water Recovered, grams	ered, grams	138		Moisture, %	12.600
	Orsat	Orsat/Fyrite	FYR							CO ₂ %	15.5		Md_run	29.94
										02 %	2.7		Mw_run	28.81
J														
				S	Sampling Informa	Informativ	tion					QA (Checks	
	••	Dwell	Elapsed	Meter	дò	Meter	Stack	Sample	Impinger	Η &	Target %H		Run Cummulative	ive D ₅₀ s,
	Port Point	(Min.)	nme, h:m:s	(ft³)	(ln. H ₂ O)	Temp. (°F)	lemp., (°F)	(in, Ha)	Exit Gas Temp (°F)	(in. H ₂ O)	(in.H ₂ 0)	% Iso	microns	ons PM.,
	7-	15.00	0	987.7	0.29	55	430	2	50	0.4	0.437	109.8	11.66	2.86
		15.00	15:00	992.41	0.29	55	431	2	58	0.4	0.437	107.8	11.74	2.89
1		15.00	30:00	997.03	0.29	22	430	2	57	0.42	0.439	111.5	11.67	2.86
	7	15.00	45:00	1001.83	0.29	58	430	2	59	0.42	0.440	112.2	11.63	2.84
	5	15.00	1:00:00	1006.67	0.29	09	430	2	57	0.42	0.442	109.0	11.64	2.85
<u> </u>		15.00	1:15:00	1011.39	0.29	61	430	2	09	0.42	0.443	115.2	11.58	2.82
	7	15.00	1:30:00	1016.39	0.29	61	431	2	61	0.43	0.443	113.9	11.55	2.81
	2	15.00	1:45:00	1021.33	0.29	59	431	2	62	0.43	0.441	113.4	11.53	2.80
		15.00	2:00:00	1026.23	0.29	09	430	2	62	0.43	0.442	114.1	11.51	2.79
_1		15.00	2:15:00	1031.17	0.29	61	430	2	64	0.43	0.443	113.1	11.50	2.79
1	2	15.00	2:30:00	1036.08	0.29	63	430	2	09	0.43	0.444	112.2	11.50	2.79
		15.00	2:45:00	1040.97	0.29	63	430	2	61	0.43	0.444	114.4	11.48	2.78
	7C €1€ }	1	00.00	LUC UTOT									-	

OTM-036

Page 205 of 643

4/11/2016

2.66

11.29

114.1 %

in H2O 0.422

430.3

59.4

0.29

Averages

58.254

Total Volume, ACF

in. H20

PM10-2.5-4

1036.08 1040.97 1045.95

2:45:00 3:00:00 2:30:00

Total Run Time

microns

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# 1436

Run ID M5B/028-1 Condition

	IDEN	TIFICATI	ON INFO	RMATIC	N		PREL	<u> IMINARY</u>	CHECKS	AND DATA	
	Plant								Actual	Req'd	Vacuum
Cit	y, State					Pre	Leak Che	eck, ACFM		< 0.02 or 4%	
								eck, ACFM		0.020	10
Test L	.ocation	FCC 1	35 Stack] Date	2/24/10				А	В	
	rsonnel		, TTB	Start		F	Pitot Pre L	eak Check]
				Stop	1304	Pi	tot Post L	eak Check			
Mete	rbox ID	802012	1	Filter ID	Tare						
,	ΔH@		1	1 1107 12	1410		s	tatic Pressi	ure, In. H₂O	0.51]
Gan	nma (Y)	0.9602							sure, In. Hg		
r .	Nozzle]			×					
1	zle Dia.	0.299	-	W.E	0.05					COMPOSIT	
8	ozzle ID	1-4	-1	K Factor		VVate	er Recove	red, grams		Moisture, %	12.317
	ro b e ID	8A	-		802012	,		CO2 %	15.5	O2 %	
	I	i	1	piing in	formation	7	<u> </u>			QA Checks	
Do!=4	Time	Elapsed	Dry Gas	45	Meter	Stack		Target	Run	ISO %	Lk Chck
Point	Per Pt, (Min.)	Time (h:m:s)	Meter (cu.ft.)	ΔР	Temp	Temp	ΔН	ΔH	Pt	Cum	Readings During Run
1	15	0	501.457	0.25	57	421	0.84	0.839	100.1	100.1	LC 1
2	15	15:0	509.86	0.23	69	421	0.83	0.825	99.9	100.1	LOI
3	15	30:0	518.27	0.22	70	422	0.76	0.757	99.6	99.9	
4	15	45:0	526.31	0.24	71	423	0.83	0.737	100.8	100.1	LC-2
5	15	1:00:0	534.82	0.24	72	424	0.83	0.828	100.3	100.1	LQ-2
6	15	1:15:0	543.3	0.26	73	424	0.9	0.898	99.5	100.2	.,
7	15	1:30:0	552.07	0.28	71	426	0.96	0.961	98.9	99.9	LC-3
8	15	1:45:0	561.07	0.27	70	426	0.93	0.925	96.0	99.4	200
9	15	2:00:0	569.63	0.26	69	426	0.89	0.889	95.7	98.9	
10	15	2:15:0	577.99	0.27	70	426	0.93	0.925	107.9	99.9	LC-4
11	15	2:30:0	587.61	0.27	72	426	0.93	0.929	96.6	99.6	
12	15	2:45:0	596.26	0.28	73	426	0.97	0.965	98.1	99.4	
13	15	3:00:0	605.219								LC-5
14	15	3:15:0									
15	15	3:30:0									
16	15	3:45:0									LC-6
17	15	4:00:0									
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									
21	15	5:00:0									
22	15	5:15:0									LC-8
23	15	5:30:0									
24	15	5:45:0									
25	15	6:00:0									
		6:15:0						ı r			
			100 =		Aver				Run ISO		
		Vm		0.2563	69.8	424.3	0.883		98.5		

OTM-036

99.4523

Vmstd

in. H₂O

°F

Page 206 of 643

°F

in H₂O

4/11/2016

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# 1436

Run ID M5B/028-2 Condition

	IDEN:	TIFICATI	ON INFO	RMATIC	N		PREL	.IMINARY	CHECKS	AND DATA	
	Pla	nt							Actual	Req'd	Vacuum
C	City, Sta	е				Pi	re Leak C	heck, ACF	Л О	< 0.02 or 4%	14
						Po	st Leak C	heck, ACF	Л O	0.020	10
Test	Locatio	n FCC 13	35 Stack	l Dai	e2/24/10				Α	В	
	Personn		, TTB		rt 1410		Pitot Pre	Leak Ched			
•			,		p 1710			Leak Chec			
0.4~	to close I	D802012	1					i			
ivie		@ 1.554		Fillerii	D Tare			Static Proc	sure, In. H ₂	0.51	
Ga		() 0.9602					Ran		essure, In. 112		
	al Nozz						Dai	omenie i re	33uic, iii. 1	g 25.50	
	zzle Dia		1		:	A	CTUAL	WOISTUR	RE & GAS	COMPOSITI	ON
î	Nozzle I	***************************************		K Facto	or 3.56	Wa	ter Recov	ered, gram	s 307.6	Moisture, %	12.782
	Probe I	D 8B	TCF	Readout I	D802012			CO ₂ q	₆ 15	O2 9	6 5.5
			Sam	pling In:	formation	<u> </u>		ì		QA Checks	
	Time	Elapsed	Dry Gas				-	_			Lk Chek
Роіп		-	Meter	ΔΡ	Meter Temp	Stack Temp	ΔН	Target	Ri Pt	un ISO % Cum	Readings
	(Min.	(h:m:s)	(cu.ft.)		Temp	reinp		ΔН	۳۱	Cum	During Rur
1	15	0	606.041	0.28	71	425	1	0.998	100.9	100.9	LC 1
2	15	15:0	615.25	0.26	77	425	0.94	0.938	104.3	102.6	
3	15	30:0	624.53	0.26	78	425	0.94	0.940	97.4	100.9	
4	15	45:0	633.21	0.24	79	425	0.87	0.869	102.4	101.2	LC-2
5	15	1:00:0	642	0.25	81	425	0.91	0.909	100.0	101,0	
6	15	1:15:0	650.79	0.25	81	425	0.91	0.909	99.5	100.8	
7	15	1:30:0	659.54	0.24	81	426	0.87	0.872	99.1	100.5	LC-3
8	15	1:45:0	668.07	0.25	80	426	0.91	0.906	94.3	99.8	
9	15	2:00:0	676.34	0.26	79	426	0.94	0.941	96.9	99.4	
10	15	2:15:0	684.99	0.25	79	426	0.9	0.904	101.8	99.7	LC-4
11	15	2:30:0	693.9	0.25	78	426	0.9	0.903	97.6	99.5	
12	15	2:45:0	702.43	0.24	78	427	0.87	0.866	100.1	99.5	
13	15	3:00:0	710.99								LC-5
14	15	3:15:0									
15	15	3:30:0									
16	15	3:45:0									LC-6
17	15	4:00:0							• · ·		
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									
21	15	5:00:0									
22	15	5:15:0									LC-8
23	15	5:30:0	Ì								
24	15	5:45:0									
25	15	6:00:0				j					
		6:15:0		·		 					

 Averages

 Vm
 104.949
 0.2524
 78.5
 425.6
 0.913

 Vmstd
 98.9623
 in. H₂Φ
 °F
 °F
 in H₂C

99.8 %

Air Control Techniques, P.C.
Isokinetic Sampling Train Field Data Sheet

Job# 1436

Run ID M5B/028-3 Condition

	IDEN	TIFICATI	ON INFO	RMATIC	N		PREL	IMINARY	CHECKS	AND DATA	
	Plant]			Actual	Req'd	Vacuum
Cit	ty, State					Pre	Leak Ch	eck, ACFM		< 0.02 or 4%	
l						Pos	t Leak Ch	eck, ACFM	0	0.020	9
Test L	_ocation	FCC 1	35 Stack	Date	2/25/10	1			Α	В	
Pe	ersonnel	DLS	, TTB	Start		1 F	Pitot Pre L	eak Check			
				Stop	1043	Р	itot Post L	eak Check.			
Mete	erbox ID	802012	1	Filter ID	Tare						
	ΔH@		1	1		1	S	Static Pressu	ıre. In. H₂O	0.68	
	nma (Y)]					metric Press			
ŧ	Nozzle										
l	zle Dia.	0.299	_							COMPOSITI	
			4			Wate	er Recove	red, grams	324.7	Moisture, %	12.667
Nozzle ID								CO2 %	15	O2 %	2.1
	1		1	pling In	ormation	1				QA Checks	
Do!-4				4-	Meter	Stack		Target	Run	ISO %	Lk Chck
Point	· ' i		1 :	ΔΡ	Temp	Temp	ΔН	ΔΗ	Pt	Cum	Readings During Run
- 1				0.25	F 2	400	4.0	4.005	4040	1010	
						429	1.2	1.205	104.9	104.9	LC 1
						430	1.05	1.035	98.2	101.7	
						430	1.1	1.074	96.8	100.1	
						431	1 05	1.007	99.9	100.0	LC-2
						431	1.05	1.044	97.0	99.4	
						431	1	1.011	98.5	99.3	
						432	1	1.010	97.7	99.1	LC-3
						432	0.99	0.977	100.0	99.2	
10	15	2:15:0	795.88			431	0.98	0.982	98.2	99.1	
11	15	2:30:0	804.44	0.27 0.27	64 65	431	0.95	0.949	96.7	98.8	LC-4
12	15	2:45:0	813.28			431	0.95	0.951	99.7	98.9	
13	15	3:00:0	821.863	0.26	66	431	0.92	0.917	98.4	98.9	105
14	15	3:15:0	02 1.003								LC-5
15	15	3:30:0									
16	15	3:45:0									106
17	15	4:00:0									LC-6
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									LO-/
21	15	5:00:0		i							
22	15	5:15:0									LC-8
23	15	5:30:0									
24	15	5:45:0									
25	15	6:00:0					:				
<u>-</u> -		6:15:0		<u>!</u>						 	

 Averages

 Vm
 108.048
 0.2904
 59.9
 430.8
 1.016

 Vmstd
 105.5533
 in. H₂O
 °F
 °F
 in H₂O

98.5 %

Method 1 - Air Control Techniques, P.C.

Date

Client				A PORTO DE LA CONTRACTOR DE LA CONTRACTO				Note: If	more th	an 8 an	d 2 dian	ntelers a	and if du	ct dia.	dranzo sono ano	
Job#	,							is less t								
Plant Nar	The s									Diam						
State			<u></u>			Veloc	itv		UP			Dowr	 1	Partic	ulate	
City	•					12	-		8			2	<u> </u>		12	
1 *	Lacotion		• —			12			7			1.75		·	12	
Sampling	Location					12	-					1.5			16	
						16	~~~					1.25			20	
						16			2			0.5		24	ог 25	
Na of Do	rts Available			5	i			***************************************					ene e presente pons	/*************************************	01 20	
	• • • • • • • • • • • • • • • • • • • •			2	(www.wy	1 - 00	ion of	Doint	o in C	iraula	Ctoo	ve or i	Duoto	T 46.50 T /1 5T at	
No. of Po				3									18	20	22	24
	le Diameter, Inc		1 1	129.0625		4	6	8	10	12	14	16	1.4	1,3	1,1	1.1
		Fo Outside Of Po			1	6,7	4.4	3.2	2.6	2.1	1.8	1.6	_		-	1
	=	all Thickness, Incl	nes	14.875	2	25.0	14.6	10.6	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
Depth Of Stack Or Duct, Inches			114.1875	3	75.0	29.6	19.4	14.6	11.8	9,9	8.5	7.5	6.7	6.0	5.5	
Stack Or Duct Width (if rectangular), Inches			N/A	4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9	
Equiv. Diameter = 2DW/(D+W), Inches			N/A 10340.6	5	l	85.4	67.7	34.2	25.0	20.1	16.9	14.6 18,8	12.9 16,5	11.6	10.5	
Stack/Duct Area, Square Inches				10240.6	6		95.6	80.6	65,8	35.6	26.9	22.0				13.2
(DIXR ² or LXW)					7	1		89.5	77.4	64.4	36.6	28.3	23,6	20.4	18.0	16.1
		r	Upstream	Downstream	8	<u> </u>		96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.4
	to Flow Disturba	ances	612	156 1.37	9	-			91.8	82.3	73.1	62.5	38.2	30.6	26.2	23.0
Diameter	\$		5.36	1.51	10	-			97.4	88,2	79.9	71.7	61.8	38,8	31.5	27.2
				1.55	11	1				93,3	85.4 90.1	78.0 83.1	70.4 76.4	61.2 69.4	39,3 60.7	32,3 39.8
Deinel	ocation Dat	**************************************	gage in the military Parket Constructive services gray	1	13	 				31.3	94,3	87.6	81.2	75.0	68.5	60.2
	% of Duct	Distance From	Distance From		14	1					98,2	91.5	85.4	79.6	73.8	67.7
Point	% of Duct Depth	Inside Wall	Outside of Port	\	15						1 50.2	95,1	89,1	83.5	78.2	72.8
1	4.4	5.024	19.899	\	16	1						98.4	92.5	87.1	82.0	77.0
/2	14.6	16.671		API Method	17	 					, , ,	<u></u>	95.6	90.3	85.4	80.6
/ 3	29.6	33.800	48.675	/	18	1							98.6	93.3	88.4	83,9
4	70.4	80.388	95.263		19									96.1	91.3	86.8
5	85.4	97.516	112,391		20	<u> </u>								98.7	94.0	89.5
6	95.6	109.163	124.038		21										96.5	92.1
7					22										98,9	94.5
- 8					23	_										96.8
9					24						The diameter				**********	98.9
10	2.6	2.969	17.844													
11	8.2	9.363		R		****	1	tice c	F Dei-	to in F	o otoo	au de c	Stade	s or D	into	
12	14.6	16.671	31.546	- ∦		_	1	7	5	6	ectar 7	iguiai [*] 8	Stack	10	11	12
13	22.6	25.806	40.681 53.927	4 I	1	25	3 16.7	12.5	10.0	8.3	7.1	6,3	5.6	5.0	4.5	4.2
14 15	34.2	39.052 75.135		41	1 2	25 75	50	37.5	30.0	25	21.4	18.B	16.7	15,0	13.6	12.5
16	65.8 77.4	88.381	103.256		3	1 "	83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
17	85.4	97.516		-8	4	\vdash	, 55.5	87.5	70.0	58.3	50	43,8	28.9	35.0	31.8	29.2
18	91.8	104.824	119,699		5	1			90.0	_	64.3	56.3	50	45,0	40.9	37.5
19	97.4	111.219		-G	6	1				91.7	78.6		61.1	55,0	50	45.8
20	J1. T	1.1.2.10		1	7	Ť				1	92.9		72.2	65.0	59.1	54.2
21				1	8						.*	93,8	1	75.0	68.2	62.5
22					9	1							94.4	85,0	77.3	70.8
23				1	10								 	95.0	86.4	
23				1	11	1								1	95.5	1
25				1	12	1				•					,	95.8
20		l		I	. பு ஊன்னன	1	en conse	aru cara		***************************************						1 20.0

0.0000-0.0625 - 0

0.5625-0.6875 - 5/8

0.0625-0.1875 - 1/8

0.6875-0.8125 - 3/4

0.1875-0.3125 - 1/4

0.3125-0.4375 - 3/8

0.8125-0.9375 - 7/8 0.9375-1.0000 - 1

0.4375-0.5625 - 1/2

Ty = 365 Ch. 6. 61 T2: 413 711-11

Combined Cyclone PM10 & PM2.5 Run Data Sheet

公司-179-

Run ID

Dilution Flow Rate, LPM Vacuum (Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. 21.80 21.80 28/ 9 Static Pressure, In. W.C. 05 2.8 2.8 2.8 1 2.81 60 GC microns < 0.02 or 4% CPM Filter Temp., (°F) % Moisture, Reald QA Checks Md_run Mw_run ACTUAL MOISTURE & GAS COMPOSITION 8 PRELIMINARY CHECKS AND DATA <u> এ</u>প্তা 383 33 97 ভ Probe Temp., Filter / Cyclone Temp., (°F) Actual Condition 8 Full Train Pretest Leak Check, ACFM 6.00 Partial Train Posttest Leak Check, ACFM 0.000 327 327 323 433 433 314 328 路路路 Pitot Tube Pretest Leak Check (F) 02 % 12 2 15.5 मुक्क Barometric Pressure, In.,Hg. [29.9 418 ## ## 5 नात CO₂ % Water Recovered, grams (in. H₂O) in H20 0.38 0.34 0.4 0.4 160 14.0 Impinger Exit Gas Temp., (°F) ઉ भूपक्ष प्रश्निक प्रतिक प्रश्निक प्रिक प्रश्निक प्रतिक प्रत Sample Train Vac. (In. Hg) Temp., Sampling Information Stack きをおき 12% 12% बुद्ध 中 Temp. (°F) Meter Tare Date | 2/24 | 10 Ļ Start 0958 Stop[[26.2] 368888 333 IDENTIFICATION INFORMATION ত **«Р** (In. H₂O) in. H20 Filter ID 0.25 Averages Volume सुरु व्या 331.27 84.500 839.00 84349 **48.54** 353.38 858.27 824.61 831.53 819.63 સ્દ્રહતુ. ૧૮ なるな Total Volume, ACF Elapsed 1.9070 TIme, h:m:s Weterbox ID 404033 Gamma, **γ 1.020**6 Orsat/Fyrite | Kin'te Nozzle Diameter 🗖 🚓 3:00 323 Nozzle ID SS-I श्चित्र होत्य होत Test Personnel|**া**ট 0 5 ΔH @ State Run Time Plant Name Sampling Location Source Number Time, Dwell (Min.) $\overline{\mathcal{M}}$ D P 0 \bar{w} S Point -5 77 Port Run Œ OTM-036 Page 210 of 643 4/11/2016

OTM-036

Page 211 of 643

4/11/2016

Combi	red Cycle	one PM10	& PM2.	Combined Cyclone PM10 & PM2.5 Run Data Shee	a Sheet						Run ID Condition	MPJ-2.5-3	
	IDENT	*IDENTIFICATION INFORMATION	NINFOR	WATTON		en.c			PRELIMI	NARY CHE	PRELIMINARY CHECKS AND DATA	474	
	Plant Name City State	⊕ > ⊕				 	Part	Full Train Pr ial Train Pos	Full Train Pretest Leak Check, Partial Train Posttest Leak Check,	theck, ACFM	Actual O.003	Req'd < 0.02 or 4%	Vacuum Io
Soul Sampli Tes	Source Number Sampling Location Test Personnel	n	ł 1	Start Stop	2846 0711		(Rem hea	iove cyclon id upright p Pitot	yclone sampling head before ght prior to recovery.) Do no Pitot Tube Pretest Leak Check	head before very.) Do no :Leak Check	posttest leal	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. A B Pitot Tube Pretest Leak Check	cyclone anges.
	Meterbox ID ∆ H @ Gamma, y	1-90303 1-9030	<u> </u>	Filter ID	Tare		Barc	Pitot T	Pitot Tube Posttest Leak Check Barometric Pressure, In., Hg. 24.1	Leak Check		Static Pressure, In. W.C. 068	9.0cg
Nozz	Nozzle ID 55-7 Nozzle Diameter 0.182 Orsat/Fyrite Fyrik	58-7 10-182		-			N	ACTUA Water Recovered,	FTUAL MOI rered, grams CO ₂ % O ₂ %	STURE &	ACTUAL MOISTURE & GAS COMPOSITION Sovered, grams CO ₂ % Moisture O ₂ % Md_run Mw_run	Moisture, % Md_run Mw_run	
				Sampling Inform	Informat	ation					0.00	QA Checks	
Port	Dwell Time, Point (Win.)	Elapsed Time, h:m:s	Meter Volume	«Р (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Sample Train Vac,	Impinger Exit Gas	°Н (in. H ₂ O)	Probe Temp., (°F)	Filter / Cyclone Temp., (°F)	CPM Filter Temp., (°F)	Dilution Flow Rafe, LPM
	+	0	931.39A	0.34	<u>16</u>	429	2	4,0	15°0	387	3/2	h5 額	1000
H C	מי מ	10:08	7150,071 PPD.70		25 128	430	न्द्र	44 45	0,40 0.4	423 533	370		2,60 8,20 8,20 8,20 8,20 8,20 8,20 8,20 8,2
T D	Л й	45:01	945.3-7		पूर्व दर्भ	43	E	計	ار م را	433	333		7.82 7.01
	52		95473		ડે જ	43	500	中	D.0	433	383	25.	(A)
I G	<u>5</u>		157.43 964.14		88	42%		22	0.0	425	224		182
70	15	Q:20101	46.85		52	(ch (d)	200	96	0,0	423 423	S.E.E.		1.82
T T	ফ ন	2:45:02	178.13 100.05		53	43		25	04	433	325	57	18/
Total	ш.	ในท Time 3:ชะ:03 Total Volume, ACF	多光光							\			
Run			Averages	in. H2O	나	L o	· 		in H2O		%	microns	Suc

 11^{-1} 3^{-1} 3^{-1} 3^{-1} 3^{-1} 3^{-1} 3^{-1} 3^{-1} Combined Cyclone PW10 & PW2.5 Run Data Sheet

しています。 「つい」 「中での でんり こうしょう ないり Combined Cyclone PM10 & PM2.5 Run Data Sheet	10 & PM2.5 Run Data	a Sheet						Run ID Condition	HPT-PINZS-	-4
IDENTIFICATION INFORMATION	V INFORMATION		14.		1	PRELIMIN	ARY CHEC	PRELIMINARY CHECKS AND DATA	Z	
								Actual	Rea'd	Vacuum
City				叿	ı∥ Train Pre	test Leak Ch	Full Train Pretest Leak Check, ACFM	0.001	< 0.02 or 4%	ID OI
State	1			Partia	il Train Post	test Leak Ch	Partial Train Posttest Leak Check, ACFM G. 60	0.000		2
Source Number Sampling Location		0112110		(Remo	ve cyclone	sampling bior to recov	nead before ery.) Do not	posttest leak leak check d	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	cyclone anges.
Test Personnel 1117	dos	1435			• · · · · · · · · · · · · · · · · · · ·		- - -	A	В	
					Pitot I Pitot Tu	ube Pretest be Posttest	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	W/W	N/#	
Meterbox ID 900023 △ H @ 1,901 0	Filter ID	Tare		Baron	Barometric Pressure, In.,Hg.	ure, In.,Hg.	29.9	Static Press	Static Pressure, In. W.C.	0.68
			l Ca						MOIL	
Nozzle Diameter 7 18.2		e e e e e e e e e e e e e e e e e e e		M	ACTUA Water Recovered,	ACTUAL INDISTURE covered, grams	SIUKE & C	A GAS COMPOSITION		
Orsat/Fyrite Mich		4				CO ₂ %			Md_run Mw_run	
		Company of the Company of the Company		Commission of the Control of the Con	egyptyte am a 1 Compt ger an ar a carpyr	22 /2				
	Sampling	Sampling Information	u _O					QAC	Checks	
Dwell Elapsed	Meter &P	Meter	Stack	Sample	Impinger	Ŧ	Probe Temp.,	Filter / Cyclone	CPM Filter	Dilution Flow
	Volume (In. H ₂ O)	Temp. ("F)	Temp.,	Train Vac.	Exit Gas Temp., (°F)	(in. H ₂ O)	(F)	Temp., (°F)	Temp., (°F)	Rate, LPM
O 51 h	92.0 of 689	56	431	7	50	0.4	362	312	NIA	<u> </u>
	1 14.299		161		50	0.4	404	387		4.50
8	4463	13. 13.	T			3 C T C	419	324		3,83
G (5)	1001:05 1000:05 1000:05		7	678	57	0,42		322		181
	1011.39					0.43	422	335		58.2
25:1	1016.34 1×71.33	20	\$ <u>5</u>			0.43	पूछी पूत्र प	325		3.01 2.82
	10%.23		430		62	0.43	hgh	ગ્રેત્રન		28/
3:13	1031.17	ŢĢ,	439	3		2,0	אבאו	336		28
3:30	10.30.08	69	55 55		8 5	0,43	hen hen	h 12	->	1.62
Total Volume, ACF	Averages			•						
Run	in. H20	1 <u>L.</u>	ų,			in H2O		%	mici	microns

Method 4 - Air Control Techniques, P.C.

Source Information

Date 2/23/10

Plant Name City, State Sampling Location				Job # Process Personnel	1436 FCC
Sampling Information	1				
S	Run Number And Identification Earnpling Date Recovery Date	API-1 / Q 196 2/24/10	PI-Z / Q197 Z124110	4PI-3 Q198 2125/10	API -4 Q 199 Z125/10
Moisture Data				. 4	
Impinger 1 Contents -	ÞΗ	4	4	4	NA
	Veight, grams	462.8	457.9	457.2	742.8
	Veight, grams	339.1	340.61	337,5	635.0
Condensed '	Water, grams	123.7 /	117.31	117.71	107.81
Initial V	Veight, grams Veight, grams Water, grams	597.7 598.2 -0.5	634.1 635.0 -0.9 v	597.4 598.6 -1.2 V	509,2 494,5
	Veight, grams Veight, grams	604.8 605.4	593.7 594.6	603.6 604.3	
Condensed	Water, grams	-0.6v	-0.9 V	-0.7V	
Initial V	Veight, grams Veight, grams Water, grams				
Silica Gel - Final V	Veight, grams	842.3	902.9	රිණි.ර	817.0
	Veight, grams Veight, grams	831.0	8919	842.3	801.5
	Water, grams	11.31)1.0 v	13.7 V	15.5√
Total	Water, grams[133.9 /	126.51	129.5 V	138.01
F	ovrge 1	410-1510	1715-1815	1115-1215	NA

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))
Percent Moisture = 100 * Bws

Method 2 - Air Control Techniques, P.C.

Identification Information		
Client City:	Job State	1456
Sampling Location and Port Info	rmation	
Sampling Location Measured Barometric, in. Hg Duct/Stack Dia., In.	or 1013 and 10	Pitot ID SA SB Coeff. (Cp) 0.84 TC ID
Measurement Data		
Date Z-24-10 Run Identification MZ-1 Stactic Pressure, in. WC +0.51 Start Time 6935 End Time	Date Z-24-16 Run Identification M Z-Z Stactic Pressure, in. WC +0.13 Start Time 1720 End Time 1736	Date 2-25-10 Run Identification M2-3 Stactic Pressure, in. WC + 0 b 8 Start Time 0735 End Time 0740
Pitot Leak Checks Positve Side Negative Side	Positve Side Negative Side	Positve Side Negative Side
Ap, in. WC Temp. °F A 1 0.26	Δp, in. WC Temp. °F 1	Δp. in. WC Temp. °F 1
Average .	Average .	Average .

 $V_s = 85.49 * C_p * ((\Delta P \text{ avg}) * (460 + t_s) / (P_s * M_s))^{0.5}$

Method 2 - Air Control Techniques, P.C.

Identification Information	· · · · · · · · · · · · · · · · · · ·		
Client [‡] Cit		Job 143 State	
Sampling Location and Port Info	rmation		
Sampling Location Measured Barometric, in. Hg Duct/Stack Dia., In.	29.9	Pitot IE Pitot Coeff. (Cp TC IE	0.84
Measurement Data		· ·	
Date 2-25-10 Run Identification M 2-4 Stactic Pressure, in. WC 16-68 Start Time [450] End Time [50]	Date Run Identification Stactic Pressure, in. WC Start Time End Time		Date In Identification ressure, in. WC Start Time End Time
Pitot Leak Checks Positve Side Negative Side	Positve Side Negative Side		Positve Side
Ap, in. WC Temp. °F B 1 0.28 430 2 0.29 430 3 0.29 431 4 0.28 430 5 0.28 430 6 0.28 430 7 0.27 429 10 0.27 429 11 0.27 429 11 0.27 429 12 0.26 427 13 14 15 16 17 18	Δp, in. WC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1 1 1 1 1 1 1 1 1	1
Average .	Average	. Averag	е

 $V_s = 85.49 * C_p * ((\Delta P \text{ avg}) * (460 + t_s) / (P_s * M_s))^{0.5}$

	netic Sam	chniques, P pling Train	Field Dat				Job#			Run ID Cond.	MEB) (
	IDENT	TIFICATION	INFORM	<u>ATION</u>			PRELI	MINARY	/ CHEC	KS AND	DATA	and the second second second second
	Plant City, State	_						eak Chec eak Chec			Req'd < 0.02	Vacuum 13
Te	st Location		 .		224-10					4		3
Ì	Personnel	PJ , DLS	TIB	4	0228	7		k Check				
			•	Stop	1304	Pitot	Post Lea	k Check		•		w
G Id	leterbox ID	1.554 0.9602 6.361		Filter ID	Tare		arometrio	Pressure Pressur	e, In. Hg	Z9.5	<i>₹</i> 0	
1	Nozzle Dia.				·			IOISTU				
	Nozzle ID	<u> </u>		K Factor				d, grams CO2 %		IVIO	isture, %	6.0
Pit	ot Tube ID	8A_	ICRE	eadout ID	1204015		Lielle	- CO2 %	(12·2		U& 70	<u>16.0</u>
				Ç.	mpling	Informa	tion	EM	<u>an and the second property and two</u>	The second secon	CONTRACTOR AND AND AND ADDRESS OF THE STATE OF	2.7
Port/	Elapsed	Volume		Meter	Stack		Probe	Filter	Exit	Aux	1	Lk
Point	Time	Metered	ΔΡ	Temp	Temp	ΔН	Temp	Temp	Temp	Тетр	Vac	Chcks
8	0	501.457	0.25	57	421	0.84	378	Z97	48	56	2	LC 1
1	15	509.86	0.24	69	422	0.83	323	1296	50	59	2	
	36	518.27	0.22	70	422_	7.7b	B29	311	50	58	2	
	45	52631	6.24	-1	423	0.83	333	317	53	61	12	LC-2
	600	534.82	×24	72	424	083	33Z	314	48	28	2_	
1	14	543.30	026	73	424	090	331	315	49	57	2	
	30	552.07	028	71	426	096	330	297	50	157	2_	LC-3
1	JA -	561.07	70.27	70	426	A93	330	295	50	57	2	
	12010	569.63	026	69	126	n.89	326	32	50	59	2	
 	1200	57799	0.27	70	424	n93	328	296	47	51	2	LC-4
	30	5077.26	075	172	426	N93	327	302	48	51	2	
	45	696.7/0	079			47		305			2	
OFF	180	696.26 605,219	0.00		1 100		1		1			LC-5
<u> </u>		10001-1			- 							
					 	 	 					
 	<u> </u>			-	_		 	 				LC-6
	<u> </u>				 				 			
-	 			 	 			 				1
 	<u> </u>					 	-	1	 	 		LC-7
 	 	 		 	<u> </u>	 	 			+	 	1 -50-7
<u> </u>				-	 			-		-		
			 	-	-	 		 	 	-	 	100
		ļ	 			-		<u> </u>		 		LC-8
 			ļ	 	 		-			-{		
	 				-	-	ļ	-	 	-	+	
1	1	1	i	1	i	1	ì	1	1	1	1	1

 Averages
 Max / Min °F
 ISO
 High
 Total

 Vm
 In. H₂O
 °F
 °F
 in. H₂O
 %
 in. Hg
 Cu. Ft.

STOPPED FOR 2.5 TRAIN (Nº PROBLEM) FOR 6 MINUTES

		chniques, F					Job#	1436		Run ID	MSE	3-Z
Isokir	ietic Sam	pling Train	Field Dat	ta Sheet						Cond.		And the same of the same of
	IDENT	TIFICATION	INFORMA	ATION	gan gant in an order to be a set or		PRELI	MINAR	CHEC	KS AND	DATA	and the second s
<u> </u>	Plant		,0, ,				et die grade de la companya de la c	and the same of th		Actual	Req'd	Vacuun
	City, State						Pre Le	eak Chec	k, ACFM	අරුද	< 0.02	14
		•	· I	-			·Post Le	eak Chec	k, ACFM			
Te	st Location	<u></u>	7	Date	Z-24-/C				,	4	:	В
	Personnel		$\Box \dagger B$	Start		Pito	it Pre Lea	ak Check	j.			
		(1	Stop	1710	Pitot	Post Lea	k Check	V	,	V	
М	eterbox ID	En2512]	Filter ID	Tare				,	•		
	ΔΗα		<u> </u>				Static	Pressure	, In. H₂O	÷0.	7]
G	amma (Y)	C.960Z				В	arometri	c Pressur	e, In. Hg	79.5	10]
ld	eal Nozzle	<u>0.355</u>						120120			752 679	23.7
L	lozzle Dia.	0.29@ - Han Z-4	<u> </u>	K Factor	200			<i>llOISTU.</i> d, grams		a part year to have a very series of their	isture, %	TO A PROPERTY OF SIX PROPERTY BY A P.
₽iŧ	ot Tube ID			adout ID		Water		g CO2 %		1010		5.5
1 18	or I doe in		, 10170		ے بیسی		FYELL	2	12.0			
a inchesion et factor a	-company - rows - make make registering		ang vitan di kadalan sa ara ara ara ara ara ara ara ara ara	Sa	mpling	Informa	tion	CEM	20 Ta 10 Cook (2 to 10 t		uli mži slivno, žiti viti i žina gle go movau	-
Port/	Elapsed	Volume	ΔР	Meter	Stack	ΔН	Probe	Filter	Exit	Ашх	Vac	Lk
Point	Time	Metered		Temp	Temp		Temp	qmeT	Temp	Temp		Chcks
B	0	1000-CH	0.25	71	425	1.00	329	367	52	<u>5</u> \$_	 	LC 1
	15	615.25	0.26	77	425	0.94	328	367	20	36		<u> </u>
	30_	624.53	0.26	78_	1425	77.0	330	2917	5	5_/		
	45	633.2	0.24	79	1725	0.87	327	318	5/	57	 	LC-2
	600	64400	0.25	8	125	<u>641</u>	<u>331 </u>	313	5/	62	 	<u> </u>
·	15	650.79	0.25	8	425	091	328	300	5	62		
	30	059.54	0.24	81	426	0.87	328	203	52	62	(LC-3
	45	668.57	6.25	80	426	0.9	326	302	53	62		
	1200	JEB6.34	026	77	426	0.94	324	305	54	63		
	15	694.99	0.25	79	426	0.90	<i>3</i> 30	307	56	62		LC-4
	30	69390	025	78	426	0.90	329	316	52	60		
	45	70243	0.24	78	427	087	327	306	52	62	11	<u> </u>
V	100	716,970			ļ						ļ	LC-5
												<u> </u>
											ļ	_
								<u> </u>		<u> </u>		LC-6
										<u> </u>	ļ	<u> </u>
								<u> </u>			<u> </u>	<u> </u>
										ļ		LC-7
												LC-8
											<u> </u>	ļ
									•			

	,,	Avera	ges		M	ax / Min	ISO	High	Total
Vm									
Vmstd	in. H₂O	°F	°F	in. H₂O			%	in. Hg	Cu. Ft.

Air Control	Techniques	, P.C.	
Isokinetic S	Sampling Tra	in Field	Data Sheet

Job# (1438

Run ID M58-3 Cond.

		7										
	IDEN	TIFICATION	INFORMA	ATION			PRELII	MINARY	' CHEC	KS AND	DATA	
	Plant									Actual		Vacuum.
	City, State	L	t					eak Checleak Checl			< 0.02	9
_		ì	-4	1 -		Ì	FUSI LE	SOK OHECH	N, AUFIWI	الكنك	<u> </u>	
	st Location Personnel		<u></u> 2	Date Start	22510	Pito	t Pro Les	k Check	<i>/</i>	٧		
	1 DISOLITIES		2/110	4	1043			k Check			-	
N 414	etechov ID	8/2012	1	Filter ID						''		
141			<u> </u>	י יייפו וח	1916		Static	Pressure.	, In. H₂O	70.6	ීපි	
	amma (Y)	09602				В		Pressur				
	eal Nozzle			-		178	91121 11	1618711	3 <i>2</i>	12 AAII	0000	30
	lozzle Dia. Nozzle ID		1	K Factor	366			d, grams	TE & UA		POSITIC	<i>)</i> \
	ot Tube ID	<u></u>			20203	AAGIGI I	7000 A G I G I	CO2 %		10101	O2 %	
				personal and the second	mpling	Informa						
Porti	Elapsed	Volume Metered	ΔΡ	Meter	Stack	ΔН	Probe	Filter Temp	Exit Temp	Aux Temp	Vac	Lk Chcks
Point	Time	1713.815	ი <i>35</i>	Temp	Temp 429	1.20	Temp 300	1 emp	10mp	1emp 52	2	LC 1
	15	724.17		54	430	1.05	218	200	12/2	52		
	30	733.10	0.31	56	1430	1.10	31	308	15	24	Ϋ́ Υ	
-	45	142.20	0.29	58	421		308	312	40	55	3	LC-2
	6010	75126	A.30	59	431	1.05	307	307	50	54	3	
1.	15	760.22	029	60	H31	1.00	296	299	54	58	3	
	30	769.19	0.29	60	432	1.00	297	304	56	100	3	LC-3
	45	778.08	0.28	61			296	304	51	55	3	
	1200	18704	c.28	63	†	0.98	296	298	52	56	3	
	15	795.88	0.27	64	43)		299	302_	56	58	3	LC-4
	30	204.44	0.27	65	43\			297	58	61	3	
V	45	©13.28°	0.26	66	431	0.92	312	305	46	43	3	
OFF	9	821.863			<u> </u>			<u></u>				LC-5
								<u></u>		<u></u>	ļ	
		<u></u>										
					 			 	 	1		LC-6
			ļ	ļ	-	<u> </u>	 	ļ	 			
		ļ		ļ	-	ļ	ļ	-			-	107
					-			 	 	 		LC-7
		<u> </u>	ļ		 		 	-	 		 	
			 		 	-	 	 		 	-	LC-8
					 	 	 	 		 		FC-0
		 		 	 	 	 	 	 	 	1	
	<u> </u>	<u> </u>	 	 	 	 	 		 	 	 	
						1		1	<u> </u>	1		
l		 		Avera	ages		l M	lax / Min	°F	Iso	High	Total
!	Vm				Ť			1	1	1		
	Vmstd		in. H ₂ O	°F	°F	in. H₂O	 	 		%	in. Hg	Cu. Ft.

		chniques, P. pling Train		a Sheet	-	A Company	Job #	1436		Run ID Cond.	MSE	7-4
		IFICATION		TWO WILLIAMS CO. CO. C.			PRELI	MINARY	CHEC	KS AND	DATA	
	Plant City, State						Pre Le	ak Checl	, ACFM	Actual		Vacuum (乙)
A	et Location Personnel		, TTB	Start	Z-2510 1135 1435			ık Check ık Check		A 		3
	ΔH_{0}	802012 1.554 0.9602 0.356		Filter ID	Tare		arometrio	Pressur	e, In. Hg	+0. 29.9	Ó	
N	lozzle Dia.	0.298								AS COM	POSITIO	ON
5	Nozzie ID			K Factor adout ID		Water F	Recovere	d, grams CO2 %	<u>. </u>	Moi	sture, % O2 %	
Pite	ot Tube ID	<u>eb</u>	ICKE	מייטינו וט	0000		<u> </u>		. W. Par Ware and The Street			
	and the second s		ayan garan digasa karang ayan diga sa asan a sa s	Sa	mpling	Informa	tion	and the second section of the section of t	an e e e e e e e e e e e e e e e e e e e			
Port/	Elapsed	Volume	ΔΡ	Meter	Stack	ΔН	Probe Temp	Filter Temp	Exit Temp	Aux Temp	Vac	Lk Chcks
Point	Time	Metered 203	0.26	Temp b나	Temp	<u>~90</u>	306	797	<u>63</u>	67	. [LC 1
B	25	832.59	0.00	63	431	0.87	297	302		62	1	
	30	841.08	0.24	64	430	0.63	316	311	50	56	1	
	45	849 OZ	0.24	66	430	0.84		310	52	55		LC-2
	1000	857.40	0.25	67	430	0.87	321	313	54	57	(
	15	865.68	0.26	70	431	0.91	320	309	57	57	\	
	30	874.50	0.27	70	431	095	320	310	58	29		LC-3
	45	883.19	0.27	70	431	095	297	32	5/	22		
	1200	89196	028	71	430	0.99	321	30	56,	56	1	
	15	901.16	029	13	430	1.00	318	308	57	58		LC-4
	30	909.94	0.29	174	1430	1.05	316	310	59	127	 	
V	45	918.73		7.3	430	1-00	332	313	64	62		LC-5
OFF	180	927.756		-				 		-	,	LU-5
	ļ			 	 	-	 	-			 	
-							 	 		1		LC-6
			 	 	- 	 			 	 	1	
 	 			-		1	 	 			1	<u> </u>
1				 	 				1			LC-7
			 									
			1									LC-8
									ļ			<u> </u>
					<u></u>			nim ya nanja ja janjajang na mre a naw .				<u></u>

 Averages
 Max / Min °F
 ISO
 High
 Total

 Vm
 in. H₂O
 °F
 °F
 in. H₂O
 %
 in. Hg
 Cu. Ft.

Source Information				
Client Plant Name City, State Sampling Location			Job # Process Personnel	1436 FCC
Sampling Information				
Run Numbe	M5B-1	M5B-2	m.5B-3	M5B-4
Filter Identification Sampling Date	RQ 6171	RG 6172 2/24/10	RQ 6173	RQ 6174 2/25/10
Recovery Date		n n	~ ~	2/10/10
Moisture Data		4		
		, 1		n 1
Impinger 1 PH Contents -	4	4	4	24
Final Weight, grams Initial Weight, grams		661.7 373.8	692.8 396.0	1024.9 340.1
Condensed Water, grams				284.87
Impinger 2 Contents -				
Final Weight, grams Initial Weight, grams	1	616.9	612.5	<u>617.0</u> 615.7
Condensed Water, grams	6.91	-0,5 V	0.0 1	1.3 1
Impinger 3 Contents -				
Final Weight, grams Initial Weight, grams		601.9 607.9	638.0 638.6	607.1 607.3
Condensed Water, grams		0.01	-0.6 V	-0,21
Impinger 4 Contents -				_
Final Weight, grams				
Initial Weight, grams Condensed Water, grams				
oondensed water, grams		<u> </u>	<u> </u>	
Silica Gel -				
Final Weight, grams	856,1	875.5	863.6	855.8
Initial Weight, grams		855,3	835.1	828.9
Adsorbed Water, grams	19.01	20,2 √	28,5 V	26.9 1
Total Water, grams	296.31	307,6v	324.7 V	312.8√
Purge	1337-1437	1730-1830	1140-1240	1448-1545
Vm(std) = Volume of gas sampled at sta	indard conditions (dscf) = gamma*1	7.64*Vm*[Pbar+(D	H/13.6)]/(Tm+460)

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460)
Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms)

Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Percent Moisture = 100 * Bws Rin 3 - Cloudy after purge sweet smell, others SOZ Smell OTM-036 - Cloudy after purge sweet smell, others SOZ Smell

VOLUME II Appendix D – Calibration Data

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

		L. C.	NE INIOL-C	S-FORM ENGLISH ONLIS				
Meter Console Information	tion		Calibration	Calibration Conditions			Factors/Conversions	
Console Model Number	522	Date	Time	01/28/10		Std Temp	528	ĸ
Console Serial Number	802012	Barometric Pressure	sure	29.60	in Hg	Std Press	29.92	in Hg
DGM Model Number	RW 110	Theoretical Critical Vacuum	cal Vacuum [‡]	13.97	in Hg	K,	17.647	oR/in Hg
DGM Serial Number	964447	Calibration Technician	ıntcian	DLS				

For valid test results, the Actual Vacuum should be 1 to 2 In. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,e}R'^R)/(In.Hg*min).

_					-	- 1	- 1	 -	ı	_	
		Actual	Vacuum		in Hg	23	22	50	18	16	
		Amb Temp	Final	(t _{emb})	٦,	99	99	99	99	99	
	Critical Orifice	Amb Temp	Initial	(t _{amb})	±,	99	99	99	99	99	
		Coefficient	- Constitution of the Cons	¥	seo above2	0,2387	0.3483	0.4592	0.5907	0.8085	
		Serial	Number			FO 40	FO 48	FO 55	FO 63	FO 73	
Calibration Data		Outlet Temp	Final	(t _{mf})	±.	72	73	73	73	74	
n		Outlet Temp	Initial	(t _m)	4	71	72	73	73	73	
The Children Children Coemerator, It, mast to catter out in Lights in children with the princip many	Metering Console	Volume	Final	(V _m)	cubic feet	307.074	312,656	319.004	325.386	331.795	
		Volume	Initla	(V _m)	cubic feet	301.230	307.200	313.040	319.310	325.700	
Coemeleni, IX, mas	,	DGM Orifice	НΫ	(P _m)	in H ₂ O	0.25	0.56	1.00	1.65	3.15	
IIIC CHIICGI CHIICG	Run Time		Elapsed	(0)	min	18.0	11.5	9.5	7.5	5,5	

	The second second		}	Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	Н	ФНФ.
Dry Gas Meter	eter	Critical	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(V _{m(std)})	(Q _{m/std})	(VCf _(std))	(Q _{cr(e1d)})	ω	(AY)	(Q _{m(std)(corr)})	(∆H@)	(ØHØØ)
cubic feet	cím	cubic feet	cfm			cfm	in H2O	
5.747	0.319	5,545	0.308	0.9649	0.005	0.308	1.459	-0.095
5.359	0.466	5.170	0.450	0.9646	0.004	0.450	1,535	-0.020
5.859	0.617	5.630	0.593	0.9609	0.001	0.593	1.579	0.024
5.979	0.797	5.718	0.762	0.9563	-0.004	0.762	1.579	0.025
6.014	1.094	5,739	1.043	0.9542	-0.006	1.043	1.620	0.065
				0.9602	Y Average		1.554	∆H@ Average

Note: For Calbretion Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolorance of individual values from the average is +-0.02

ed in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 I certify that the above Dry Gas Meter was calib

1-29-10

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

onsole information		Calibration Conditions	fillians			Factors/Conversion
		Caliblation				
	, Date Timo		02/01/10		Std Temp	528
			0		00000	29 92
Console Serial Number 909033	Barometric Pressure		29.00	BL W	6631 200	70,02
RW 110	Theoretical Critical Vacuum	- Lilit	14.07	in Hg	1,1	17.647
Dem Sorial Mumber 328893	Calibration Technician		DLS			

in Hg oR/in Hg

Sign

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. DGM Serial Number

²The Critical Orifice Coefficient, K', must be entered in English units, (R^{3,a}R¹⁷)/(In.Hg^{*}min).

Mete DGM Orfitee Volume AH Initial (P _p) (V _{rd}) In H ₂ O cubic feet 0.34 607.140 0.71 612.900 1.20 618.630
DGM Orifice Volume AH Initial (P _m) (V _m) in H ₂ O cubic feet c 0.34 607.140 0.71 612.900 1.20 618.630
Elapsed (9) min 18.5 12.5 2.5 7.5

				Results				
- Property of the Control of the Con	Ctendaro	Chandardized Data				Dry Gas Meter		
				Callbrati	Callbration Factor	Flowrate	10	Ø HØ
ë d	Con Goe Motor	Criffeal	Crifical Orifice	Value	Variation	Std & Corr	0.75 SCFI	Variation
LIY G	(O mark)	(Ver _{tern})	(Qerisio)	3	(AY)	(Qmestallcorr))	(ØHØ)	(04H@)
(*m(sig)/	(institution)	cubic feet	cfm			cfm	In H2O	
1991 2000	0.302	5 707	0.310	1.024	0.004	0.310	1.974	0.067
055'0	0.002	5 646	0.452	1.020	-0,001	0.452	1.943	0.037
0.000	2010	858	0.596	1.019	-0.002	0.596	1.894	-0.012
5,555	0.764	5,77.7	0.766	1.019	-0,001	0.766	1.867	-0.040
5.650	1 028	5.767	1,049	1.020	0.000	1.049	1.855	-0.052
2000				4 0306	V 4.00000		1.907	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 certify that the above Dry Gas Meter was calibrated in

Date 2-01-

4/11/2016

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

Meter Console Information Conditions Number 522 Date Itime 12/01/10

in Ed

Theoretical Critical Vacuum¹ Calibration Technician

802012 RW 110

Console Model Number
Console Serial Number
DGM Model Number
DGM Serial Number

Barometric Pressure

29.70 14.0 DLS For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orlfice Coefficient, K', must be entered in English units, (ft^{3,4}0R¹²)/(in.Hg⁴min).

					Calibration Data					
			Metering Console		- Annie de la companya de la company			Critical Orifice		111111111111111111111111111111111111111
DGM (DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp	Serial	Coefficient	Amb Temp	Amb Temp	Actual
ಠ	РΥ	Initial	Final	initial	Final	Number		mitial	Final	Vacuum
185	(P,,)	(V _{ml})	(V _m t)	(f ⁱ²¹)	(t ^m 1)		ጟ	(tamb)	(t _{amb})	
3,	in H ₂ O	cubic feet	cubic feet	4 0	٦,		see above2	크	ا ل	in Hg
0	0.98	809.800	815,543	74	74	FO 55	0.4592	99	99	20.50
0.	0.98	815.543	821.300	74	75	FO 55	0.4592	68	68	20.50
Ö	96.0	821.300	827.061	75	75	FO 55	0.4592	68	68	20.50

_					<u> </u>		<u> </u>		
		ΔH@	Variation	(ØHVV)		0.001	0000	-0.001	ΔH@ Average
		PA	0.75 SCFM	(ØHØ)	in H2O	1.545	1.543	1.542	1.543
	Dry Gas Meter	Flowrate	Std & Corr	(Gmsidxcorr)	cfm	0.594	0.594	0.594	
		Calibration Factor	Variation	(AY)	TOTAL CONTRACT	0.001	-0.001	0,000	Y Average
Results		Calibrati	Value	(\(\)		0.945	0.944	0.944	0.945
	tandardized Data		rifice	(Q _{cr(std)})	cſm	0.594	0.594	0.594	1.6
			Critical Orifice	(Vcr _(std))	cubic feet	5.342	5.342	5.342	% Deviation
	Standardi	:	Meter	(Q _{m(std.)})	cfm	0.628	0.629	0.629	0.9602
			Dry Gas Meter	(V _{m/std})	cubic feet	5.650	5.659	5.658	Pretest Gamma

Note. For Celibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

l certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

01-10-21

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Merter Console Information	aflon	To the second se	Calibration	Calibration Conditions			Factors/Conversions	
Console Model Number	522	Date	Time	12/02/10		Std Temp	528	ያ
Console Serial Number	909033	Barometric Pressure	Đ	30.00	in Hg	Std Press	29.92	in Hg
DGM Model Number	RW 110	Theoretical Critical Vacuum ¹	Vacuum ¹	14.2	in Hg	Ϋ́	17.647	oR/in H
DGM Serial Number	328893	Calibration Technician	cian	SIG				

'For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,0}0 ¹²⁾/(in.Hg'min).

	1,110,110,110		Actual	Vacuum		in Hg	24.00	24.00	24.00					
			Amb Temp	Final	(tamb)	±6	64	64	64					
		Critical Orifice	Amb Temp	Initial	(t _{emb})	J _o	64	64	64					
			Coefficient		¥	see above2	0.2387	0.2387	0.2387					
			Serial	Number		- William	FO 40	FO 40	FO 40					
	Cailbration Data		Outlet Temp	Final	{pm}}	ļĻ.	70	69	69					
, , , ,		Metering Console	Outlet Temp	Initial	(^{EL}))	ų,	69	0,2	69					
			Metering Console	Metering Console	Metering Console	Metering Console	Metering Console	Volume	Final	(V _m)	cubic feet	401.727	407.078	412,435
								TVESTALL .		TV-1011	Volume	Initial	(V _m)	cubic feet
and the control of th			DGM Orifice	PΑ	(P_)	in H ₂ O	0.34	234	0.34					
TO CHILD THE CHILD		Bun Time		Elapsed	(6)	min	17.5	17.5	17.5					

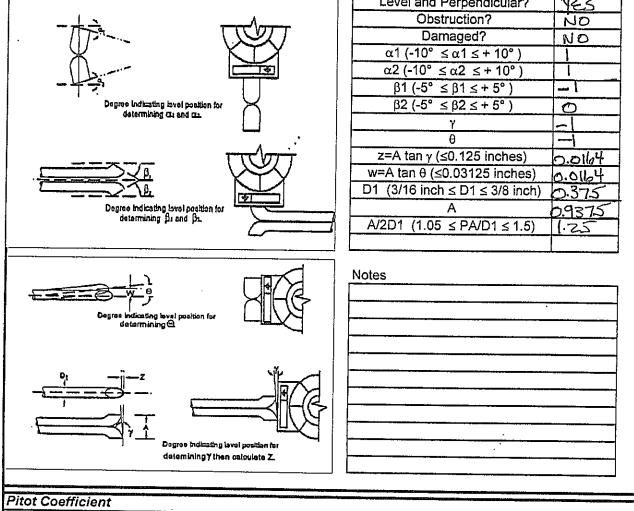
		-1	. 1				-		
		∨н@	Variation	(ØHØØ)		-0.001	-0.001	0.001	AH@ Average
	and the second	H∇	0.75 SCFM	(AH@)	in H2O	1.959	1,959	1.961	1.959
	Dry Gas Meter	Flowrate	Std & Corr	(Qm(std)(corr))	cſm	0,313	0,313	0.313	
		n Factor	Variation	(AY)		0.000	0.001	-0,001	Y Average
Results		Calibration Factor	Value	ω		1.021	1.022	1.020	1.021
	ed Data		Orifice	(Q _{cr(std)})	cfm	0.313	0.313	0.313	0.1
			Critical Orifice	(Vcr _(std))	cubic feet	5.475	5.475	5.475	% Deviation
	Standardized Data		Meter	(Q _{m(sta)})	cfm	0.306	0.306	0.307	1.0206
			Dry Gas Meter	(V _{m(sla)})	cubic feet	5.361	5.355	5.366	Pretest Gamma

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

12-52-12

Type S Pitot Tube Inspection Air Control Techniques, P.C.


Air Control Techniques, P.C.	C	Date [1/-20-00	7 ₽
Identification Information	, , , , , , , , , , , , , , , , , , ,		
Client In House	Job	NA	
Plant Name NA	Process	NA	j
City CARY	State	NC	
Pitot ID 图形			

- FROUD SB		
Inspection Results		
	Inspection Data	-
	Level and Perpendicular?	725
	Obstruction?	70
	Damaged?	NO
	$\alpha 1 (-10^{\circ} \leq \alpha 1 \leq + 10^{\circ})$	
	$\alpha 2 (-10^{\circ} \leq \alpha 2 \leq +10^{\circ})$	1
-4-9	$\beta 1 (-5^{\circ} \leq \beta 1 \leq +5^{\circ})$	
Dagree Indicating level position for	$\beta 2 \ (-5^{\circ} \le \beta 2 \le + 5^{\circ})$	0
determining as end as	γ	
<u> </u>	θ	
	z=A tan γ (≤0.125 inches)	0.0164
	w=A tan θ (≤0.03125 inches)	0.0164
	D1 (3/16 inch ≤ D1 ≤ 3/8 inch)	0.375
Dogroo Indicating level position for detarmining \$\text{B}_1\$ and \$\text{B}_2\$.	A	0.9375
natarument hi sug hr	A/2D1 (1.05 ≤ PA/D1 ≤ 1.5)	1.25
Degree Indicating level position for determining @	Notes	
Dogree indenting povel position for determining? then calculate Z.		
Pitot Coefficient		
, not conficient	N1-4-	
Coefficient of 0.84 Assigned?	Notes	
Inspection Personnel DLS		

Form ACTPC PI-2

Type S Pitot Tube Inspection Air Control Techniques, P.C.

Air Control Techniques, P.C.	Date 5-28-02
Identification Information	
Client IN HOUSE Plant Name NA City CARY Pitot ID 84	Job ルA Process レA State NY。
Inspection Results	
· ·	Inspection Data Level and Perpendicular?
1 -	Obstruction?

Pitot Coefficient	
Coefficient of 0.84 Assigned? Neら	Notes
1	
Inspection Personnel DLS	

Form ACTPC PI-2

Stainless Steel Nozzle Calibration and Condition Air Control Techniques, P.C.

Nozzle	Nozzle ID	Average		Measureme	ents	Liab Lavu	Condition	Date
Set ID	NOZZIE ID	Average	1	2	3	High-Low	Condition	Inspected
ACT-N-1	1-1	0.123	0.123	0.124	0.122	0.002	OK	3/11/07
ACT-N-1	1-2	0.180	0.180	0.180	0.181	0.001	OK	3/11/07
ACT-N-1	1-3	0.238	0.238	0.238	0.238	0.000	OK	. 3/11/07
ACT-N-1	1-4	0.299	0.300	0.300	0.298	0.002	OK	3/11/07
ACT-N-1	1-5	0.368	0.368	0.368	0.368	0.000	OK	~3/11/07
ACT-N-1.	1-6	0.427	0.427	0.427	0.428	0.001	OK	3/11/07
ACT-N-1	1-7	0.491	0.492	0.491	0.490	0.002	OK	3/11/07

Nozzle	Nozzle ID	Average		Measureme	ents	High-Low	Condition	Date
Set ID	NOZZIE ID	Average	1	2	3	1.11011-r.O.M	Condition	Date
ACT-N-2	2-1	0.128	0.128	0.127	0.128	0.001	OK	3/11/07
ACT-N-2	2-2	0.177	0.176	0.177	0.178	0.002	OK	3/11/07
ACT-N-2	2-3	0.240	0.240	0.240	0.240	0.000	OK	3/11/07
ACT-N-2	2-4	0.298	0.297	0.298	0.298	0.001	OK	3/11/07
ACT-N-2	2-5 ·	0.373	0.373	0.374	0.373	0.001	OK	3/11/07
ACT-N-2	2-6	0.441	0.440	0.442	0.440	0.002	OK	3/11/07
ACT-N-2	2-7	0.497	0.498	0.497	0.497	0,001	OK	3/11/07

Nozzle	Nozzle ID	Average		Measureme	ents	High-Low	Condition	Date
, Set ID		L	1	2	3			
ACT-N-3	3-1	0.120	0.120	0.121	0.120	0.001	OK	3/11/07
ACT-N-3	3-2	0.189	0.188	0.189	0.189	0.001	OK	3/11/07
ACT-N-3	3-3	0.240	0.240	0.239	0.240	0.001	OK	3/11/07
ACT-N-3	3-4	0.254	0.254	0.254	0.255	0.001	OK	3/11/07
ACT-N-3	3-5	0.365	0.366	0.365	0.365	0.001	OK	3/11/07
ACT-N-3	3-6	0.996	0.996	0.997	0.995	0.002	OK	3/11/07
ACT-N-3	3-7	0.494	0.494	0.494	0.494	0.000	OK	3/11/07

Nozzle	Nozzle ID	Average		Measureme	ents	High Love	Condition	Date
Set ID	NOZZIE ID	Average	1	2	3	HIGH*LOW	Condition	Date
ACT-N-4	4-1	0.301	0.300	0.301	0.302	0.002	OK	3/11/07
ACT-N-4	4-2	0.178	0.178	0.178	0.177	0.001	OK	3/11/07
ACT-N-4	4-3	0.299	0.299	0.299	0.299	0.000	OK	3/11/07
ACT-N-4	4-4	0.248	0.248	0.248	0.248	0.000	OK	3/11/07
ACT-N-4	4-5	0.364	0.364	0.364	0.363	0.001	OK	3/11/07
ACT-N-4	4-6	0.497	0.496	0.497	0.497	0.001	ОК	3/11/07
ACT-N-4	4-7	0.498	0.497	0.498	0.499	0.002	OK	3/11/07

Name

Signature

VOLUME II Appendix E – Analytical Data

Specialists in Air Emissions Analysis

ANALYTICAL REPORT

CLIENT:

AIR CONTROL TECHNIQUES, INC.

PROJECT:

110027-1436 (LC)

ANALYTICAL SERVICES PROVIDED:

- FILTERABLE PARTICULATE (EPA METHOD 5B, PM 2.5)
- CONDENSIBLE PARTICULATE (EPA METHOD OTM-028)

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Date of Review:

March 22, 2010

J. Bruce Nemet

Quality Assurance Officer

www.resolutionanalytics.com

2733 Lee Avenue • Sanford, NC 27332 • Phone: 919-774-5557 • Fax: 919-776-6785

JPC Form No. 37449A

Analysis Request / Chain of Custody

RESOLUTION ANALYTICS, INC. 1 Specialists in Air Emission Analysis 2733 Lee Avenue, Sanford, NC 27330

Phone (919) 774-5557 • Fax (919) 776-6785 • Email resolute@interpath.com

		1000-111 (010) office 1	Trong (919) (11-999) Tray (919) (10-919) Tringin [esoimbe@miest
Reporting Address: 1 Please attach a separate sheet of paper if billing address is different than reporting address.	Phone Number	Fax Number	
Company Air Control Techniques	contact Tom Holder	(0	Turnaround Time:
Street Address E Durham Rd			D 5 Days (1.5x)
City. State, Zip (Ary NC 27513	Project: /802/	(1)	☐ 2 Days (2.5x) ☐ 24 Hours (3.x)

(Standard)

Analyses	analytes:	☐ HF (EPA 13B)	analytes:	analytes:	☐ Phenol (EPA TO-8)	C SO _x (EPA 6/8) analytes:	☐ NO _X (EPA 7A/7D)	☐ Filt Particulate (EPA 5) ☐ Conden Part (EPA 202)
Train/Run Component	0.1 N NaOH (Imp 5-6).	Filter, Nozzle + Probe Rinse, > 25 Rinse, = 25 Rinse	+ Rivse, Imp Acopine Rings Imp Meda Rinse		7	re, 525 Ruse	1	
Train/Run Component	0.1 N H2SO4 (Imp 4)	Pobe Rivse, >2.5	. In DACEDNE R	-	Ŋ	Despetato Rise 22.5 Rise 52.5 Rise		
Train/Run Component	0.1 N H2SO4 (Imp 1-3)	Filter, Nozzle &F	Imp Soln + Rivse		17	Filter. Nozele An		
Sample ID / Run #	EXAMPLE: SCRUBBER INLET-1	1-80/5.2-IdH	of 643		182-25/028-3			

☐ EPA 29

metals; metals;	☐ Ontario-Hydro (Hg)	Other
	Comments	Соттепт
	Date (6	Date
	Received by (Signature)	Bequived by (Signatube)
	01/1/E	Date (
Chain of Custody:	Relinquency by (Signature)	Relinquished by (Signature)

WHITE: Report Copy

CANARY: Client Copy

PINK: Lab Copy

	10027-	
Project:	1436 (LC)	Ì

Specialists in Air Emission Analysis

2733 Lee Avenue, Sanford, NC 27330 Phone (919) 774-5557 • Fax (919) 776-6785 • Email resolute@interpath.com

Sample ID / Run #	Train/Run Component	Train/Run Component	Train/Run Component
M5B/028-1	Filter, Frnt & R	inse, ImpSolne re, Imp MeCl2	t Rinsc
	Imp Acetane Rin	re Imp MeC/2	Rinse, CPMFHE
M5B/028-3	i u	'n	9
M5B1028-4	l c	И	4
028-FB	Imp Soln& Rins	e, ImpAcetone Ri Filter	ise, Imp McC/2
	Rinse, CPM	Filter	
	Acetone B	lank	
	HaO Blan	rK	
	MeCl_ Bla	an K	
	CPM FILTE	er Blank	
	•		
,			

Chain of Custody:				
Relinguished by (Signature)	Date 3/1/10	Received by (Signature)	Date 3/1/0	Comments
Relinguished by (Signature)	Date /	Geddwedfby (Signature)	Date	Comments

Specialists in Air Emissions Analysis

REPORT SUMMARY

CSCS

RFA#:

1436 (LC)

SAMPLE ID	TOTAL FILTERABLE PARTICULATE			
Acetone Blank	0.1 mg (in 200 mls)			
5B/028-1	16.3 mg			
5B/028-3	10.2 mg			
5B/028-4	14.4 mg			

Specialists in Air Emissions Analysis

CSCS

REPORT SUMMARY

CSCS

RFA#:

1436 (LC)

SAMPLE ID	Particulate ≤ 2.5 μm	Particulate > 2.5 μm	Particulate Probe And Nozzle
Acetone Blank	1.2 mg	1.2 mg	1.2 mg (in 200 mls)
API-2.5/028-1	1.0 mg	1.0 mg	16.8 mg
API-2.5/028-3	0.9 mg	0.9 mg	12.9 mg
API-2.5/028-4	0.9 mg	0.5 mg	11.4 mg

REPORT SUMMARY RENEW

RFA#: 1436

SAMPLE ID	ORGANIC Condensible	Inorganic Condensible	FIELD BLANK Correction ¹	TOTAL Condensible
H ₂ O Blank MeCl ₂ Blank	0.4 mg (250 mL)	0.6 mg (240 mL)		
FIELD BLANK	0.8 mg	1.7 mg	N/A	2.5 mg
M5B/028-1	1.5 mg	230.3 mg	2.0 mg	229.8 mg
M5B/028-3	26.4 mg	213.9 mg	2.0 mg	238.3 mg
M5B/028-4	2.4 mg	248.9 mg	2.0 mg	249.3 mg
API-2.5/028-1	2.7 mg	89.0 mg	2.0 mg	89.7 mg
API-2.5/028-3	1.3 mg	83.0 mg	2.0 mg	82.3 mg

^{1.} A maximum of 2.0 mg was deducted from the total condensible particulate matter (CPM) for each run.

Analytical Narrative

RFA #:

1436 (LC)

Client:

Air Control Techniques

Date Received:

3/1/10

Analyst: JSC

Date Analyzed:

3/11/10

Analysis: (EPA METHOD 5B (40 CFR. PART 60)

Analyte(s):

FILTERABLE PARTICULATE

Sample Matrix & Components:

Dry Filters, Front \(\frac{1}{2} \) Acetone Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated overnight then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The filters were baked 2 to 3 hours at 163° C, desiccated for 2 hours and weighed.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The total catch reported for each run is a sum of the filter and rinse catches. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

 $0.1 \, \text{mg}$

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

PARTICULATE SAMPLING LABORATORY RESULTS

Client: A Method: (E				T 60))			RFA #: 1436 (LC)							
Run Number		· ·		5B/028-1			5B/028-3			5B/028-4				
Filter Container #	Onto	Limit			D-4-	_		D-4-	_					
	Date	Init	_		Date	_	_	Date	-					
	3/12/10	JSC		0.3678	3/12/10		0.3668	3/12/10		0.3673				
Baggie Tare Wt., g.		-		#N/A		_	#N/A			#N/A				
Filter Tare Wt., g.		RQ-617	'1	0.3658	RQ-6173	_	0.3623	RQ-6174		0.3656				
FILTER SAMPLE WT., g.				0.0020			0.0045			0.0017				
ront ¼ Rinse Container #				2433			936			2110				
-	Date	Init	_		Date	_		Date	_	·				
	3/15/10	JSC	F	3.3586	3/15/10		3.6901	3/15/10		3.7588				
	3/12/10	JSC	•	3.3587	3/12/10	F	3.6900	3/12/10	F	3.7587				
Tare Wt., g.		(150	ml)	3.3442 (150	ml)	3.6842 (100	ml)	3.7460				
PINSE SAMPLE WT., g.		•		0.0144		′ —	0.0058			0.0127				
ilter Catch, mg.				2.0			4.5			1.7				
inse Catch, mg.				14.4			5.8			12.7				
inse Blank Residue, mg.				0.1			0.1			0.0				
et Rinse Catch, mg.				14.3			5.7			12.7				
t Rinse Catch, mg. .TERABLE PARTICULATE, mg.				16.3			10.2			14.4				

Legend:

F = Final Weight

Notes & Comments:

REAGENT BLANK LABORATORY RESULTS

	Air Control Te EPA METHOD 5E				RFA #: 1436 (LC)
Run Number				Acetone Blank	
Sample ID/Contai	ner# Date	Init		2272	
Tare Wt., g. SAMPLE WT., g.	3/15/10 3/12/10 (JSC JSC 200	F ml)	3.4405 3.4404 <u>3.4403</u> 0.0001	
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Jpper Limit, mg.	2272 3.4404 3.4403 0.1 200 785.0 636.9E-9 <				

Notes & Comments:

OTM-036

Analytical Narrative

RFA#:

1436 (LC)

Client:

Air Control Techniques

Date Received:

3/1/10

Analyst: JSC

Date Analyzed:

3/11/10

Analysis: (OTM 027)

Analyte(s):

PM 2.5 FILTERABLE PARTICULATE

Sample Matrix & Components:

Dry Filters, Front½ Acetone Rinses, Acetone Blank (in house)

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated overnight then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The filters were baked 2 to 3 hours at 105° C, desiccated for 2 hours and weighed.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The total catch reported for each run is a sum of the filter and rinse catches. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

Miscellancous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to OTM 027 analytical procedure were made. See data sheets for individual sample descriptions.

PARTICULATE SAMPLING LABORATORY RESULTS

\$ 2.5 \text{ \text{pm Rinse Container H}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Air Contro (OTM 027)	l Technique	s				RF	A#: 1	1436 (LC)
Date Init Date	Run Number			API-2.5/028-1		ŕ	PI-2.5/028-3			API-2.5/028-4
Baggio Taro WI, g. 31210 JSC 0.1136 31210 0.1137 21210 0.1167 MVA	Filter Container #	Пото	1 (a)		Data			Data	_	
Baggie Tare W. g. 470-198 0.1130 470-198 0.1151 470-199 0.1161 0.0006 0.000	-		T			_	•		-	
Filler Tens MM. 9. 31210 JSC F 3.4398 J1210 F 3.4693 J1210 F 3.2325 2.5 pm Rinse Container # Date Init D	Baggie Tare Wl., g.	3/12/10	JSC		3/12/10			3/12/10		
Date Init Date	Filter Tare Wt., g.		47Q-196		47Q-198	=		47Q-199	=	0.1163
3/12/10 JSC F 3.4398 3/12/10 F 3.4068 3/12/10 F 3.2028 3.0009 F 3.2028 3.0009 F 3.2028 3.0009 F 3	≤ 2.5 µm Rinse Container†		1 toit	2336	Data		2332	Doto	_	2404
Tare Wt. g. 3/12/10 JSC F 3.4388 3/12/10 F 3.4683 3/12/10 F 3.3232 RINSE SAMPLE WT. g. 1235	-	Date		•	Date	_	-	Date	=	
Date Init Date		3/12/10	JSC F	3.4368 3.4361 (3/12/10		3.4063 3.4059 (3/12/10		3.3232 3.3226
3/12/10 JSC 3.9336 3/12/10 F 3.0974 JSC 3.4201 Tare Wit, g. (30 ml) 3.9332 (30 ml) 3.0863 (10 ml) 3.4192 Probe And Nozzle Rinse Catch, mg. (180 ml) 3.6850 (130 ml) 3.1492 3/12/10 JSC F 3.7129 3/12/10 3.4285 3/12/10 3.4192 Date Date Date Date Date Date Date Date	> 2.5 µm Rinse Container i		1	1236		_	2357		_	2426
Tare Wil, g. (30 ml) 3,932 (30 ml) 3,0975 JSC F 3,4198 3,4198		34240	ISC.	2020	24240	=	2 0074	150		2 4201
Date Init Date		3/12/10	JSC F	3.9334 3.9322 (3/12/10		3.0975 3.0963 (JSC		3.4198 3.4192
3/12/10 JSC 3.7130 3/12/10 F 3.4284 3/12/10 F 3.5159 Tare WL, g.	Probe And Nozzle Rinse Co —		loit_	2270	Date	_	2439 -	Date		2412
6 2.5 µm Rinse Catch, mg. 0.7 0.4 0.6 **Cilinse Blank Residue, mg. 0.2 0.1 0.1 **Vot Rinso Catch, mg. 0.5 0.3 0.5 **2.5 µm Rinse Catch, mg. 1.2 1.1 0.6 **Cilinse Blank Residue, mg. 0.2 0.2 0.1 **Ote Rinso Catch, mg. 1.0 0.9 0.5 **Probe And Nozzle Rinse Catch, mg. 17.9 13.7 12.3 **Vinse Blank Residue, mg. 1.1 0.8 0.9		3/12/10	JSC	3.7130 3.6950 (3/12/10		3.4284 3.4147 (3/12/10		3,5159 3,5036
Rinse Blank Residue, mg. 0.2 0.1 0.1 viot Rinso Catch, mg. 0.5 0.3 0.5 • 2.5 µm Rinse Catch, ng. 1.2 1.1 0.6 Rinse Blank Residue, mg. 0.2 0.2 0.1 International Catch, mg. 1.0 0.9 0.5 Probe And Nozzle Rinse Catch, mg. 17.9 13.7 12.3 Rinse Blank Residue, mg. 1.1 0.8 0.9	ilter Catch, mg.			0.5			0.6			0.4
Iiinse Blank Residue, mg. 0.2 0.2 0.1 Iot Rinso Calch, mg. 1.0 0.9 0.5 Yrobe And Nozzle Rinse Catch, mg. 17.9 13.7 12.3 Iinse Blank Residue, mg. 1.1 0.8 0.9	linse Blank Residue, mg.			0.2			0.1			0.1
linse Blank Residue, mg. 1.1 0.8 0.9	linse Blank Residue, mg.			0.2			0,2			0.1
ot Kinso Catch, mg. 16.8 12.9 11.4	inse Blank Residue, mg.	itch, mg.		1.1			0.8			0.9
ILYERABLE PARTICULATE, mg. 18.8 14.7 12.8	_			16.8			12.9			11.4

Notes & Comments:

REAGENT BLANK LABORATORY RESULTS

	Air Control Te (OTM 027)	echniqu	ies		RFA #: 1436 (LC)
Run Number				API-2.5/028-1	
Sample ID/Conta –	iner# Date	Init	_	2372	
Tare Wt., g. SAMPLE WT., g.	3/12/10 3/12/10 (JSC JSC 200	F ml)	3.3431 3.3432 3.3419 0.0012	
Blank Beaker # Final wl., mg. Tare wl., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Upper Limit, mg.	2372 3.3431 3.3419 1.2 200 785.0 7.6E-6 1				

OTM-036 Page 242 of 643 4/11/2016

Analytical Narrative

RFA # 1436

Page 1 of 1

Client/Plant Name: AIR CONTROL TECHNIQUES

Date Rec'd in lab: 03/01/10

Analyst: BNL

Date of Analysis: 03/09/10

Analysis Method: EPA OTM-028

Analyte(s): Condensible Particulate

Sample Matrix & Components:

 $\rm H_2O$ (dry) Impinger samples, Back $^{\rm 1}$ 2 Acetone/MeCl $_2$ Rinses, Back $^{\rm 1}$ 2 CPM Filter, Field Train Blank and Field Reagent Blanks.

Summary of Sample Prep:

CPM Filter was extracted by sonication twice first with water, then by methylene chloride per OTM-028. Each aliquot following 2 minutes sonication was transferred to water and methylene chloride field containers, respectively.

The $\rm H_2O$ field samples were then extracted with methylene chloride and combined with the organic back rinse. Methylene Chloride rinses were evaporated overnight at ambient temperature then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The $\rm H_2O$ samples were evaporated at 85°F (at ambient pressure) until completely dry. $\rm H_2O$ samples were then resuspended in 50 mL deionized water and titrated to neutral pH using 0.1 N NH₄OH, allowed to dry again then desiccated for 24 hours and finally weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg. The total catch reported for each run is a sum of the condensible organic and inorganic catches minus total field train blank catch weight or 2.0 mg, whichever is less.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.5 mg

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

1) See data sheets for individual sample descriptions.

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

Method: (Date Received: (Page 1 of	4	File Pathway:	Filename: C;\JOB\$\1436\ACT.W	ACT B1
Run Number	M5B/028-1		M5B/028-3		M5B/028-4

DI H2O Container#	Date	1 Init		1515	5.		2353			625
•	Date	Imit	_		Date	_		<u>Date</u>		
	03/09	BNL	@	3.8119	03/09	@	3.3825	03/09	@	3.8202
	03/09	BNL	_	3.8122	03/09	•	3.3828	03/09	•	3.8208
Tare Wt., g.		(410	ml)	3.5741	(420	ml)	3.1630	(380	ml)	3.5636
SAMPLE WT., g.				0.2378			0.2195			0.2566
Acetone/MeCl2 Container #				443			2381			2361
_	Dale	Init	_		Date	_		Date		
		ı								
	03/09	BNL	@	3.6414	03/09	@	3.2856	03/09	@	3.4668
	03/09	BNL		3.6419	03/09	@	3.2856	03/09		3.467
Tare Wt., g.		(250	ml) .	3.6399	(250	ml) _	3.2592	(250	ml) _	3.4644
SAMPLE WT., g.			····	0.0015			0.0264			0.0024
Organic Fraction Catch, mg.				1.5			26.4			2.4
Organic (MeCl2/Acetone) Fiald		ction, ma.		0.0			0.0			0.0
Organic Fraction Catch, mg.				1.5			26.4			2.4
norganic Fraction Catch, mg				237.8			219.5			256.6
norganic (H2O) Field Blank Co				0.0			0.0			0.0
norganic Fraction Catch, mg				237.8			219.5			256.6
/olume (VI) of NH4OH edded				4.4000			3.3000			4.5000
Correction for ammonia added, Adjusted Inorganic Fraction (7.4932			5.6199			7.6635
Aujusteu morgante Fraction (Caten, mg.			230.3			213.9			248.9
				*A maximum of 2	mg deducted i	for field i	blank correction pe	r OTM-028		
OTAL OTM-028 CONDEN	JOID F DAG	776111 47		229.8			238.3			249.3

Printing Date

Miscellaneous Notes & Comments:

09-Mar-10

Printing Time:

03:08 PM

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

 Plant Name:
 AIR CONTROL TECHNIQUES
 RFA # 1436

 Method:
 QTM-028
 Filename:
 ACT

 Date Received:
 03/01/10
 Page 2 of 4
 File Pathway:
 C:\JOBS\1436\ACT.WB1

 Run Number
 API-2.5/028-1
 API-2.5/028-3

DI H2O Container #	Date	Init	_	2422	Date		2425	_	Date	_	4.
Tare Wi., g. SAMPLE WT., g.	03/09 03/09	BNL BNL (210	@ ml)	3.5139 3.5140 3.4249 0.0890	03/09	@ @ ml)	3.4554 3.4554 3.3724 0.0830	(ml)	0.0000 0.0000 0.0000
Acetone/MeCl2 Container # -	Date	Init		2387	Date		2338	_	Date	_	
Tare Wt., g. SAMPLE WT., g.	03/09 03/09	BNL BNL (210	@ ml)	3.4044 3.4046 3.4017 0.0027		@ ml)	3.3275 3.3273 3.3260 0.0013	(ml) _	0.0000 ERR
Organic Fraction Catch, mg. Organic (MeCl2/Acetone) Field Organic Fraction Catch, mg.	One/MeCl2 Container # Date Init O3/09 BNL 03/09 BNL 03						1.3 0.0 1.3				ERR 0.0 ERR
Inorganic Fraction Catch, m Inorganic (H2O) Field Blank C Inorganic Fraction Catch, m Volume (VI) of NHAOH added Correction for ammonia added Adjusted Inorganic Fraction	orrection, mg. g. (N=0.1), ml f, mg			89.0 0.0 89.0 0.00 0.00 89.0			83.0 0.0 83.0 0.00 0.00 83.0				0.0 0.0 0.00 0.00 0.00
TOTAL OTM-028 CONDE	NSIBLE PAF	RTICULAT	E, mg.	89.7			82.3				ERR

Miscellaneous Notes & Comments:

Printing Date:

09-Mar-10

Printing Time.

03.08 PM

PARTICULATE SAMPLING LABORATORY RESULTS (EPA OTM-028)

Plant Name: AIR CONTROL TECHNIQUES

Method: OTM-028

Filename: ACT

Date Received: 03/01/10

Page 3 of 4

File Pathway: C:\JOBS\1436\ACT.WB1

Run Numbor

028-FB

DI H2O Container #	Date	Init	 -	1489	-	Date	_ 		-	Date	
Tare Wt., g. SAMPLE WT., g.	03/09 03/09	BNL B N L (140	@ ml)	3.5451 3.5453 3.5432 0.0019	ſ		ml) _	0.0000 0.0000 0.0000	ſ	ml) _	0.0000 0.0000 0.0000
Acetone/MeCl2 Container #	Date	Init	_	2041	_	Date	_		_	Date	
Tare Wt., g. SAMPLE WT., g.	03/09 03/09	BNL BNL (230	@ ml)	3.7225 3.7223 3.7215 0.0008	(ml) _	0.0000 0.0000 0.0000	(ml) _	0.0000 0.0000 0.0000
Organic Fraction Catch, mg. Organic (MeCl2/Acelone) Field Bl. Organic Fraction Catch, mg.	03/09 B. 03/09 B. (1 22 Container # Date Init 03/09 B.			0.8 0.0 0.8				0.0 0.0 0.0			0.0 0.0 0.0
Inorganic Fraction Catch, mg. Inorganic (H2O) Field Blank Corre Inorganic Fraction Catch, mg. Volume (VI) of NH4OH added (Nº Correction for ammonia added, m Adjusted Inorganic Fraction Cat		1.9 0.0 1.9 0.1000 0.1703 1.7				0.0 0.0 0.0 0.00 0.00 0.00			0.0 0.0 0.0 0.00 0.00 0.00		
TOTAL OTM-028 CONDENSII	BLE PARTIO	CULATE, n	ng.	2.5				0.0			0.0

Miscellaneous Notes & Comments:

REAGENT BLANK LABORATORY RESULTS (Version 04.28.92)

	AIR CONTROL TECHN	IQUES					RFA # Filename:		
Date Received:		Page	4 of	4		File Pathway:	C:\JOBS\1436\ACT.V		er .
Blank Type	18970 Media	44. =		nana-		Methylene Chloride/Acetone			Water
Sample ID/Container #			Date	Init	-	2335	Date		487
Tare WL, g. SAMPLE WT., g.			03/05 03/05 (@ ml)	3.3681 3.3680 3.3676 0.0004	03/09 03/09 (140	@ ml)	3.5406 3.5408 3.5400 0.0006
Blank Beaker # Final wl., mg. Tare wl., mg. Residue, mg. Volume, ml. Densily, mg/ml Conc., mg/mg Upper Limil,mg/mg						2335 3.3680 3.3676 0.400 250 1315.0 1.217E-06 @			487 3.5406 3.5400 0.600 140 1000.0 4.286E-06 @ 1.000E-05

M5/17 Particulate Bench Sheet

Rinse Volume Date Received: 3/1/10 00/ <u>R</u> 50 200 Acetone Rinse Baggie# 2433 2572 936 RFA #: 1436 (Le)
Method: 56Filter Tare 0.3653 0.3623 0.3656 RQ-6173 Filter # PG-6174 AQ-6171 Baggie # Client: #CT Analyst: 55C Run# IN HOUSE 60 7 4 CETO ME

OTM 027 Particulate Bench Sheet

Date Received: 3// //>	3/11/10	22 C	Rinse	Volume	8	(30	(50														
Beceived:	e Analyzed:	PROPE + NO	≥40µm	Baggie #	22.76	2439	2412														
Date	Date	11111	>2.5µm \$40µm-Rinse	Volume	30	30	0)														
رې	8		>2.5µm ≨4	Baggie #	(236	£582	242b														
RFA#: 1436 (cc)	Method: 2.5 (028		n Rinse	Volume	30	0)	0	260													
RFA#:	Method:		≤ 2.5µm Rinse	Baggie #	2336	2332	240 f	2372													
				Filter Tare	0.1130	0.1(3)	0.1163			1											-
			Filter	Filter #	96-6	0-198	0-199														
				Baggie #																	
	E-M Analyst: (15C.	6	Run #	9 4	API-25/028-1	2	1	ACETONG BUDINE	(IN HOUSE)		Page	240	£ 6.12						/11/2	016	

PARTICULATE WORKSHEET

Vol. (Mc) DI HZO IMPINGER 140 210 380 140 12 CONT.# 2425 2247 625 1489 55 484 RFA # 1436 (10) Var. (M.) TOLUENE DATE 3/1/10 Сисователям/Етнкя 250 012 250 250 9 230 CONT.# MEDLZV 2361 2335 2387 2338 2381 704 VOL.(ML) NOZZEE CYCLONE CONT.# METHOD 0TM-628 GONT.# FILTER # TARE WT.(G) GONT.# | VOL.(ML) ACETONE RINSE FILTER GLIENT ALT ANALYST BALL 5 2.5/1028 - 1 井とコピ (.) Rat Blank M5B1028-

斗

ار اک

2.7

30

VOLUME II Appendix F – Research Triangle Institute Report

TECHNICAL REPORT

Client:

Air Control Techniques, P. C.

RTI Project No.:

0212441.003.003

Date:

May 25, 2010

ACT P.O. No.:

10035-1436

Submitted by:

Owen S. Crankshaw
Research Triangle Institute
P.O. Box 12194
3040 Cornwallis Road
Research Triangle Park, NC 27709
(919) 541-7470

Submitted to:

John Richards Air Control Techniques, P.C. 301 East Durham Road Cary, NC 27513

INTRODUCTION

Two filter samples and six solid residue samples from Air Control Techniques were delivered to RTI on April 9, 2010. RTI was requested to provide an assessment of particle size utilizing scanning electron microscopy (SEM), to provide micrographs documenting the particle population, and to relate size to chemistry.

METHOD OF ANALYSIS

A representative portion of the filter was mounted on a conductive carbon pad on a standard SEM stub. The sample was coated with gold/palladium. The sample was examined in the SEM at 15 kV in high vacuum mode to examine the particles and to determine the relative size makeup and chemistry.

RESULTS OF ANALYSIS

Sample 028-1 (a fibrous glass filter) was composed of a homogenous population of partially agglomerated particles ranging from approximately 0.2 – 2 microns in size,. The particles are uniformly composed of aluminum, silicon, and oxygen. A few larger particles were present, including particles containing large amounts of sulfur, iron, and chromium.

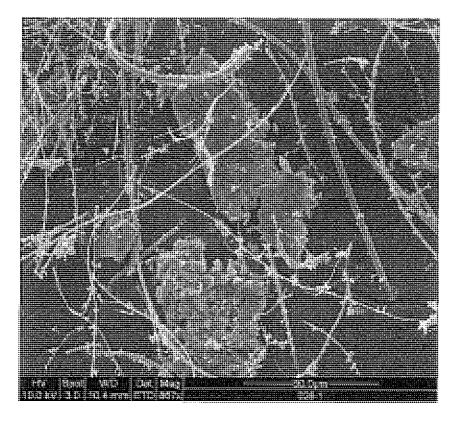
Sample 028-3 (a fibrous glass filter) was composed of a homogenous population of partially agglomerated particles ranging from approximately 0.2 – 2 microns in size. The particles are uniformly composed of aluminum, silicon, and oxygen, with a small amount of sulfur detected. There were none of the larger sulfate particles detected by SEM.

Sample 1236 was composed of a fairly homogenous mat-like population of particles ranging from approximately 0.2 – 2 microns in size, with assorted irregular particles widely scattered throughout the main particle population. The primary particles are composed of aluminum, silicon, and oxygen. Larger particles (10-100 um) had more variation in composition, including sodium, calcium, and sulfur.

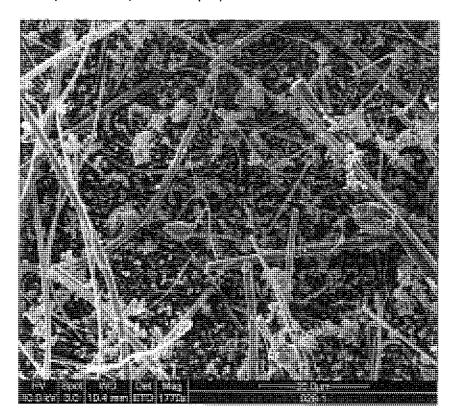
Sample 2270 was composed of a matted heterogenous mix of agglomerated particles and fragments ranging from approximately 0.2 – 20 microns in size, with some much larger platy particles present. The primary particles are composed of aluminum, silicon, chlorine, calcium, and oxygen. The platy particles and irregular larger particles were generally aluminum silicates also.

Sample 2332 was very lightly loaded, and was composed of a fairly homogenous population of agglomerated small particles ranging from approximately 0.2 – 2 microns in size, with assorted irregular particles widely scattered throughout the main particle population. The primary particles are composed of aluminum, silicon, and oxygen. Larger particles (5-100 um) had more variation in composition, including calcium-rich and sulfur-rich particles.

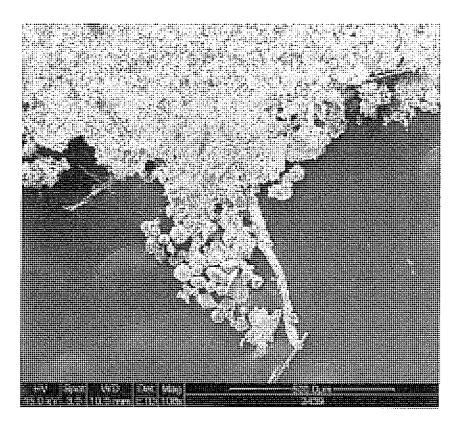
Sample 2336 was very lightly loaded, and was composed of a fairly homogenous population of agglomerated small particles ranging from approximately 0.2 – 2 microns in size, with assorted irregular particles widely scattered throughout the main particle population. The primary particles are composed of aluminum, silicon, sodium, chlorine, sulfur, magnesium, and oxygen. Larger particles (5-100 um) had more variation in composition, including organic, iron-rich, and sulfur-rich particles.

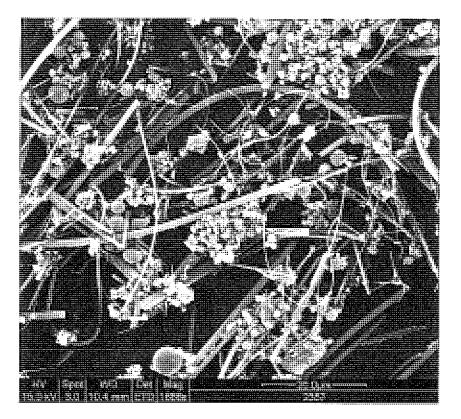

Sample 2357 was moderately loaded, and was composed of a mix of a homogenous population of particles ranging from approximately 0.2 – 2 microns in size and numerous

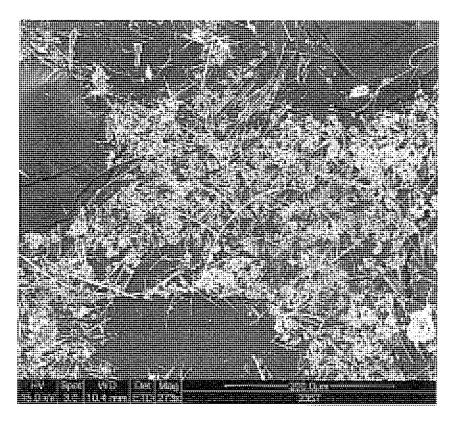
1

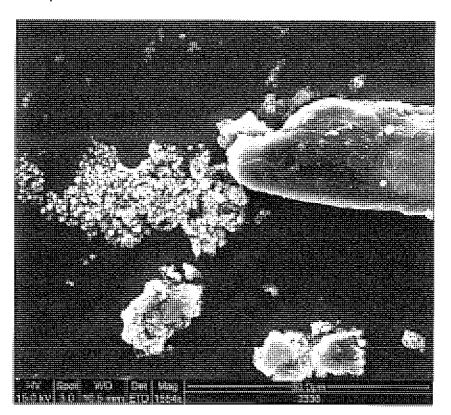

fibrous glass fibers. There were a few assorted irregular particles widely scattered throughout the main particle/fiber population. The primary particles are composed of aluminum, silicon, and oxygen. Larger particles (5-100 um) had more variation in composition, including organic and calcium-rich particles.

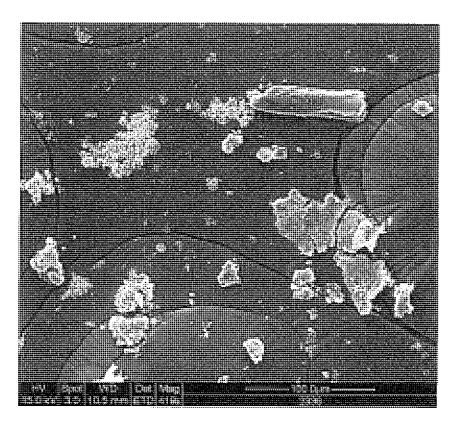
Sample 2439 was composed of a fairly homogenous mat-like population of particles ranging from approximately 0.2 – 2 microns in size, with assorted irregular particles widely scattered throughout the main particle population. The primary particles are composed of chlorine and calcium. Larger particles (5-100 um) had more variation in composition, including a sulfur-rich and lanthanum-rich particle.

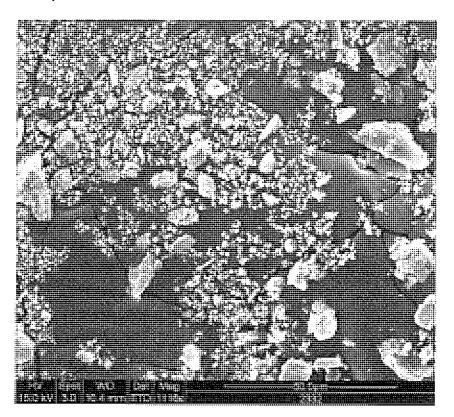

Micrographs and spectra of representative areas at various magnifications follow. Note that for many of the samples, there was a problem with the x-ray system that erroneously labeled several of the EDS images 1 mm. The correct image calibration for these samples can be found on the stand-alone SEM micrographs.

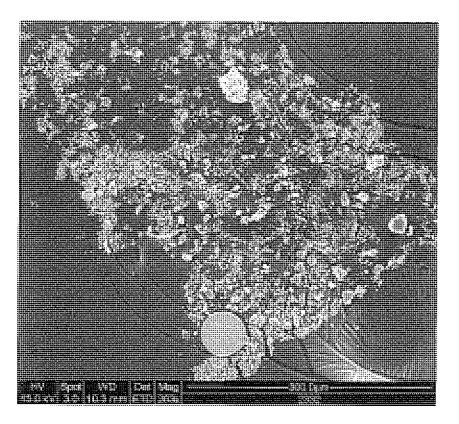

Sample 028-1 (filter sample).


Sample 028-1 (filter sample).

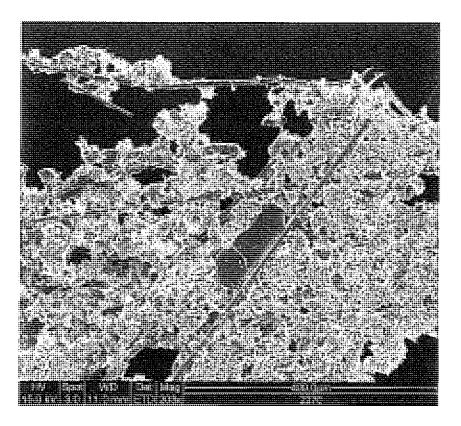

Sample 028-3 (filter sample).

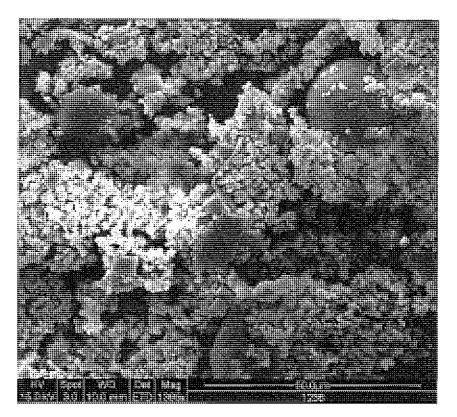

Sample 028-3 (filter sample).

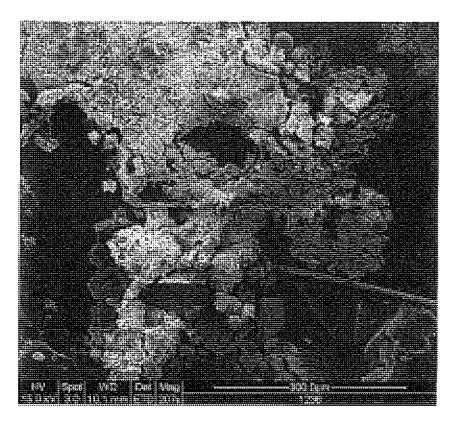

Sample 1236.

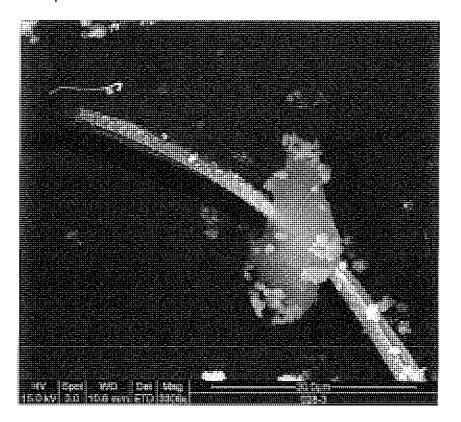

Sample 1236.


Sample 2270.

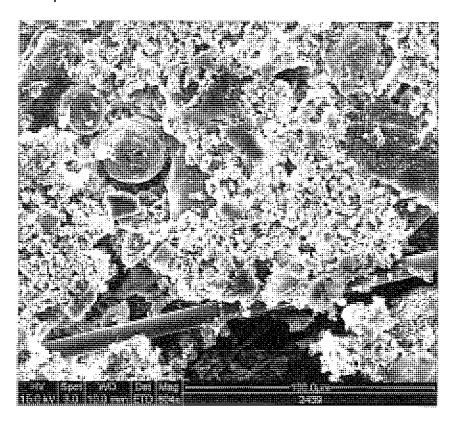

Sample 2270.

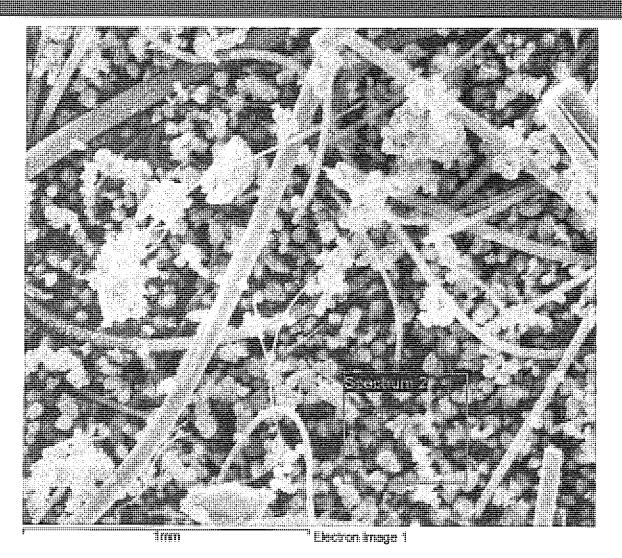

Sample 2332.

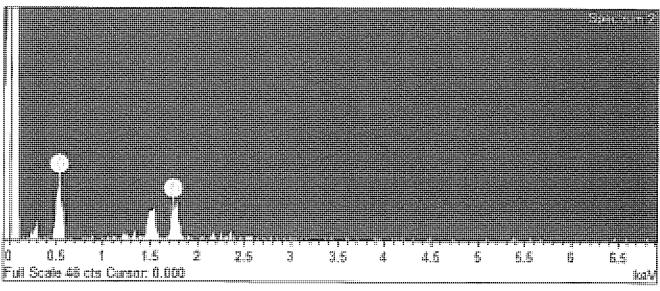

Sample 2332.


Sample 2336.

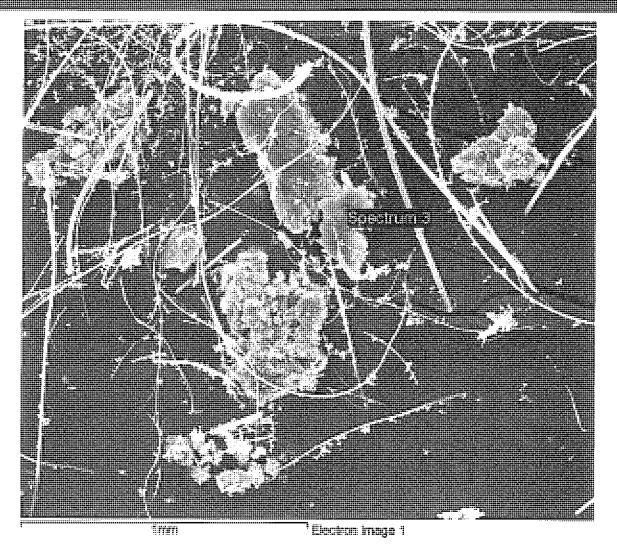
Sample 2336.

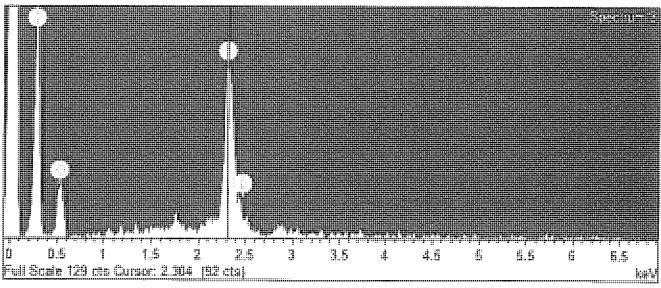

Sample 2357.


Sample 2357.



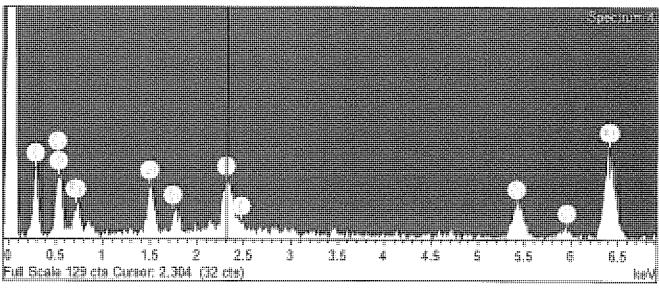
Sample 2349.


Sample 2349.

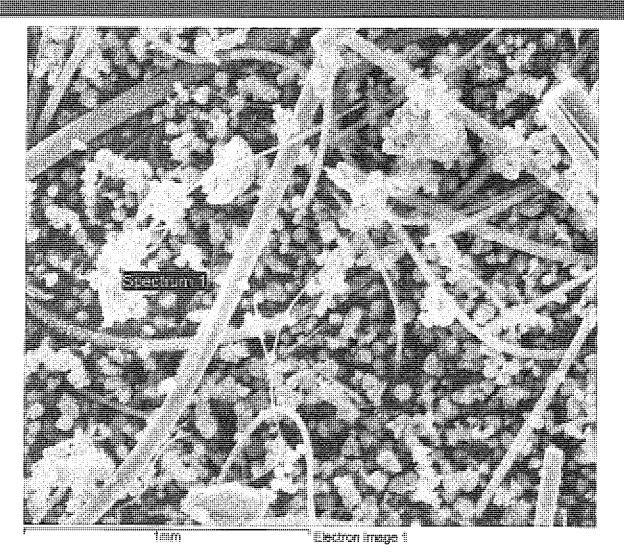


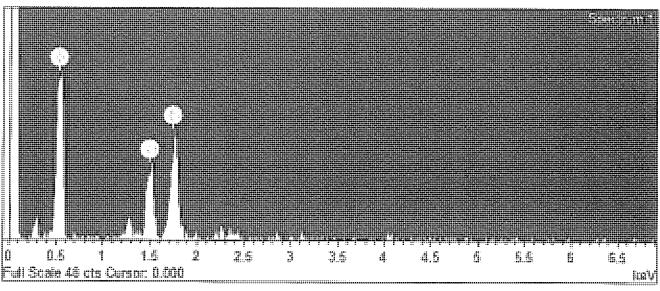
Comment: 028-1 fibrous glass filter

INCO



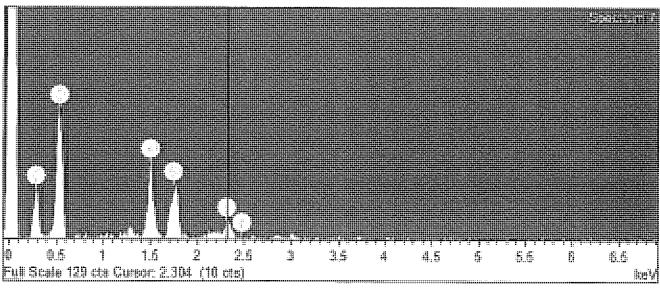
Comment: 028-1 fibrous glass filter large particle


(IINCA)

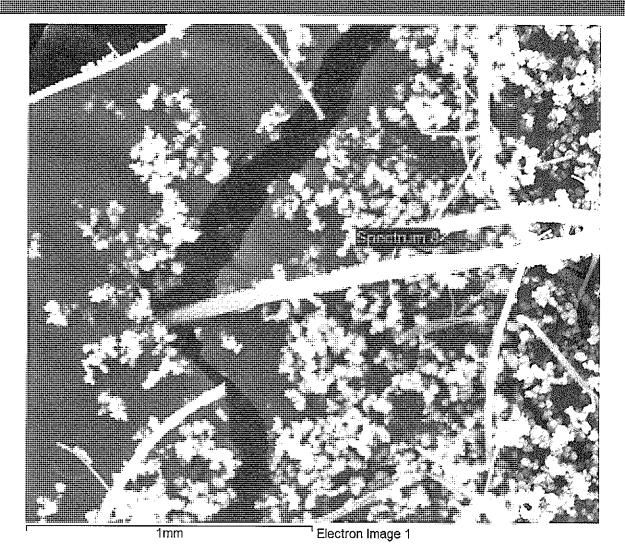


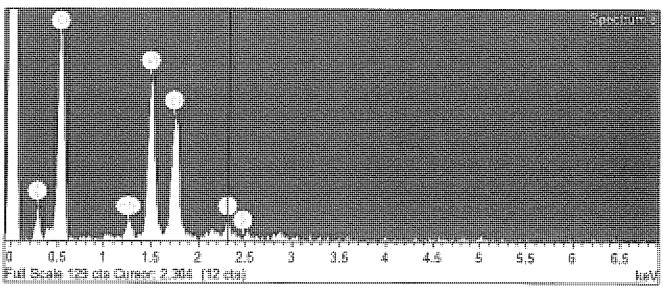
Comment: 028-1 fibrous glass filter large particle

IIDCa)



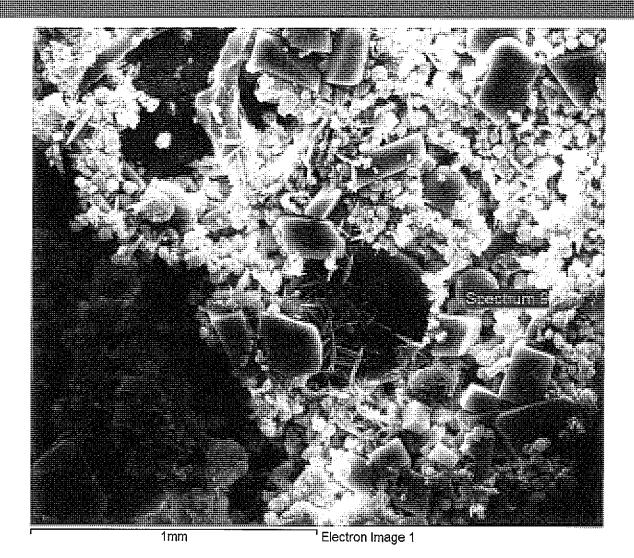
Comment: 028-1 fibrous glass filter

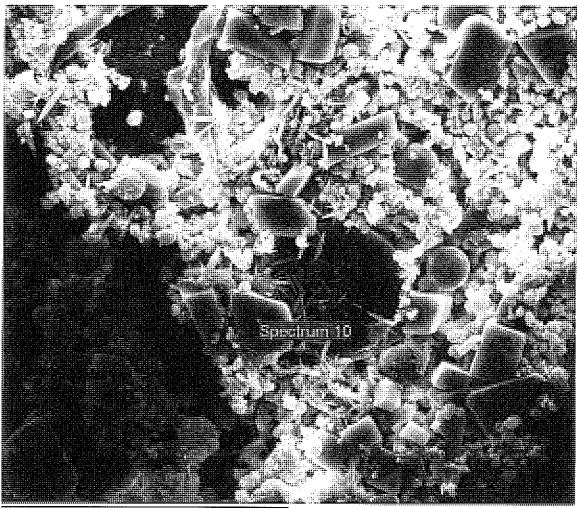

(Inca)



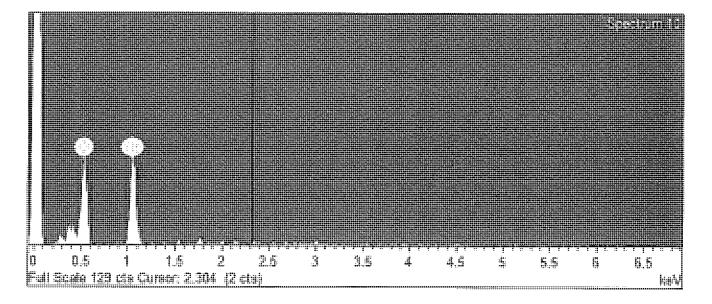
Comment: 028-3

INCO

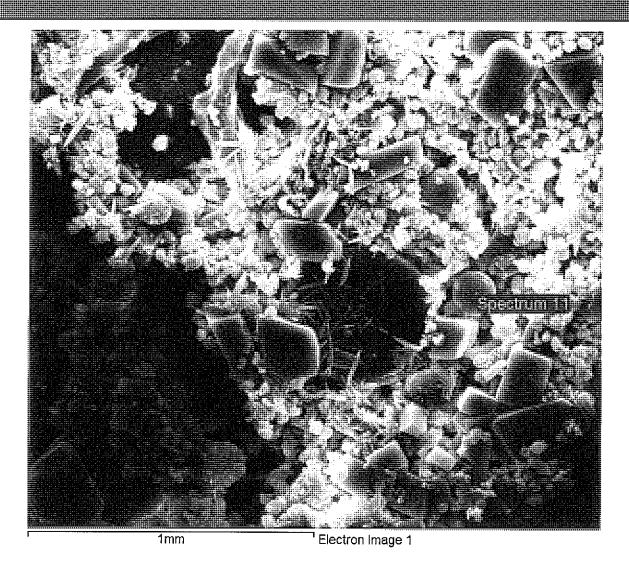



Comment: 028-3

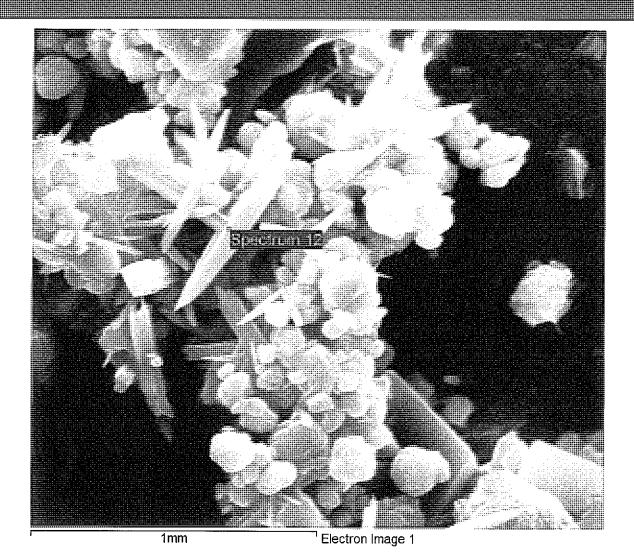
(IINCa)

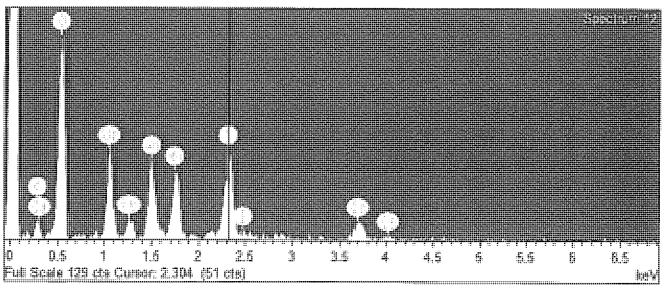


Comment: 1236 small particles



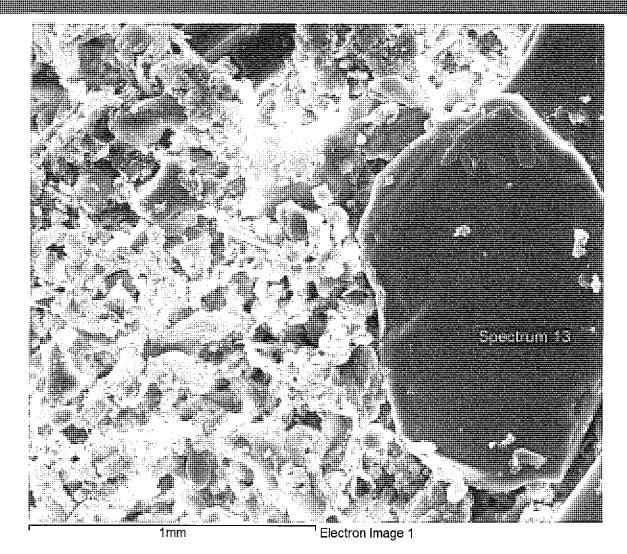
1mm Electron Image 1

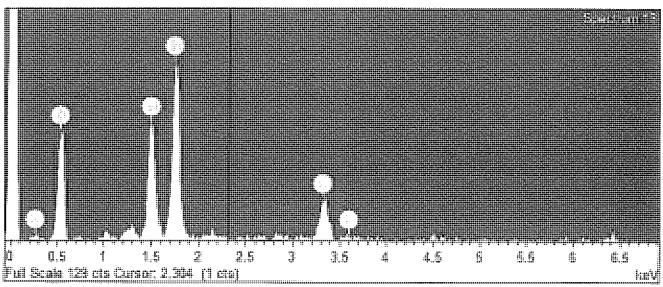

Comment: 1236 platy particles


(IINCa)

Comment: 1236 spheres

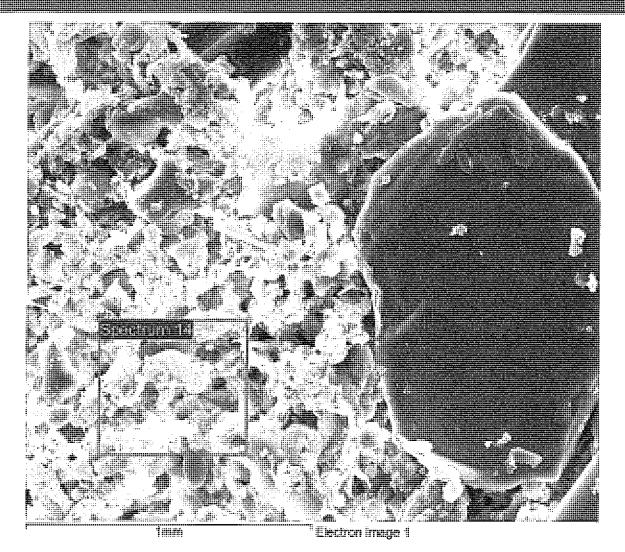
(IINCa)

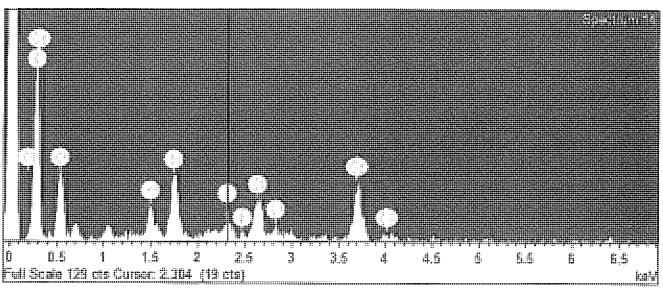




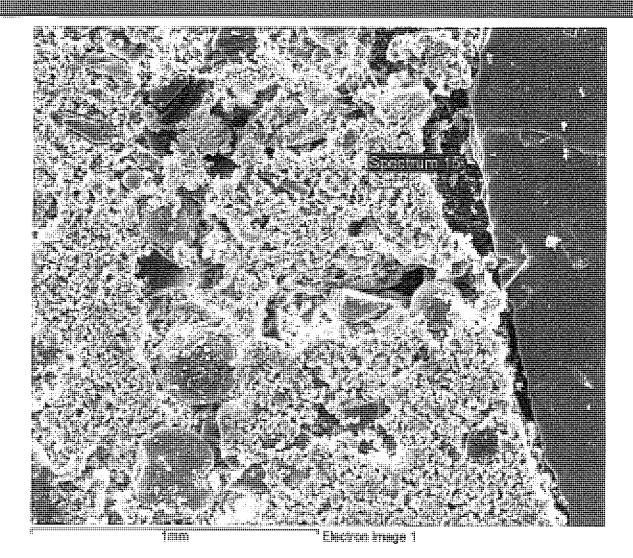
Comment: 1236 spicules

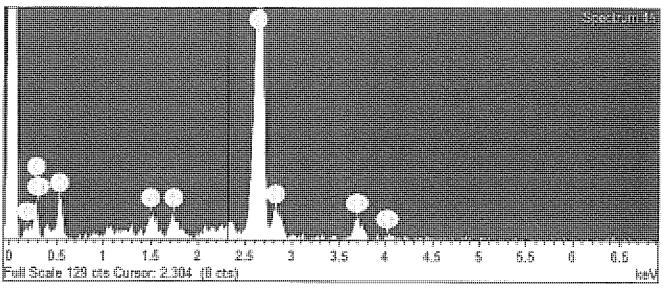
INCO



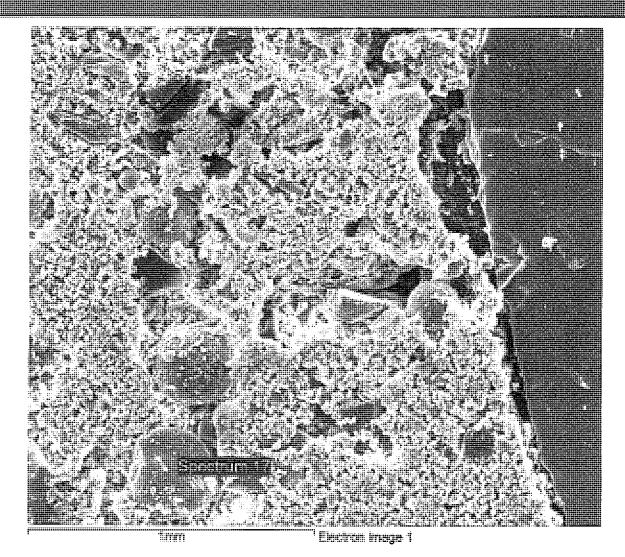


Comment: 2270 platy particle

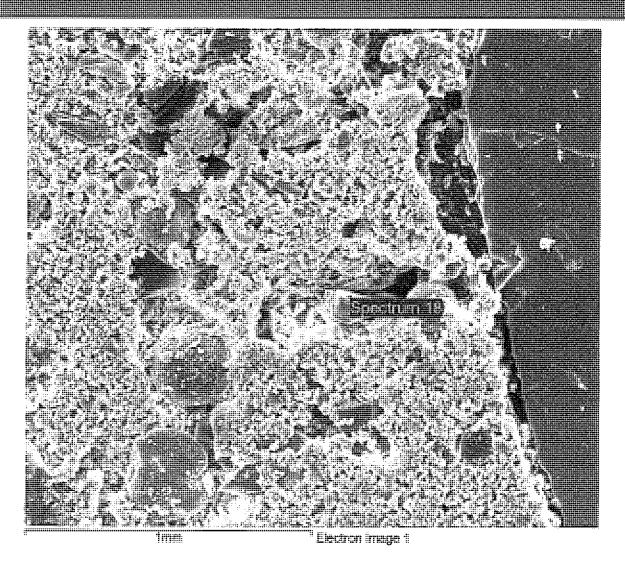

(Inca)

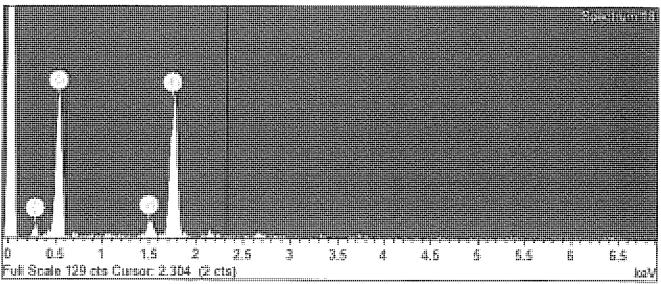


Comment: 2270 Agglomeration


(IINCT)

Comment: 2270 small particles

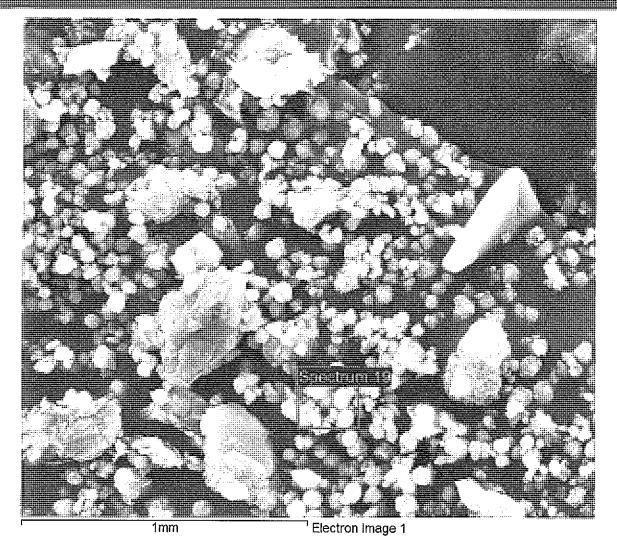

(IIIICa)

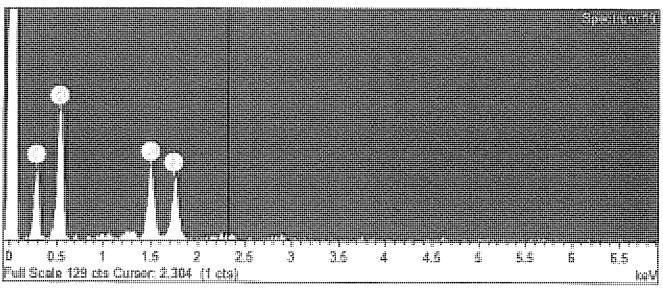


Comment: 2270 large particle

(IINCa)

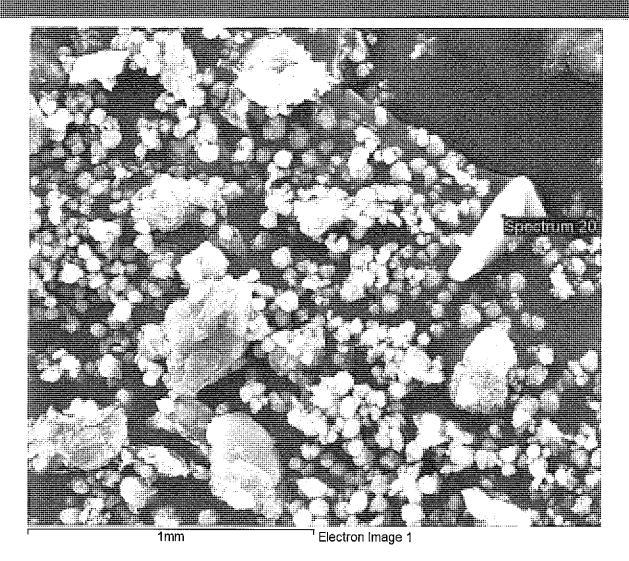
4/11/2016

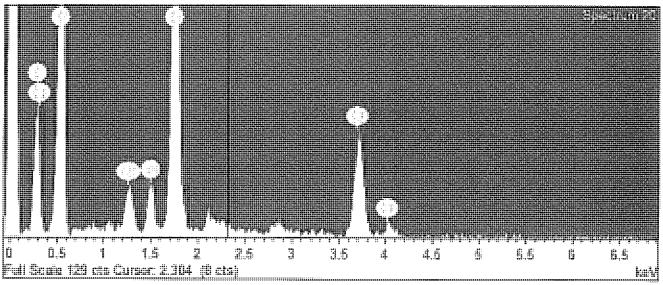




Comment: 2270 large particle

(Inca)





Comment: 2332 small particles

(IINCa)

Comment: 2332 10 um particle

(IINCO)

APPENDIX III Data Sheets for Test Program 3

VOLUME III

VOLUME III Appendix A – Test Results

Plant City State

Sampling Location Stack

PARAMETER Sampling Location	NOMENCLATURE	PM10-2.5-1	PM10-2.5-2	PM10-2.5-3
Date		5/27/2010	5/27/2010	5/27/2010
Run Time	Theta	180.00	178.83	175.19
Nozzle Diameter	inches	0.173	0.173	0.173
Pitot Tube Coefficient	Ср	0.84	0.84	0.84
Meter Calibration Factor	Υ	0.9846	0.9846	0.9846
Barometric Pressure, inches Hg	Bp - in Hg	29.50	29.50	29.50
Meter Box Pressure Differential	∆H - in. H2O	0.34	0.34	0.35
Volume of Gas Sampled	Vm - cu. ft.	61.702	60.828	60.253
Dry Gas Meter Temperature	Tm - °F	67.9	66.8	56.7
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	42.086	41.368	41.955
Liquid Collected	ml	248.3	242.5	240.5
Volume of Water Vapor	Vwstd - cu. ft.	11.687	11.414	11.320
Moisture Content	%H ₂ 0	21.734	21.63	21.25
Saturation Moisture	%H₂0	18.4	18.4	18.4
Dry Mole Fraction	Mfd	0.816	0.816	0.816
Carbon Dioxide	%CO₂	14.8	14.6	14.5
Oxygen	%O ₂	2.9	3.1	3.2
Carbon Monoxide	%CO	0	0	0
Nitrogen	$%N_2$	82.3	82.3	82.3
Fuel Factor	Fo	1.216	1.219	1.221
Gas Molecular Weight, Dry	Md	30.484	30.46	30.45
Gas Molecular Weight, Wet	Ms	28.183	28.164	28.154
Static Pressure	Pg - in. H₂O	-0.40	-0.40	-0.40
Stack Pressure	Ps	29.47	29.47	29.47
Stack Temperature	Ts - °F	137.0	137.0	137.0
Average Velocity Head	∆p - in H₂O	0.501	0.494	0.493
Gas Velocity	vs - ft./sec.	43.08	42.81	42.75
Stack Area	As - sq. ft.	52.918	52.918	52.918
Volumetric Air Flow, Actual	Qaw - ACFM	136,771	135,933	135,737
Volumetric Air Flow, Standard	Qsd - DSCFM	97,190	96,594	96,455
Total Filterable Particulate Catch	mg	15.1	15.3	18.2
Probe and Nozzle Rinse	mg	5.4	4.3	16.3
Greater than 2.5 rinse	mg	0.4	0.2	0.4
Less than 2.5 rinse	mg	0.4	0	0.4
PM2.5 Catch (Filter)	mg	8.9	10.8	1.1
Total Condensable Particulate Catch	mg	7.9	17.6	11
Organic Catch	mg	1.7	1.0	2.0
Inorganic Catch	mg	8.0	18.4	10.8

Plant City State

Sampling Location Stack

		PM10-2.5-1	PM10-2.5-2	PM10-2.5-3	Average		
Total Filterable Particulate Matter Emissions							
Grains/DSCF	gr/DSCF	0.0055	0.0057	0.0067	0.0060		
Grains/DSCF at 7% O₂	gr/DSCF@7%O₂	0.0043	0.0045	0.0053	0.0047		
Pounds/Hour	lb/hr	4.61	4.73	5.53	4.96		
Filterable PM _{2.5} Particulate Matter Emissions							
Grains/DSCF	gr/DSCF	0.00341	0.00403	0.00055	0.00266		
Grains/DSCF at 7% O ₂	gr/DSCF@7%O₂	0.00263	0.00315	0.00043	0.00207		
Pounds/Hour	lb/hr	2.84	3.34	0.46	2.21		
Condensable Particulate Matter Emissions							
Grains/DSCF	gr/DSCF	0.0029	0.0066	0.0040	0.0045		
Grains/DSCF at 7% O ₂	gr/DSCF@7%O₂	0.0022	0.0051	0.0032	0.0035		
Pounds/Hour	lb/hr	2.41	5.44	3.35	3.73		
Total Particulate Matter Emissions							
Grains/DSCF	gr/DSCF	0.0084	0.0123	0.0107	0.0105		
Grains/DSCF at 7% O ₂	gr/DSCF@7%O₂	0.0065	0.0096	0.0084	0.0082		
Pounds/Hour	lb/hr	7.03	10.16	8.88	8.69		

Plant Name City, State Project # 1436 F

Test Location FCCU Stack

PARAMETER	NOMENCLATURE	M5B-1	M5B-2	M5B-3	Averages
Date	^	5/27/2010	5/27/2010	5/27/2010	
Run Time	θ	180	180	180	
Nozzle Diameter	inches	0.238	0.24	0.24	
Stack Area	As - sq. ft.	52.918	52.918	52.918	
Pitot Tube Coefficient	Cp Y	0.84 1.0475	0.84 1.0475	0.84 1.0475	
Meter Calibration Factor	•	29.50	29.50	29.50	
Barometric Pressure, inches Hg	Bp - in Hg	-0.40	29.50 -0.40	-0.40	
Static Pressure Stack Pressure	Pg - in. H2O Ps	-0.40 29.47	-0.40 29.47	-0.40 29.47	
Meter Box Pressure Differential	Δ H - in. H2O	29.47 1.11	1.12	29.47	
Average Velocity Head	Δ p - in. H ₂ O	0.4942	0.4926	0.4801	
	Vm - cu. ft.	98.61	98.926	93.813	
Volume of Gas Sampled Dry Gas Meter Temperature	Tm - °F	66.9	90.920 65.6	93.613 56.8	
Stack Temperature	Ts - °F	137.1	136.8	136.3	
Liquid Collected	grams	526.1	485.9	493	
Carbon Dioxide	% CO2	14.8	14.6	14.5	
Oxygen	% O2	2.9	3.1	3.2	
Carbon Monoxide	% CO	0	0.1	0.2	
Nitrogen	% N2	82.3	82.3	82.3	
Fuel Factor	Fo	1.216	1.219	1.221	
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	102.335	102.927	99.693	
Volume of Water Vapor	Vwstd - cu. ft.	24.806	22.910	23.245	
Moisture Content	% H ₂ 0	19.51	18.21	18.91	
Saturation Moisture	% H ₂ 0	18.47	18.35	18.07	
Dry Mole Fraction	Mfd	0.815	0.818	0.819	
Gas Molecular Weight, Dry	Md	30.48	30.46	30.45	
Gas Molecular Weight, Wet	Ms	28.18	28.19	28.20	
Gas Velocity	vs - ft./sec.	42.80	42.72	42.15	
Volumetric Air Flow, Actual	Qaw - ACFM	135,907	135,628	133,819	135,118
Volumetric Air Flow, Standard	Qsd - DSCFM	96,515	96,667	95,628	96,270
Isokinetic Sampling Rate	% I	100.9	99.6	97.6	
Filterable Particulate Catch					
Filter (FPM)	mg	16.3	12.0	14.1	
Rinse (FPM)	mg	10.3	7.4	3.1	
,	Ū				
Reagent Blank	mg	0.2	0.0	0.0	
Field Blank	mg				
Filterable Particulate Catch	mg	26.6	19.4	17.2	
Grains/DSCF	gr/DSCF	0.0040	0.0029	0.0027	0.0032
Grains/DSCF at 12% CO2	gr/DSCF@12% CO2	0.0033	0.0024	0.0022	0.0026
Grains/DSCF at 7% O2	gr/DSCF@7% O2	0.0031	0.0023	0.0021	0.0025
Pounds/Hour	lb/hr	3.32	2.41	2.18	2.64
CONDENSABLE PARTICULATE EMISSIONS					
Condesible Particulate Catch	mg	22.4	15.6	16	
Grains/DSCF	gr/DSCF	0.0034	0.0023	0.0025	0.0027
Grains/DSCF at 12% CO ₂	gr/DSCF@12% CO ₂	0.0027	0.0019	0.0020	0.0022
Grains/DSCF at 7% O ₂	gr/DSCF@7% O2	0.0026	0.0018	0.0019	0.0021
Pounds/Hour	lb/hr	2.79	1.94	2.03	2.25

VOLUME III Appendix B – Example Calculations

EXAMPLE CALCULATIONS

Run Number: 5B/028-1

Stack Gas Temperature, R

$$T_{s} = 460 + t_{s}$$

$$T_s = 460 + 137.1 = 597.1$$

Volume of Dry Gas Sampled at Standard Conditions, Dry Standard Cubic Feet

$$V_{mstd} = [17.64] \gamma V_{m} \begin{bmatrix} P_{bar} + \frac{\Delta H}{13.6} \\ T_{m} + 460 \end{bmatrix}$$

$$V_{mstd} = [17.647][1.0475][98.61] \frac{(29.50 + \frac{1.11}{13.6})}{526.9}$$

$$V_{mstd} = 102.335 \text{ ft}^3$$

Volume of Water Sampled, SCF

 $V_{wstd} = 0.04715$ [Weight of Condensed Moisture]

$$V_{wstd} = 0.04715$$
 [526.1]

$$V_{wstd} = 24.806 \text{ ft}^3$$

Fraction of Water Vapor in Sample Gas Stream

$$\%H_2O = \left[\frac{V_{wstd}}{V_{mstd} + V_{wstd}}\right] \times 100$$

$$\%H_2O = \left[\frac{24.806}{102.335 + 24.806}\right] \times 100$$

$$%H_2O = 19.51 \%$$

Dry Mole Fraction of Flue Gas

$$M_{fd} = 1-\%H2O/100$$

$$M_{fd} = 1-[18.47/100]$$
 Must use saturation moisture for Mfd calculation.

$$M_{fd} = 0.815$$

Molecular Weight of Sample Gas, Dry

$$M_d = 0.44[\%CO_2]+0.32[\%O_2]+0.28[100-\%O_2-\%CO_2]$$

$$M_d = 0.44[14.8] + 0.32[2.9] + 0.28[100 - 2.9 - 14.8]$$

 $M_d = 30.48$ pounds/pound-mole

Molecular Weight of Sample Gas, Actual Conditions

$$M_s = [M_d \times M_{fd}] + [0.18 \times \% H_2 O]$$

$$M_s = [30.48 \times 0.815] + [0.18 \times 18.47]$$

 $M_s = 28.18$ pounds/pound-mole

Average Stack Gas Velocity, Feet/second

$$vs = K_p C_p \left(\sqrt{(\Delta p)} \right)_{avg} \left[\sqrt{\frac{T_s + 460}{P_s M_s}} \right]$$

vs =
$$(85.49)(0.84)(\sqrt{0.4942})\left[\sqrt{\frac{597.1}{(29.47)(28.18)}}\right]$$

vs = 42.80 feet/second

Wet Volumetric Flue Gas Flow Rate at Stack Conditions, Cubic Feet per Minute

$$Q_{aw} = 60 \times vs \times A$$

$$Q_{aw} = 60 \times 42.80 \times 52.91756$$

Q_{aw} = 135.907 Actual Cubic Feet per Minute

Dry Volumetric Flue Gas Flow Rate at Standard Conditions, Cubic Feet per Minute

$$Q_{sd} = 60 \times Mfd \times vs \times A \times \left[\frac{528}{ts + 460}\right] \left[\frac{Ps}{29.92}\right]$$

$$Q_{sd} = 60 \times 0.815 \times 42.80 \times 52.91756 \left[\frac{528}{597.1} \right] \left[\frac{29.47}{29.92} \right]$$

Q_{sd} =96,515 Dry Standard Cubic Feet per Minute

Isokinetic Sampling Rate, Percent

$$I = \left(\frac{100 \text{ (T s)(V mstd)(29 .92)}}{(60 \text{)(vs)(}\theta \text{)(An)(P s)(M fd)(528)}}\right)$$

$$I = \left(\frac{100 (597.1)(102.335)(29.92)}{(60)(42.80)(180)(0.000309)(29.47)(0.815)(528)}\right)$$

$$I = 100.9 \%$$

Filterable Particulate Matter Concentration, Grains per Dry Standard Cubic Foot

$$gr/DSCF = \left[\frac{CatchWeight(mg/1000)}{V_{mstd}}\right] \left[\frac{7000}{453.592}\right]$$
$$gr/DSCF = \left[\frac{0.0266}{102.335}\right] \left[\frac{7000}{453.592}\right]$$

$$gr/DSCF = 0.0040$$

Filterable Particulate Matter Emission Rate, Pounds per hour

$$lb/hr = \left(\frac{mg/1000}{453.592}\right) \times \left(\frac{Qsd}{Vmstd}\right) \times 60$$

$$1b/hr = \left(\frac{0.0266}{453.592}\right) \times \left(\frac{96,515}{102.335}\right) \times 60$$

$$1b/hr = 3.32$$

VOLUME III Appendix C – Field Data

Combined Cyclone PM10 & PM2.5 Run Data Sheet

_		Vacuum 1% 10	eep cyclone t changes.	.c0.40		18.500	29.78	28.40		ulative D ₅₀ S, microns	1-1-1	2.15	2.40	2.32	2.36	2.38	2.42	2.44	2.45	2.46	2.46	2.47		2.57	microns
PM10-2.5-1 Normal		Req'd < 0.02 or 4% 0.020	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. A B Pitot Tube Pretest Leak Check NA NA NA NA NA NA NA NA NA N	NA NA Static Pressure, In. W.C.	COMPOSITION	Moisture, 9	Md_run	Mw_run	Checks		PM10	9.09	9.72	9.53	9.62	99.6	9.76	9.80	9.83	9.85	9.87	9.89		10.13	
Run ID Condition		Actual 0.001	posttest lead to the control of the check the		GAS COMF				QA	% Iso		92.3	73.0	88.6	79.7	89.3	71.3	76.4	78.5	76.1	78.5	86.9		83.1	%
) DATA	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	yclone sampling head before ght prior to recovery.) Do no Pitot Tube Pretest Leak Check	Pitot Tube Posttest Leak Check c Pressure, In.,Hg. 29.50	TURE &	248.3	14.8	2.9		Target 4H	(mun 20)	0.336	0.337	0.337	0.342	0.345	0.345	0.346	0.346	0.346	0.346	0.346		<u></u>	
	PRELIMINARY CHECKS AND DATA	retest Leak C	ne sampling prior to reco Tube Pretes	Pitot Tube Posttest Barometric Pressure, In.,Hg.	ACTUAL MOIS	Water Recovered, grams	CO ₂ %	02%		H&	(11: 1120)	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.34		0.340	in H2O
	INARY CH	Full Train Pr tial Train Po	nove cyclor ad upright p Pitot	Pitot T	A(Nater Recov		2.23		Impinger Exit Gas	Temp., (°F)	56	49	25	54	51	53	53	99	25	58	61			
	PRELIM	Par	(Ren	Bar				N2 LPM		Sample Train Vac.	Ē	2	2 0	2 2	2	2	2	2	2	2	2	2			<u> </u>
					•	,			fion	Stack Temp.,	(£)	137	137	137	137	137	137	137	137	137	137	137		137	炸
a Sheet			5/27/2010 0949 1353	Tare					Informati	Meter Temp.	()	28	9 20	09	89	72	72	73	73	73	73	74		62.9	40
Combined Cyclone PM10 & PM2.5 Run Data Sheet			Start Stop	Filter ID					Sampling Informat	d\$ D H d)	(1120)		0.5	0.54	0.5		0.55	0.53	0.51	0.54	0.5	0.41		0.500619	in. H20
& PM2.	ATION		lbber							Meter Volume	(#³)	329.1	334.95 339.6	345	350.78	355.83	360.491	365.58	370.78	375.91	381.18	386.22	390.802 61.702	Averages	
ne PM10	IDENTIFICATION INFORMATION		Source Number FCC Scrubber mpling Location Stack Test Personnel TTB	702233 1.6880 7 0.9846			FYR			Elapsed Time,	<u>=</u>		30:26	—	1:01:00		_	-		_			Run Time 3:00:00 Total Volume, ACF		-
l Cyclc	ATION	Plant Name City State	Source Number upling Location Test Personnel	Meterbox ID ∆ H @ Gamma, γ	Nozzle ID	iamete	Orsat/Fyrite			Dwell Time,	Min.	15.43	14.99 14.99	15.58	14.99	13.57	15.72	15.43	15.14	15.58	14.99	13.57	Total Run Time Total Volu		-2.5-1
mbinec	NTIFIC	Plar	Source Number Sampling Location Test Personnel	Mete Ge	Z	Nozzle Diameter	Ors				t Point	~ c	7 6	4	2	9	_	2	ဗ	4	5	9	Total Ri T	•	PM10-2.5-1
ζο Co	OTM	1-036	Sa			_			92 of		Port	∢				В							4/11/2	016	Run

Data Sheet
Run I
PM2.5
0 & I
PM1
Cyclone
Combined

Combined Cyclone PM10 & PM2.5 Run Data Sheet	.5 Run Data Sheet	Run ID	PM10-2.5-2	
o		Condition		
IDENTIFICATION INFORMATION	ORMATION	PRELIMINARY CHECKS AND DATA	DATA	<i>y</i> .
Plant Name		Actual	Reg'd Vacuum	mnn
City		Full Train Pretest Leak Check, ACFM 0	< 0.02 or 4% 15	15
State		Partial Train Posttest Leak Check, ACFM 0	0.020 8	3
Source Number FCC Scrubber	Date 5/27/2010	(Remove cyclone sampling head before posttest leak check. Keep cyclone	eak check. Keep cyclor	ne
Sampling Location Stack	Start 1458	head upright prior to recovery.) Do not leak check during port changes.	ck during port changes.	
Test Personnel TTB	Stop 1805	A	; <u> </u>	•
		Pitot Tube Pretest Leak Check N/a	- 10000	•
		Pitot Tube Posttest Leak Check		
Meterbox ID 702233	Filter ID Tare			
Δ H @ 1.6880		Barometric Pressure, In., Hg. 29.50 Static P	Static Pressure, In. W.C0.40	40
Gamma, γ 0.9846				
Nozzle ID 2		ACTUAL MOISTURE & GAS COMPOSITION	IPOSITION	
Nozzle Diameter 0.173		Water Recovered, grams 242.5	Moisture, % 18.300	300
Orsat/Fyrite FYR		CO ₂ % 14.6	Md_run 29.	29.69
nge 2		$N2 LPM = 2.23 O_2 \% 3.1$	Mw_run 27.	27.80
93		The state of the s		
	3 1			

of 6-					Sampling	Sampling Information	n					QA C	QA Checks	
3		Dwell	Elapsed	Meter	9	Adotor Tomes	Stack	Sample	Impinger	-	T & ACCESSION F		Run Cummulative	ive D ₅₀ s,
		Time,	Time,	Volume	- H	weter remp. /∘⊏\	Temp.,	Train Vac.	Exit Gas	(i	iarget 4n (in D.)	osl %	microns	
Port	Point	(Min.)	h:m:s	(ft³)	(20)	(1)	(°F)	(in. Hg)	Temp., (°F)	(111. 1120)	(02,1111)		PM ₁₀	PM _{2.5}
<	-	15.43	0	391	0.53	70	137	2	99	0.34	0.345	79.6	9.88	2.46
	2	15.14	15:26	396.34	0.51	69	137	2	46	0.34	0.345	80.4	9.90	2.48
	3	14.99	30:34	401.53	0.5	69	137	2	46	0.34	0.345	80.3	9.93	2.49
	4	15.43	45:34	406.63	0.53	69	137	2	47	0.34	0.345	77.8	9.94	2.49
	5	14.84	1:01:00	411.87	0.49	69	137	2	47	0.34	0.345	83.1	9.93	2.49
В	9	13.74	1:15:51	417.01	0.42	69	137	2	49	0.34	0.345	85.6	9.95	2.50
	7	15.43	1:29:35	421.601	0.53	69	137	2	20	0.34	0.345	80.0	9.94	2.49
	2	14.99	1:45:00	426.95	0.5	99	137	7	45	0.34	0.343	80.1	9.95	2.49
	လ	14.99	2:00:00	432.01	0.5	64	137	2	44	0.34	0.341	78.0	9.97	2.50
	4	15.58	2:15:00	436.95	0.54	63	137	2	45	0.34	0.341	76.9	9.97	2.50
	5	14.69	2:30:34	442.17	0.48	62	137	2	46	0.34	0.340	83.9	96.6	2.50
4	9	13.57	2:45:15	447.19	0.41	62	137	2	46	0.34	0.340	8.06	9.95	2.50
	otal Rui	Total Run Time	2:58:50	451.828										
201	1	ital Volu	Total Volume, ACF 60.828	60.828										
6			. •	Averages	Averages 0.494156	66.8	137			0.340		107.5	10.29	2.66
Run	Run PM10-2.5-2	2.5-2		_	in. H20	±°	J.			in H2O		%	microns	suo

ě
he
S
ţa
ā
ā
E
Œ
ιć
7
중
-
8
\approx
\equiv
ď
<u>3</u>
õ
ŭ
جَر
0
9
2
Ō
Ξ
8

OTM-	1	d Cyclor IDENTIF	l Cyclone PM10 & PM2.5 Run Dai IDENTIFICATION INFORMATION	& PM2.5 V INFOR	Combined Cyclone PM10 & PM2.5 Run Data Sheet IDENTIFICATION INFORMATION	Sheet	 _			PRELIMINARY	ARY CHE	Run ID Condition CHECKS AND D	PM10-2.5-3 DATA	
-036		Plant Name											Reald	Vacuum
		City						الد الله د د	ull Train Pre	test Leak Ch	Full Train Pretest Leak Check, ACFM	0	< 0.02 or 4%	15
) Jale Jale Jale Jale Jale Jale Jale Jale						Tari	al Irain Post	test Leak C	Partial Train Posttest Leak Check, ACFM	n	0.020	æ
	Source Number Sampling Location	Source Number mpling Location	Source Number FCC Scrubber mpling Location Stack Test Dersonal TTB	bber	Start	5/27/2010 2012		(Remo	ove cyclone I upright pr	sampling l	nead before ery.) Do no	posttest leal t leak check	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	cyclone anges.
	165		2		ldoic	6162			Pitot T	uhe Pretest	Pitot Tube Pretest Leak Chack	4 C	m c	
	7 7 2	ے : :	200000		<u> </u>	ŀ			Pitot Tu	be Posttest	Pitot Tube Posttest Leak Check		0	
		Meterbox ID △ H ©	1.6880		rilter ID	lare		Baror	Barometric Pressure, In.,Hg.	ure, In.,Hg.	29.50	Static Pres	Static Pressure, In. W.C.	-0.40
	უ 	Gamma, 개	0.9846											
	_	Nozzle ID	က						AC	ACTUAL MOISTURE	≪ಶ	GAS COMPC	COMPOSITION	
	Nozzle I	Nozzle Diameter	0.173					M	Water Recovered, grams	red, grams	240.5		Moisture, %	18.300
P		Orsat/Fyrite	FYR							CO ₂ %	14.5		Md_run	29.71
age 29		•						N2 LPM	2.23	02%	3.2		Mw_run	28.34
4 of 64				S	Sampling Inform	Information	nc 2n					QA C	Checks	Commence of the Commence of th
43		Dweli	Elapsed	Meter	ę	1	Stack	Sample	Impinger	- 1	-		Run Cummulative	ve D ₅₀ s,
	Port Point	Time, (Min.)	Time, h:m:s	Volume (ft³)	6	weter temp. (°F)	Temp., (°F)	Train Vac. (in. Hg)	Exit Gas Temp., (°F)	(in. H ₂ O)	(in.H ₂ O)	osi %	microns PM ₁₀	s PM _{2.5}
	1 1	15.00	0	453.1	0.52	55	137	_	52	0.35	0.345	81.9	9.85	2.45
	2	14.71	15:00	458.22	0.5	57	137	1	45	0.35	0.346	87.0	9.74	2.40
	က	15.00	29:42	463.42	0.52	57	137	-	45	0.35	0.346	80.3	9.81	2.43
	4	14.86	44:43	468.48	0.51	58	137		46	0.35	0.347	79.2	9.88	2.46
		14.41	59:34	473.41	0.48	58	137	_	50	0.35	0.347	83.1	9.90	2.47
	В	13.32	1:13:58	478.26	0.41	28	137		52	0.35	0.347	9.68	9.91	2.48
		15.14	1:27:18	482.73	0.53	57	137	_	55	0.35	0.346	81.2	9.90	2.47
	2	14.86	1:42:26	487.92	0.51	56	137	Ψ	59	0.35	0.346	81.9	9:30	2.47
	က	14.71	1:57:17	492.96	0.5	56	137		90	0.35	0.346	83.6	9.90	2.47
	4	15.14	2:12:00	497.99	0.53	56	137	—	53	0.35	0.346	85.9	98.6	2.45
	ည	14.56	2:27:08	503.4	0.49	57	137	~	52	0.35	0.346	86.2	9.85	2.45
4		13.48	2:41:43	508.47	0.42	55	137	1	53	0.35	0.345	98.5	9.81	2.43
/11/20	Total F	Total Run Time 2:55:11	2:55:11 me ACF	513.353 60.253										
16				S	0.492564	56.7	137		I	0.350		101.9	9.97	2.50
=	Run PM10	PM10-2.5-3		—	in. H2O	J ₀	<u>LL</u>			in H2O		%	microns	Suc

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# 1436-F

Run ID M5B-1 Condition

	IDEN'	TIFICATI	ON INFO	RMATIC	N		PREL	<u> IMINARY</u>	CHECKS	AND DATA	
	Plant								Actual	Req'd	Vacuum
Cit	y, State					Pre	Leak Che	eck, ACFM		< 0.02 or 4%	
						Post	Leak Che	eck, ACFM	0	0.020	
Test L	.ocation	FCCL	J Stack	Date	5/27/10				Α	В	
Pe	rsonnel	DLS,T	TB,PJJ	Start	0949			eak Check			I
				Stop	1354	Pi	tot Post L	eak Check			I
Mete	rbox ID	1130		Filter ID	Tare						
	ΔH@	1.8487	j				S	tatic Pressı	ure, In. H₂O	-0.40	
1	nma (Y)	1.0475]				Baror	netric Press	sure, In. Hg	29.50	I
	Nozzle						1-7-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	**************************************	77 - 7 - 23 - 24 - 25 - 25 - 25 - 25 - 25 - 25 - 25		
	zle Dia.	0.238	-	IZ Cantan	0.04					CONPOSITI	
	ozzle ID robe ID	1-3 8B	4	K Factor adout ID		vvate	r Recove	red, grams CO2 %	526.1 14.8	Moisture, % O2 %	19.510 2.9
1.	TODE ID						 	002 /0	14.0	<u> </u>	
	T	I		piirig irii	formatior	<i>I</i>				QA Checks	
Point	Time Per Pt,	Elapsed Time	Dry Gas Meter	ΔР	Meter	Stack	ДН	Target	Rur	n ISO %	Lk Chck Readings
FUIIL	(Min.)	(h:m:s)	(cu.ft.)	ΔΓ	Temp	Temp	ΔП	ΔН	Pt	Cum	During Run
1	15	0	245.309	0.42	57	138	0.9	0.921	101.9	101.9	LC 1
2	15	15:0	252.78	0.49	58	137	1.05	1.080	97.6	99.7	
3	15	30:0	260.53	0.53	58	137	1.15	1.167	103.1	100.9	
4	15	45:0	269.04	0.5	64	137	1.1	1.114	107.5	102.6	LC-2
5	15	1:00:0	277.76	0.51	66	137	1.15	1.140	103.1	102.7	
6	15	1:15:0	286.24	0.53	68	137	1.2	1.190	107.5	103.5	
7	15	1:30:0	295.28	0.41	70	137	0.92	0.924	98.0	102.8	LC-3
8	15	1:45:0	302.56	0.48	72	137	1.1	1.086	98.4	102.2	
9	15	2:00:0	310.5	0.54	72	137	1.2	1.221	98.9	101.8	
10	15	2:15:0	318.96	0.5	72	137	1.15	1.131	104.9	102.2	LC-4
11	15	2:30:0	327.6	0.5	73	137	1.15	1.133	99.7	101.9	
12	15	2:45:0	335.82	0.53	73	137	1.2	1.201	95.4	101.4	
13	15	3:00:0	343.919								LC-5
14	15	3:15:0									
15	15	3:30:0									
16	15	3:45:0									LC-6
17	15	4:00:0									
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									
21	15	5:00:0						<u> </u>			
22	15	5:15:0									LC-8
23	15	5:30:0									
24	15	5:45:0									
25	15	6:00:0									
	Į	6:15:0								-	

 Vm
 98.61
 0.4942
 66.9
 137.1
 1.106

 Vmstd
 102.3347
 in. H₂O
 °F
 °F
 in H₂O

102.0 %

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# 1436-F

Run ID M5B-2 Condition

	IDEN:	TIFICATI	ON INFO	RMATIC	N		PREL	.IMINARY	CHECKS	AND DATA	
	Plant								Actual	Req'd	Vacuum
Cit	y, State					Pre	Leak Che	eck, ACFM		< 0.02 or 4%	
						Post	Leak Che	eck, ACFM	0	0.020	
Test L	ocation	FCCL	J Stack	Date	5/27/10				Α	В	
	rsonnel		TB,PJJ	Start		F	Pitot Pre L	eak Check		1	
				Stop				eak Check			
Moto	rbox ID	1130	1	Filter ID	Tare			' <u>-</u>			
Wicto	ΔH _@		1	1 IRC1 ID	Taie		S	tatic Pressı	ıre. In. H ₂ O	-0.40	
Gan	ıma (Y)		1					netric Press			
	Nozzle		1								
	zle Dia.	0.240]							COMPOSITI	
	ozzle ID	2-3		K Factor	2.27	Wate	r Recove	red, grams	485.9	Moisture, %	18.206
P	robe ID	8A	4	adout ID	0			CO2 %	14.6	O2 %	3.1
			Sam	pling Ini	formatior	7				QA Checks	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Time	Elapsed	Dry Gas		Meter	Stack		Target	Run	ISO %	Lk Chck
Point	Per Pt,	Time	Meter	ΔP	Temp	Temp	ΔΗ	ΔH	Pt	Cum	Readings
	(Min.)	(h:m:s)	(cu.ft.)		`	`				,	During Run
1	15	0	354.599	0.41	68	137	0.94	0.935	101.3	101.3	LC 1
2	15	15:0	362.18	0.48	67	137	1.1	1.094	98.3	99.7	
3	15	30:0	370.12	0.51	66	137	1.1	1.159	100.3	99.9	
4	15	45:0	378.46	0.52	67	137	1.2	1.184	96.4	99.0	LC-2
5	15	1:00:0	386.56	0.5	67	137	1.15	1.138	98.6	98.9	
6	15	1:15:0	394.69	0.52	67	137	1.2	1.184	99.3	99.0	
7	15	1:30:0	403.04	0.42	66	137	0.96	0.954	100.6	99.2	LC-3
8	15	1:45:0	410.63	0.49	66	136	1.1	1.116	101.2	99.5	
9	15	2:00:0	418.88	0.53	64	137	1.2	1.200	93.6	98.8	
10	15	2:15:0	426.78	0.5	63	136	1.15	1.132	108.8	99.8	LC-4
11	15	2:30:0	435.69	0.51	63	137	1.15	1.153	116.9	101.4	
12	15	2:45:0	445.35	0.53	63	137	1.2	1.198	97.1	101.0	
13	15	3:00:0	453.525								LC-5
14	15	3:15:0									
15	15	3:30:0									
16	15	3:45:0									LC-6
17	15	4:00:0									
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									
21	15	5:00:0									
22	15	5:15:0									LC-8
23	15	5:30:0									
24	15	5:45:0									
25	15	6:00:0									
		6:15:0								······································	****

				_	ages	
Ī	Vm	98.926	0.4926	65.6	136.8	1.121
	Vmstd	102.9269	in. H₂O	°F	°F	in H₂O

99.6 %

Air Control Techniques, P.C. Isokinetic Sampling Train Field Data Sheet

Job# 1436-F

Run ID M5B-3 Condition

	IDEN:	TIFICATI	ON INFO	RMATIC	N		PREL	.IMINARY	CHECKS	AND DATA	
	Plant								Actual	Req'd	Vacuum
Cit	y, State					Pre	Leak Ch	eck, ACFM		< 0.02 or 4%	
						Post	Leak Ch	eck, ACFM	0	0.020	
Test L	ocation	FCCL	J Stack	Date	5/27/10				Α	В	
	rsonnel		TB,PJJ	Start		F	Pitot Pre L	eak Check		<u> </u>	
				Stop	2318	Pi	tot Post L	eak Check			
Mete	rbox ID	1130	1	Filter ID	Tare			·			
111000	ΔH@			1 1101 115	14.0		S	tatic Pressi	ure, In. H₂O	-0.40	
Gan	nma (Y)	1.0475	1						sure, In. Hg		
	Nozzle	0.269									
	zle Dia.	0.240								COMPOSITI	
	ozzle ID	1-3	4	K Factor		Wate	r Recove	red, grams	493	Moisture, %	18.908
Р	robe ID	8B	3	adout ID				CO2 %	14.5	O2 %	3.2
			Sam	pling In	formation	7				QA Checks	
	Time	Elapsed	Dry Gas		Meter	Stack		Target	Dun	ISO %	Lk Chck
Point	Per Pt,	Time	Meter	ΔΡ	Temp	Temp	ΔH	ΔH	Pt	Cum	Readings
	(Min.)	(h:m:s)	(cu.ft.)		<u>'</u>					,	During Run
1	15	0	454.012	0.43	57	137	23	0.985	99.8	99.8	LC 1
2	15	15:0	461.21	0.49	57	137	1.05	1.066	98.4	99.1	
3	15	30:0	469.2	0.51	57	136	1.1	1.172	95.4	97.8	
4	15	45:0	477.11	0.51	58	135	1.1	1.176	103.2	99.2	LC-2
5	15	1:00:0	485.69	0.48	58	136	1.05	1.105	89.6	97.3	
6	15	1:15:0	492.91	0.42	58	136	0.91	0.967	94.3	96.8	
7	15	1:30:0	500.02	0.49	57	135	1.05	1.128	98.9	97.1	LC-3
8	15	1:45:0	508.06	0.5	56	136	1.1	1.147	98.5	97.3	
9	15	2:00:0	516.13	0.52	56	137	1,1	1.190	93.3	96.9	
10	15	2:15:0	523.92	0.51	56	136	1.1	1.170	97.7	96.9	LC-4
11	15	2:30:0	532	0.5	56	137	1.1	1.145	98.7	97.1	
12	15	2:45:0	540.08	0.41	56	137	0.89	0.939	104.5	97.7	
13	15	3:00:0	547.825								LC-5
14	15	3:15:0									
15	15	3:30:0									
16	15	3:45:0									LC-6
17	15	4:00:0									
18	15	4:15:0									
19	15	4:30:0									LC-7
20	15	4:45:0									
21	15	5:00:0									
22	15	5:15:0									LC-8
23	15	5:30:0									
24	15	5:45:0									
25	15	6:00:0									
		6:15:0									

				Aver	ages	
-	Vm	93.813	0.4801	56.8	136.3	2.879
Ì	Vmstd	99.6934	in. H2O	°F	°F	in H2O

98.4 %

Method 4/028 - Air Control Techniques, P.C.

Date 5/26/10

Source Information			
Client		-	
Plant Name		_ Job #	1436 FD
City, State		Process	FCCU
Sampling Location		Personnel	
Sampling Information	-		
B. N. J ABLO 5/200 4	A DI O 5/000 O	ADI 0 5/000 0	
	API-2.5/028-2 H7G-130Z	API-2.5/028-3	
Filter Identification CPM 7eFlox	Teflon	Teflon	
Sampling Date 5/27/10	5/27/10	5/27/10	
	<u> </u>	9/2//0	
Moisture Data	**************************************		
Impinger 1			
Contents - Empty			
Final Weight, grams 562.2	<i>571.</i> 3	565.3	
Initial Weight, grams 34/. 6	339.9	341.8	
Condensed Water, grams 270.6	231.4,		
Condensed Water, grams 220.09	0√2) 1 · [A]	20010 V	
Impinger 2 - Empty			
Contents -	(700	r-1= r-	
Final Weight, grams 526.3	520.9	5/5.5	
Initial Weight, grams 5/4.8	520.9	5/7.0	
Condensed Water, grams 11.5 /	0.00	-1.5 V	
Impinger 3			
Contents - 100 ml H2O			
Final Weight, grams			
Initial Weight, grams			
Condensed Water, grams			
Silica Gel -			
Final Weight, grams 865.7	871.2	884.2	
Initial Weight, grams 849.5	8/1	865.7	
	4111		
Adsorbed Water, grams 16.21	11.10	18.51	
Total Water, grams 248.31	242.51	240.51	
	*		
OTM 028 Data			
Impinger Solution pH 5	5	5	
Purge 1450-1550	1900-2000	2330-0030	

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Percent Moisture = 100 * Bws

Air Control	Techniqu	ies, P	.C.		
Isokinetic S	Sampling	Train	Field	Data	Sheet

E

Job# 1436

Run ID MSB-1 Cond.

ymak maarin saasta		and the second s	- Care Laborate
' IDENTIFICATION	INFORMATION	PRELIMINARY CHECKS AND DATA	e same
Plant			cuum
City, State:		Pre Leak Check, ACFM 0.60 < 0.02 /	0
			0
Test Location	Date 5/27/10	A B	
Personnel	Start (1949)	Pitot Pre Leak Check	
-	Stop 1354	Pitot Post Leak Check	
	•		
Meterbox ID //30	Filter ID Tare	F-111-111-111-111-111-111-11-11-11-11-11	
ΔH@ 1810	1.8487	Static Pressure, In. H2O -04	
Gamma (Y). LODG	1.0475	Barometric Pressure, In. Hg 29,5	
Ideal Nozzle 0.234			
Nozzle Dia. 0.238		ACTUAL MOISTURE & GAS COMPOSITION	
Nozzle ID	K Factor 2.3	Water Recovered, grams Moisture, %	
Pitot Tube ID 8-B	TC Readout ID 1130	CO2 % O2 %	

建筑				Sa	mpling	Intorma	ition 湍					是 中心 经 经 计 2 1
Port/ Point	Elapsed Time	Volume Metered	ΔP	Meter Temp	Stack Temp.	ΔН	Probe Temp	Filter Temp	Exit Temp	Aux Temp	Vac	Lk Chcks
E	13:00	245.309	0.42	57.	138	0.9	326	314	47	50	0.5	LC 1
€2	0:15	252,78	0.49	58	137	1.05	322	312	45	49	1,0	
€3	30	260.53	053	58	137	1.15	329	313	49_	50	7	
E4	45	269.04	0.50	64	137	1.10	320	3(7	53	50]	LC-2
E5	10010	277.76	0,51	66	137	1.15	315	320	47	58	1	
E4	15	296.24	0.53	68	137	1.20	326	322_	49	57	\	
151	30	39.5.38	0.48	70	137	1.10	327	369	52	59	1	LC-3
S2	45	30256	0.48	72	137	1.10	327	308	52	59,	(
53	1200	310.50	0.54	72	137	1.20	324	308	58	63		
54	15	318.96	0.20	72_	137	1.15	324	322_	(o l	64	\	LC-4
55	30	327.60	050	73	137	1.15	300	304	62	65	\	
<u>S6</u>	45	335.82	053	73	137	1.20	308	3(3	6	67		
OFF	180	343919										LC-5
									ļ			-
			ļ							 		
,			<u> </u>		ļ		<u> </u>			<u> </u>		LC-6
.]					ļ	<u> </u>	ļ				<u> </u>	
								<u> </u>	ļ			LC-7
									<u></u>			
					ļ	ļ		<u> </u>			ļ	
		,			<u>, , , , , , , , , , , , , , , , , , , </u>			ļ	<u> </u>			LC-8
						ļ		-	<u> </u>			
									-		 	
					ļ					***************************************		

 Averages
 Max / Min °F
 ' ISO
 High
 Total

 Vm
 in. H₂O
 °F
 °F
 in. H₂O
 % in. Hg
 Cu. Ft.

STOP 1034 RESTART 1134

Page 299 of 643

4/11/2016

Air Control Techniqu	ues, P	.C.		
Isokinetic Sampling	Train	Field	Data	Sheet

Job# 1436

Run ID MSB-Z

15UNIII		· · · · · · · · · · · · · · · · · · ·	12150577	~1015	ar ar germed			din i a ma	COUCO	CO A MICH	DALTA S	
2 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IDENT	IFICATION	INFORMA	TION 🎉			PRELII	WINARY	CHEU	(S-AND	W240042100424040	77950EM.
	Plant			2						Actual	Req'd \	
	ity, State			•				ak Check			< 0.02	12
							Post Le	ak Check	k, ACFM	1000 I		ರ
T 6	. IHomi) ata	5-27-10				Į.	Ą	В	
	Location				1458	Ditot	Pro Les	k Check	1/	/		
	Personnel {			Stop				k Check				
	•			Stop[00	Filoti	V3t Lea	it Official				
Me	terbox ID	1130		Filter ID	Tare						7 -	
	ΔH@	1.8427	L					Pressure		0.5	ţo_	
Ga	amma (Y).	1.0475	L			Ba	arometrio	: Pressur	e, in. Hg		2	1
	al Nozzle	0271	<u> </u>				-24-1-1-1-1	1478710	56 0.50v		ė ja syletija	Mission St.
	ozzle, Dia.	0.240	_			FAC	LUALIN	IOISTUI	KE G G	ISKEOM	sture, %	
	Nozzle ID	25.5		< Factor		Water R	ecovered			IVIOI	O2 %	
Pito	t Tube ID	84	TC Rea	adout ID	1130			CO2 %			U2 /01	
		rough by the large years of the large larg	- 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	on New Age Company	a film of the market of the	The second se	gerand and the second and and a					Byselfelie
						Informa	aya yaya arası barının arasının danildi yayı 🚌			Aux	9年5月1日 	Enteres I
Port/	Elapsed	Volume	ΔP	Meter Temp	Stack Temp	ΔH	Probe Temp	Filter Temp	Exit Temp	Temp	Vac	Chcks
Point	Time	Metered		1		.011	wir sin del lang, and	320	55	7 1	7	LC 1
	0	354,599	0.41	68	137	0.94	329			191		
2	5	32.18	048	67	137	1. (1. (2)	<u> 328</u>	<u>300</u> _	14/	55		<u></u>
3	30	376.12	0.51	(do	137	1.0	331	305	47	56		
3	45	378.46	052	67	13	1.20	322	Z98	50_	56	(LC-2
	600	20/05/0	250	67	137	15	312	313	55	50		
' 	15	301110	0.92	1-7	137	1.ZO	33.	317	56	79		
		214.6		P/-			313	319	55	59.	7	LC-3
	30_	403.04	0.42	66	137	0.76	21-2	30	48	54,	7	
2	<u>45</u>	40.63	047	بهاميا	(3Lp	1.0	$\frac{1}{2}$		 	-11		
3	12010	42886	₽ (2)2	<u>64</u>	137	1.20	314.	311,	50	27	1	104
4	75	42678	6.50	63	136	1.5	36	313	53	125	\	LC-4
5	30	43569	h51	63	137	11.15	300	1297	57	55		
6	45	445.35	053	63	137	1.20	30(324	59_	157		
	100	453.525									,	LC-5
(J)	100	NO 525		· · · · · · · ·								-
<u> </u>					-	 			 			
									-			LC-6
		<u></u>			<u> </u>	<u> </u>		<u> </u>	-	 		
						 		 	 		 -	
					·					ļ	 	
											<u> </u>	LC-7
									<u></u>			
									·			·
			<u> </u>		-							LC-8
		<u> </u>	 	 	 	 	 		1			
			 	-	-	1			1		 	
							ļ		- 		 -	
									· y			5
						+ 10 m		vav.comb <u>ellijkansvaro</u> lijkv.com	vanage grade may have say		1	1 ' :
				Aver	ages		l	Max / Mir	۱°F	ISO	High	Total
{	Vm			Ì			Î		<u>i</u>		<u> </u>	<u> </u>
	Vmstd		in. H ₂ O	°F	°F	in. H ₂ O				%	in. Hg	Cu. Ft.
,												

Air Contr	ol Techniqu	ues, P	.C		
Isokinetic	ol Technique Sampling	Train	Field	Data	Sheet

The second second second second	A STATE OF THE PARTY OF THE PAR
1 1 1	ו יביוו
lon #	المناكسان
0000	
Company of the Party Company of the Sales	The second second second second

Run ID MSB_ Cond.

1. 2. 3. 2. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	IDENT	IFICATION.	INFORMA	TION	X:30		PRELII	<i>MINARY</i>	CHECK	(S AND	DATA 🐇	
3.4.7.3	Plant			\ \				,	_	Actual	Req'd \	Vacuum
	City, State							ak Check			< 0.02	14
	•					,	Post Le	ak Check	k, ACFM[2.		
TOS	t Location			Date	5-27-10			_	P	4	В	
	Personnel	•			2012			k Check[./			
				Stop	33/8	Pitot F	ost Lea	k Check			<u> </u>	
Y M	eterbox ID	A C		Filter ID	Tare							
	ΔH@	THAT	ſ			المستنشخ		Pressure,				
	amma (Y)	1				Ba	rometric	: Pressure	e, In. Hg	29.5		
	eal Nozzie		1			Carter conservation of the Carte	in the latest the same of	io e au	2E-8≅G/	NS COM	ROSHIC	
N	lozzle Dia.		1 . 7 . 4 . 9 .	K Factor				d, grams		Moi	sture, %	
D:#	Nozzie ID ot Tube ID	1.4 mm		adout ID		viator i i	00070101	CO2 %	- 1		O2 %[
	or rape in										and a second	
				Sa	mpling	Informa	tion					9696
Port/	Elapsed :	Volume	ΔР	Meter	Stack	ΔĤ	Probe	Filter	Exit Temp	Aux Temp	Vac	Lk Chcks
Point	Time 🤻	Metered		Temp	Temp		Temp	Temp 의 중시	LIS.	50		LC 1
	8		P To lock					الأ لان ا ∫سك	AUT L	7.03		
	£ 9 ;		\$ 7 E	33700	13.5 ta	10 (5 13 2	in the second		1,504	449	1	
			2.4		1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		49	ŀ	LC-2
			- A	N/ 1	To Sa		and the	ేవ్/	48	3		<u> </u>
				() (SH)	121	440.5		 	14	49	1	
10/10	, < 1 0 5 5 8 8 8 1 1 1 1		O.M.:	<u> </u>	126		<u> </u>	302_	15	3	1	LC-3
		<u> </u>		3 V			320		1-12-	52,	 '/- 	
	45	70	(2.11)(2.)	2 .	3	10	<u> 32</u> 나	303	50	52		
柳莺	0021	516		1962	63/7	1.0		30L	25	1000	1-1-	LC-4
	15	52392	05	56	130	110	320	200	25	54	1	20-4
30	30	30400	0.50	56	137	16	32	Z99	50	54		
16	45	54000		56	137	089	321	4-1-1	100	1	1	LC-5
PE	180	547965	<u> </u>			· · · · · · · ·				-		200
			<u> </u>				<u> </u>	-	 	 		-
						<u> </u>	<u> </u>		ļ			LC-6
						ļ		 	-	}		200
<u> </u>			<u> </u>			 		<u> </u>	}	 	 	
						 		<u> : </u>	-			LC-7
		<u> </u>				 	<u> </u>	-				
		<u> </u>			-				 	-		<u> </u>
				1	 	 	 		 	-		LC-8
			1		 ' 				 	-	1	1
	<u> </u>				1	 	 	-			1	
			-	-	 	+	<u> </u>	+	+	 	1	
]	1	1						,
		and a first or was a staged into the second region of the second region region region of the second region		۸۷۸۰	ages	and the second s	1	Max / Mir	ı°F	ISO	High	Total
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	j	AVE	ayes	İ	<u>'</u>	11965 31111				
	Vm		in. H₂O	°F	°F	in. H ₂ O	-	_		%	in. Hg	Cu. Ft.
	Vmstd	<u> </u>	111. 1120	ı r		111. ITZU	1					

Page 301 of 643

5/26/10 Method 4/028 - Air Control Techniques, P.C. Date Source Information Client 1436 FD Job# Plant Name FCCU Process City, State Personnel Sampling Location Sampling Information M5B/028-3 M5B/028-2 M5B/028-1 Run Number 830-6575 830-6574 Filter Identification FPM 800 -6573 Teflon Teflon Filter Identification CPM Teflon 5/27/10 2127/10 5/27/10 Sampling Date Moisture Data Impinger 1 Contents - Empty 872.5 Final Weight, grams 400.4 400.6 Initial Weight, grams 456.11 472.1 Condensed Water, grams Impinger 2 - Empty Contents -*532.*6 Final Weight, grams 530.9 Initial Weight, grams 1.7 Condensed Water, grams Impinger 3 Contents - 100 ml H₂O 606.2 Final Weight, grams 604.8 *5*93.4 602.9 Initial Weight, grams Condensed Water, grams Silica Gel -853.0 Final Weight, grams 828.0 Initial Weight, grams Adsorbed Water, grams 493.0 V 485.91 Total Water, grams 526. N

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Purge 1450-1550

Impinger Solution pH

OTM 028 Data

1900-2000

2330-0030

VOLUME III Appendix D – Calibration Data

Source Testing And Consulting Services Meter Box Calibration

Orifice ID

Calibration Date: 5/19/2010

1130

Meter Box:

Y Calibration Delta H @ Cal.

pass

pass

Vac

pass

	Te	chnician:	MPT				pa pa	ISS ISS ISS		pa pa pa	SS SS	pass pass pass
ΡΔΡΤ 1	· Orifi	ce Calibr	ation	t na 20 m m m titus - en en ma ya we wite 10 m w w e m inwa			μe	ISS	nd how rimes did.	pa	33 	pass
	. 01111	ce Calibi		Orifice Set:				Critical	Vacı	ııım.	13	3.9
		Barom		re (in. Hg):	29	900	· ·	Jinacai	vace	auiii.	, ,	,
Collecte	ed Dat		001.0000		20.	000						
00110010	,		Initial		Init	Final	Init	Final			1	
Orifice	Run		Meter	Final Meter		Meter	Amb	Amb		un	K	
ID	#	Delta H	Volume (Volume (Temp		Temp	Temp		me	Factor	Vac
			cu ft)	cu ft)	(F)	(F)	(F)	(F)	min	sec	1 40.01	
	1	0.33	197.600	201.100	79.00	79.00	79.00	79.00	12	0	0.2396	22
	2	0.33	197.600	201.100	79.00	79.00		79.00	12	ō	0.2396	22
District Control of the Control of t	1	0.67	201.100	206.745	79.00		79.00	79.00	13	0	0.3486	20
No.	2	0.67	201.100	206.745		79.00		79.00	13	0	0.3486	20
	1	1.20	206.745	213.675		79.00	79.00	79.00	12	0	0.4591	17.5
	2	1.20	206.745	213.675		79.00	79.00	79.00	12	0	0.4591	17.5
	1	1.90	213.675	221.200		80.00	80.00	80.00	10	0	0.5923	16
	2	1.90	213.675	221.200	80.00	80.00	80.00	80.00	10	0	0.5923	16
	1	3.50	221.200	238.845		82.00	81.00	82.00	17	0	0.815	15
and the second s	2	3.50	221.200	238.845	81.00	82.00	81.00	82.00	17	0	0.815	15
Calculat	ted Da	ata									1	
0-151	D	Meter	Meter	Corrected	A B		۸	A In			D. II. 13	
Orifice	Run	Volume	Volume	Meter	Ave N		Ave		`	1	Delta H	
ID	#	(cuft)	(std cu ft)	Volume	Temp)(F)	Temp) (F)			@	
				(std cu ft)								
	1	3.5	3.42769	3.70292	7	9	7	9	1.0	803	1.9114	
	2	3.5	3.42769	3.70292	7	9	7	9	1.0	803	1.9114	
	AVE								1.08	303	1.9114	
	1	5.645	5.53299	5.83643	7		7			548	1.8364	
	2	5.645	5.53299	5.83643	7	9	7	9		548	1.8364	
	AVE									548	1.8364	
	1	6.93	6.80133	7.09521	7		7		1.04	432	1.9013	\$ c anomaly
	2	6.93	6.80133	7.09521	7	9	7	9		432	1.9013	a maria de la companya de la company
	AVE								1.04		1.9013	ACC STATE
	1	7.525	7.38426	7.62107	8		8		1.03		1.8148	À
	2	7.525	7.38426	7.62107	8	0	8	0	1.03		1.8148	
	AVE								1.03		1.8148	
	1	17.645	17.33465	17.80240	81		81		1.02		1.7796	256 44 2 374
	2	17.645	17.33465	17.80240	81	.5	81	.5	1.02		1.7796	
	AVE								1.02		1.7796	
مهورت فاستحدث فالمراد ودوسوس ومحا		App. married and a great a second and a second and a	t the second of	· Armonia anno 100 againmhilirean ann ann	Averag	e for Al	l Runs	mana, an ang op an an ang op an	1.04	475	1.8487	2000.000.000.000.000.000.000.000

Source Testing And Consulting Services Meter Box Calibration

Calibration Date:

Meter Box: Technician:

PART 2: Thermocouple Calibration

T/C Calibrator Make:

T/C Calibrator Model:

Hg Thermometer Reading (F):

Calibrator Output(F)	Meter Reading (F)	Error F)	(Allowable Error (F)	Result
0.0				9.24	
32.0				9.88	
70.0				10.64	
100.0				11.24	
200.0				13.24	
500.0				19.24	
1200.0				33.24	
1995.0				49.24	

1492-EIS-1130

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	tion		4****	Calibration	Calibration Conditions	, we have	L	4	Eartore/Conversions	
Console Model Number	522		Date	Time	07/21/10		S	Std Temp	528	్ల
Console Serial Number	EIS 1130	1	Barometric Pressure	Ð	29.85	in Hg	Std	Std Press	29.92	in Ha
DGM Model Number			Theoretical Critical Vacuum ¹	Vacuum ¹	14.1	gH ni	<u> x</u>		17.647	aR/in Ha
DGM Serial Number			Calibration Technician	lan	DLS	A A Angle		- The state of the	- Application of the control of the	
For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.	cuum should be 1 to	2 in. Hg greater t	han the Theoretica	al Critical Vacuum	shown above.					
² The Critical Orifice Coefficient, K', must be entered in English units, (ft ^{3, o} R ¹²)/(in.Hg [*] min)	t be entered in Englist	յ units, (Ք³•°R¹/2)/(in	.Hg*min).							

	T		Γ.	Ι			
	Actual	Vacuum		in Hg	17.00	17.00	17.00
	Amb Temp	Final	(t _{emb})	长	67	29	29
Critical Orifice	Amb Temp	Initial	(t _{amb})	۴	67	67	67
	Coefficient		¥	see above2	0.5907	0.5907	0.5907
	Serial	Number			FO 63	FO 63	FO 63
	Outlet Temp	Final	(t _{m1})	ᆦ	75	75	75
	Outlet Temp	Initial	(t_{mi})	J _o	75	75	75
Metering Console	Volume	Final	(V _{mf})	cubic feet	322.732	327.932	333.137
	Volume	Initial	(V _m)	cubic feet	317.530	322.732	327.932
	DGM Orifice	НΔ	(P _m)	in H ₂ O	1.85	1.85	1.85
Run Time		Elapsed	(0)	min	7.0	7.0	7.0

		,	y	·	······································	. <u> </u>				
		ΔH @	Variation	(ØHVV)		0.000	0.000	0.000	ΔH@ Average	
		НΔ	0.75 SCFM	(AH@)	in H2O	1.754	1.754	1.754	1.754	
	Dry Gas Meter	Flowrate	Std & Corr	(Qmistalicon)	cfm	0.768	0.768	0.768		
		เม Factor	Variation	(AY)		0.000	0,000	-0.001	Y Average	
Results		Calibration Factor	Calibrati	Value	(λ)		1.045	1.045	1.044	1.045
			Orifice	(Q _{cr(std)})	cfm	0.768	0.768	0.768	0.2	
	sed Data			Critical Orifice	(Vcr _(61d))	cubic feet	5.377	5.377	5.377	% Deviation
	Standardized Data				Meter	(Q _{m(std)})	cfm	0.735	0.735	0.735
	· ·		Dry Gas Meter	(V _{m(std)})	cubic feet	5,145	5.143	5.148	Pretest Gamma	

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

l certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

4/11/2016

Date

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

Meter Console Information	522	702233	RW 110	1014753
Meter	Console Model Number	Console Serial Number	DGM Model Number	DGM Serial Number

Date	Time	02/01/10	
Barometric Pressure	9.	29.80	in Hg
Theoretical Critical Vacuum	Vacuum¹	14.07	in Hg
Calibration Technician	lan	DLS	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
K,	17.647	oR/in Hg

Por valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft³⁴sR¹/2)\(in.Hg⁴min).

		Actual	Vacuum		in Hg	23	21	20	18	17
		Amb Temp	Final	(t _{errb})	¥.	29	67	67	67	67
	Critical Orifice	Amb Temp	Initial	(t _{amb})	ሁ የ	67	67	67	67	67
		Coefficient		Κ.	see above2	0.2387	0.3483	0,4592	0,5907	0.8085
		Serial	Number			FO 40	FO 48	FO 55	FO 63	FO 73
Calibration Data		Outlet Temp	Final	(t _{ml})	٩٠	72	71	72	71	71
		Outlet Temp	Initial	(t _{ret})	Ⅎ₀	72	72	71	72	71
	Metering Console	Volume	Final	(V _{ml})	cubic feet	249.717	255,388	260.982	266.975	273.066
		Volume	Initial	(V _m)	cubic feet	244.300	249.820	255.500	261.100	267.200
		DGM Orifice	AΗ	(P _m)	in H ₂ O	0.27	0.61	1.10	1.80	3.40
	Run Time		Elapsed	(0)	nin	17.0	12.0	0.6	7.5	5.5

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibratic	Calibration Factor	Flowrate	НΩ	ФН @
Drv Ga	Dry Gas Meter	Critical	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vasid)	(Q _{m(sta)})	(Vcr _(std))	(Q _{er(sld)})	(,)	(AY)	(Q _{m(etd)[ecm)})	(AH@)	(ØH∇∇)
cubic feet	cfm .	cubic feet	ctm			cfm	in H2O	
5.358	0.315	5.268	0.310	0.983	-0.002	0.310	1.567	-0.121
5.517	0,460	5.426	0.452	0.983	-0.001	0.452	1.667	-0.021
5,439	0.604	5.365	0.596	0.986	0.002	0.596	1.734	0,046
5.839	0.778	5.751	0.767	0.985	000'0	0.767	1.720	0,033
5.858	1.065	5.772	1.050	0.985	0.001	1.050	1.750	0.062
		- Parish dayler		0.9846	Y Average		1.688	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

ed in accordantewith USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 certify that the above Dry Gas-Meter was calibral

Signature

2-01-10

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	ion			Calibration Conditions	Conditions		
Console Model Number	522	Щ	Date	Time	10/20/10		Std Temp
Console Serial Number	702233	ш,	Barometric Pressure	e	29.7	in Hg	Std Press
DGM Model Number	RW 110	<u> </u>	Theoretical Critical Vacuum	Vacuum¹	14.0	in Hg	K
DGM Serial Number	961167	0	Calibration Technician	an	DLS		
¹ For valid test results, the Actual Vac	suum should be 1 to	ual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.	ian the Theoretica	al Critical Vacuum	shown above.		
² The Critical Orifice Coefficient, K', must	be entered in Englis	⟨, must be entered in English units, (tt³*ºR¹t²)/(in.Hg*min).	Hg⁺min).				

	Factors/Conversions	
Std Temp	528	å
Std Press	29.82	in Hg
K,	17.647	oR/in Hg

		Actual	Vacuum		in Hg	19.00	19,00	19.00
	The state of the s	Amb Temp	Final	(t _{amb})	٦,	72	72	72
Average	Critical Orifice	Amb Temp	Initial	(t _{amb})	국,	72	72	72
	- April 1970	Coefficient		×	see above2	0.5907	0.5907	0.5907
		Serial	Number			FO 63	FO 63	FO 63
Calibration Data		Outlet Temp	Final	(t _m)	Ь	75	75	75
	Metering Console	Metering Console	Outlet Temp	Initial	(t _m)	찬	75	75
			Volume	Final	(V _m)	cubic feet	267.910	273.378
		Volume	Initial	(V _m)	cubic feet	262.400	267.910	273.378
		DGM Orifice	НΔ	(P _m)	in H ₂ O	1.70	1.70	1.70
	Run Time		Elapsed	(0)	min	7.0	7.0	7.0

		AH @	Variation	(AAH@)		0.000	0.000	0.000	AH@ Average
		HØ	0.75 SCFM	(AH@)	in H2O	1.634	1.634	1.634	1.634
	Dry Gas Meter	Flowrate	Std & Corr	(Qm(std)(con))	cfm	0.761	0.761	0.761	
		n Factor	Variation	(AY)		-0.004	0.003	0.001	Y Average
Results		Calibration Factor	Value	(λ)		0.982	0.990	0.987	0.986
			Orifice	(Q _{cr(std)})	cfm	0.761	0.761	0.761	0.2
	zed Data		Critical Orifice	(Vcr _(std))	cubic feet	5.324	5.324	5.324	% Deviation
	Standardized Data				Meter	(Q _{m(std)})	cfm	0.774	0.768
			Dry Gas Meter	(V _{m(std)})	cubic feet	5.421	5.379	5.394	Pretest Gamma

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meterwas calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Identification Information

Client IN HOUSE	Job NA	
Plant Name NA	Process NA	
City CARY	State VC.	
Pitot ID 84		
Inspection Results	-	
·	Inspection Data	
	Level and Perpendicular?	YES
	Obstruction?	NO
	Damaged?	NO
\mathbb{X}	$\alpha 1 (-10^{\circ} \leq \alpha 1 \leq + 10^{\circ})$	1
	$\alpha 2 (-10^{\circ} \leq \alpha 2 \leq +10^{\circ})$	
	$\beta 1 (-5^{\circ} \leq \beta 1 \leq +5^{\circ})$	
Dogree Indistring level position for	$\beta 2 (-5^{\circ} \leq \beta 2 \leq +5^{\circ})$	<u>Ó</u>
	Υ	<u>- </u>
A	0	
		D.0164
- 	D1 (3/16 inch \leq D1 \leq 3/8 inch)	2.0164
	A A	3.3.13 50375
Dograe Indicating bool cookies for datemining \$1 and \$2.	A/2D1 (1.05 ≤ PA/D1 ≤ 1.5)	29375
4	72D1 (1.03 SPAD1 S 1.0)	1.52
	1	
Degree Indicating level position for determining (Notes	
Dagroe indicating level position for datamining y than calculate Z.		
Ditat Coefficient		
Pitot Coefficient		
Coefficient of 0.84 Assigned? <u>\ ೯೨</u>	Notes	
Inspection Personnel DLS		

Form ACTPC PI-2

				
Identii	fication Information			
	Client In House	Job	NA	
1	Plant Name NA	Process	NA	
	City CARY	State	NC	
Z g	Pitot ID 영웅			
		The second section is a second section of the second section of the second section is a second secon	an en an el como de marco de marco de marco de como de marco de como de marco de marco de marco de marco de ma	

Inspection Results		
	Inspection Data	
	Level and Perpendicular?	755
A	Obstruction?	NO
	Damaged?	20
	$\alpha 1 (-10^{\circ} \le \alpha 1 \le + 10^{\circ})$	(
	$\alpha 2 (-10^{\circ} \le \alpha 2 \le + 10^{\circ})$	1
	$\beta 1 (-5^{\circ} \leq \beta 1 \leq +5^{\circ})$	
Bagroo Indissing level position for	$\beta 2 (-5^{\circ} \leq \beta 2 \leq +5^{\circ})$	0
determining ou end oz.	γ	(
	θ	
$\frac{1}{1-\sqrt{\sqrt{1-\frac{1}{2}}}}$	z=A tan γ (≤0.125 inches)	2.0164
	w=A tan θ (≤0.03125 inches)	0.0164
	D1 (3/16 inch ≤ D1 ≤ 3/8 inch)	0.375
Dogroo indicating level position for	А	0.9375
determining \$1 and \$1.	A/2D1 (1.05 ≤ PA/D1 ≤ 1.5)	1.25
	Notes	
LESS VILLE		
Degree Indicating level position for	•	
Degree indicating level position for detarmining (2)		
<u></u>		
Dogroo Indizating lavel position for dolomining 7 than calculate 2.		
determing 1 and estencia 2.		
Pitot Coefficient		A CONTRACTOR OF THE PARTY OF TH
	Notes	
Coefficient of 0.84 Assigned?		
Inspection Personneil DLS		
		<u>_</u>

Form ACTPC PI-2

Stainless Steel Nozzle Calibration and Condition Air Control Techniques, P.C.

Nozzle	Norto ID	Averese		Measureme	ents	High-Low	Condition	Date
Set ID	Nozzie ID	Average	1	2	3	i ligi i-Low	Condition	Inspected
ACT-N-1	1-1	0.123	0.123	0.124	0.122	0.002	OK	3/11/07
ACT-N-1	1-2	0.180	0.180	0.180	0.181	0.001	OK	3/11/07
ACT-N-1	1-3	0.238	0.238	0.238	0.238	0.000	OK	3/11/07
ACT-N-1	1-4	0.299	0.300	0.300	0,298	0.002		3/11/07
ACT-N-1	1-5	0.368	0.368	0.368	0.368	0.000	OK	~3/11/07
ACT-N-1.	1-6	0.427	0.427	0.427	0.428	0.001	OK	3/11/07
ACT-N-1	1-7	0.491	0.492	0.491	0.490	0.002	OK	3/11/07

Nozzle Set ID	Nozzle ID	Average	1	Measureme 2	ents 3	High-Low	Condition	Date
ACT-N-2	2-1	0.128	0.128	0.127	0.128	0.001	OK	3/11/07
ACT-N-2	2-2	0.177	0.176	0.177	0.178	0.002	OK	3/11/07
ACT-N-2	2-3	0.240	0.240	0.240	0.240	0.000	OK	3/11/07
ACT-N-2	2-4	0.298	0.297	0.298	0.298	0.001	OK	3/11/07
ACT-N-2	2-5 ·	0.373	0.373	0.374	0.373	0.001	OK	3/11/07
ACT-N-2	2-6	0.441	0.440	0.442	0.440	0.002	OK	3/11/07
ACT-N-2	2-7	0.497	0.498	0.497	0.497	0.001	OK	3/11/07

Nozzle	Non-io ID	A.,		Measureme	ents	High-Low	Condition	Date
Set ID	Nozzie ID	Average	1	2	3	r ngri-Low	Condition	
ACT-N-3	3-1	0.120	0.120	0.121	0.120	0.001	OK	3/11/07
ACT-N-3	3-2	0.189	0.188	0.189	0.189	0.001	OK	3/11/07
ACT-N-3	3-3	0.240	0.240	0.239	0.240	0.001	OK	3/11/07
ACT-N-3	3-4	0.254	0.254	0.254	0.255	0.001	OK	3/11/07
ACT-N-3	3-5	0.365	0.366	0.365	0.365	0.001	OK	3/11/07
ACT-N-3	3-6	0.996	0.996	0.997	0.995	0.002	OK	3/11/07
ACT-N-3	3-7	0.494	0.494	0.494	0.494	0.000	OK	3/11/07

Nozzle	Newsle 1D	Augusta		Measureme	ents	High Jow	Condition	Date
Set ID	Nozzle ID	Average	1	2	3	I ligiti-LOW	Condition	<u>i</u>
ACT-N-4	4-1	0.301	0.300	0.301	0.302	0.002	OK	3/11/07
ACT-N-4	4-2	0.178	0.178	0.178	0.177	0.001	OK	3/11/07
ACT-N-4	4-3	0.299	0.299	0.299	0.299	0.000	OK_	3/11/07
ACT-N-4	4-4	0.248	0.248	0.248	0.248	0.000	OK	3/11/07
ACT-N-4	4-5	0.364	0.364	0.364	0.363	0.001	OK	3/11/07
ACT-N-4	4-6	0.497	0.496	0.497	0.497	0.001	OK	3/11/07
ACT-N-4	4-7	0.498	0.497	0.498	0.499	0.002	OK	3/11/07

Nama

DANNY SPEER

Signature_

VOLUME III Appendix E – Analytical Data

Specialists in Air Emissions Analysis

ANALYTICAL REPORT

CLIENT:	AIR CONTROL TECHNIQUES, INC.
---------	------------------------------

PROJECT: 1436 F

ANALYTICAL SERVICES PROVIDED:

 FILTERABLE & CONDENSIBLE PARTICULATE (EPA METHOD PM 2.5, 5B/028)

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Date of Review: June 17, 2010

J. Bruce Nemet

Quality Assurance Officer

www.resolutionanalytics.com 2733 Lee Avenue • Sanford, NC 27332 • Phone: 919-774-5557 • Fax: 919-776-6785

Ontario-Hydro (Hg)

Analysis Request / Chain of Custody

RESOLUTION ANALYTICS, INC. | | |Specialists in Air Emission Analysis 2733 Lee Avenue, Sanford, NC 27330

Phone (919) 774-5557 • Fax (919) 776-6785 • Email resolute@interpath.com

		밑	(Standard Standard 5 Days (1,5x)	2 Days (2X)	24 Hours (3x)
Fax Number	919460 7897		- 1436 F		
Phone Number	919 460 7811	7	PO # 10077 - 1436 F	Project:	1436 F
Reporting Address: 1 Please attach a separate sheet of paper if billing	address is different than reporting address.	Company Air Control Techniques	Street Address E. Durham Rd.	City, State, Zip	Cary NC 27513

(Standard)

Analyses	EPA 0011/TO-5/8315 analytes	☐ HF (EPA 13B) ☐ EPA 26A (HCI/CL ₂)	analytes: VQC's (HPLC) analytes:	☐ Amines list: ☐ Pitenol (EPA TO-8) ☐ SO _X (BPA 6/8) analytes:	☐ Ammonia (CTM-027) ☐ NO _X (EPA 7A/TD)	☐ Filt Perticulate (EPA 5) ☐ Conden Part (EPA 202)	□ EPA 29
Train/Run Component	0.1 N NaOH (Imp 5-6)	£2.5 Rinse	, Imp Acetone, Imp Mell, CPMFiller	Imp Aretone,			
Train/Run Component	0.1 N H2SQ4 (Imp 4)	se, >2,5 Rinse		Harinse, Imp Soln, Imp Acetone,			
Train/Run Component	0.1 N H2SO4 (Imp 1-3)	Nozzle + Probe Riv	Filter, Imp Soln	Filter Frut BR		,	
Sample ID / Run #	EXAMPLE: SCRUBBER INLET-1	API-2.5/028-1,2(3) Nozzle + Probe Rinse, >2,5 Rinse, 62.5 Rinse,		M5B/028-1,2,3		Amay Not analyze	

Page 314 of 643

		□EPA 101A (hg)
Received by (Signature) Date Received by (Signature)	Omments	Other
		181

WHITE: Report Copy

CANARY: Client Copy

PINK: Lab Copy

Specialists in Air Emissions Analysis

CSCS REPORT SUMMARY CSCS

RFA#: 1436 F

Method: EPA M5

SAMPLE ID	TOTAL FILTERABLE PARTICULATE
Acetone Blank	0.4 mg (in 220 mls)
M5B/028-1	26.6 mg
M5B/028-2	19.4 mg
M5B/028-3	17.2 mg

Specialists in Air Emissions Analysis

CB CB

REPORT SUMMARY

CSCS

RFA#:

1436 F

SAMPLE ID	Particulate ≤2.5 μm	Particulate > 2.5 μm	Particulate Nozzle and Probe Rinse
Acetone Blank	0.4 mg	0.4 mg	0.4 mg (in 220 mls)
API-2.5/028-1	9.3 mg	0.4 mg	5.4 mg
API-2.5/028-2	10.8 mg	0.2 mg	4.3 mg
API-2.5/028-3	1.5 mg	0.4 mg	16.3 mg

Specialists in Air Emissions Analysis

80 m

REPORT SUMMARY

8

RFA#:

1436-F

	Organic	Inorganic	Total
SAMPLE ID	CPM	CPM	CPM ¹
Acetone/MeCl ₂ Blank			0.2 mg (in 135 mL)
DI H ₂ O Blank			1.2 mg (in 160 mL)
Field Train Blank	0.5 mg	1.3 mg	1.8 mg
A DY 0 7/000 1	1.7	0.0	5 .0
API-2.5/028-1	1.7 mg	8.0 mg	7.9 mg
API-2.5/028-2	1.0 mg	18.4 mg	17.6 mg
API-2.5/028-3	2.0 mg	10.8 mg	11.0 mg
M5B/028-1	2.9 mg	21.3 mg	22.4 mg
M5B/028-2	2.3 mg	15.1 mg	15.6 mg
M5B/028-3	2.3 mg	15.5 mg	16.0 mg

Analytical Narrative

RFA#:

1436 F

Client:

Air Control Techniques

Date Received:

6/3/10

Analyst: JSC

Date Analyzed:

6/8/10

Analysis: EPA M5

Analyte(s):

FILTERABLE PARTICULATE

Sample Matrix & Components:

Dry Filters, Front 1/2 Acetone Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated, baked 6 hours @ 160° C, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The filters were baked 6 hours at 160° C, desiccated for 2 hours and weighed.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The total catch reported for each run is a sum of the filter and rinse catches. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Analytical Narrative

RFA#:

1436 F

Client: A

Air Control Techniques

Date Received: 6/3/10

Analyst: JSC

Date Analyzed:

6/8/10

Analysis: OTM 027

Analyte(s):

PM 2.5 FILTERABLE PARTICULATE

Sample Matrix & Components:

Dry Filters, Front 1/2 Acetone Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses and pre-tared filters were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated overnight then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg. The filters were baked 2 to 3 hours at 105° C, desiccated for 2 hours and weighed.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The total catch reported for each run is a sum of the filter and rinse catches. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to OTM 027 analytical procedure were made. See data sheets for individual sample descriptions.

Analytical Narrative

RFA#:

1436-F

Client: Air Control Techniques, Inc.

Date Received:

6/3/2010

Analyst: BNL

Date Analyzed:

6/17/2010

Analysis: OTM-028

Analyte(s):

CONDENSIBLE PM

Sample Matrix & Components:

H₂O liquid impinger samples, organic impinger rinses, CPM filter, reagent blanks

Summary of Sample Prep:

The samples were received in the lab and logged in our custody records. They were then prepared and analyzed according to OTM 028.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable).

No modifications to OTM 028 analytical procedure were made. See data sheets for individual sample notes and comments.

PARTICULATE SAMPLING LABORATORY RESULTS

Client: Air Control Techniques Method: EPA M5								RFA #: 1436 F		436 F	
Run Number	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				M5B/028-1			M5B/028-2			M5B/028-3
Filter Container #	Date	1	Init			Date		_	Date	_	
_	6/10/10		JSC	-	0.3533	6/10/10	******	0.3477	6/10/10	_	0.3503
Baggie Tare Wt., g.	0/10/10	'	J3C		#N/A	0/10/10		# N /A	0/10/10		#N/A
Filter Tare Wt., g.					0.3370		_	0.3357		_	0.3362
FILTER SAMPLE WT., g.					0.0163			0.0120			0.0141
Front ½ Rinse Container#		_			1375			1639			1259
_	Date	\dashv	Init	-		Date	_	_	Date	_	
Tare Wt., g. UNSE SAMPLE WT., g.	6/10/10 6/10/10	(JSC JSC 120	F ml)	3.4869 3.4873 3.4764 0.0105	6/10/10 6/10/10 130	F ml)	3.5498 3.5499 3.5422 (0.0076	6/10/10 6/10/10 120	F ml)	3.4456 3.4460 3.4423 0.0033
											
ilter Catch, mg. linse Catch, mg.					16.3 10.5			12.0 7.6			14.1 3.3
inse Blank Residue, mg.					0.2			0.2			0.2
let Rinse Catch, mg.					10.3			7.4			3.1
ILTERABLE PARTICULAT	E, mg.				26.6			19.4			17.2

Legend:

F = Final Weight

Notes & Comments:

REAGENT BLANK LABORATORY RESULTS

Client: A Method: E	Air Control Te PA M5	echniqu	ies		RFA #: 1436 F
Run Number				Acetone Blank	
Sample ID/Contai	ner # Date	Init		2434	
Tare Wt., g. SAMPLE WT., g.	6/10/10 6/10/10 (JSC JSC 220	F ml)	3.4524 3.4527 <u>3.4520</u> 0.0004	
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Upper Limit, mg.	2434 3.4524 3.4520 0.4 220 785.0 2.32E-06 <				

Notes & Comments:

PARTICULATE SAMPLING LABORATORY RESULTS

Client: Method:		oi Technique	95			RFA i	#: 1436 F
Run Number			API-2.5/028-1		API-2.5/028-2		API-2.5/028-3
Filter Container #	Date	Init		Date		Date	
Baggie Tare Wt., g.	6/9/10	JSC	0.1345 #N/A	6/9/10	— 0.1242 ₩N/A	6/9/10	0.1139 #N/A
Filter Tare Wt., g. FILTER SAMPLE WT., g.			0.1256 0.0089		0.1134 0.0108		0.1128 0.0011
2.5 μm Rinse Container -	# Date	Init	161	Date	44	Date	1631
Tare Wt., g. RINSE SAMPLE WT., g.	6/9/10 6/8/10	JSC F JSC (10 ml)	3.4057 3.4059 3.4053 (0.0004	0/9/10 6/8/10 10	F 3.8322 3.8325 mi) 3.8322 0.0000	6/9/10 F 6/8/10 10 F	= 3.4950 3.4954 nl) 3.4946 0.0004
2.5 μm Rinse Container	# Date	Init	561	Date	1040	Date	1373
Tare Wt., g. RINSE SAMPLE WT., g.	6/9/10 6/8/10	JSC F JSC (20 ml)	3.5841 3.5846 3.5837 0.0004	6/9/10 6/8/10 20	F 3.7085 3.7090 ml) 3.7083 0.0002	6/9/10 F 6/8/10 10 n	= 3.5911 3.5915 nl) 3.5907 0.0004
lozzie and Probe Rinse C 	ontainer II Data	Init .	1488	Date	1659	Date	1644
Tare Wt., g. INSE SAMPLE WT., g.	6/9/10 6/8/10	JSC F JSC (230 ml)	3.8782 3.8783 3.8724 0.0058	6/9/10 6/8/10 170	F 3.5543 3.5545 ml) 3.5497 (0.0046	6/9/10 6/8/10 F 170 π	3.4372 3.4370 ni) 3.4204 0.0166
itor Gatch, mg.			8.9		10.8		1.1
2.5 µm Rinse Catch, mg. nse Blank Residue, mg. ot Rinso Gatch, mg.			0.4 0.0 0.4		0.0 0.0 0.0		0.4 0.0 0.4
2.5 µm Rinse Catch, mg. nse Blank Residue, mg. nt Rinse Catch, mg.			0.4 0.0 0.4		0.2 0.0 0.2		0.4 0.0 0.4
ozzie and Probe Rinse Ca nse Blank Residue, mg. nt Rinse Catch, mg.	atch, mg.		5.8 0.4 5.4		4.6 0.3 4.3		16.6 0.3 16.3
LTERABLE PARTICULA	TE, mg.		15,1		15.3		18.2

Notes & Comments:

REAGENT BLANK LABORATORY RESULTS

Client: A Method: C	Air Control Te DTM 027	echniqu		RFA #: 1436 F			
Run Number				Acetone Blank	TOTAL PROPERTY OF THE PROPERTY		
Sample ID/Contai	iner# Date	Init		2434			
Tare Wt., g. SAMPLE WT., g.	6/10/10 6/10/10 (JSC JSC 220	F ml)	3.4524 3.4527 3.4520 0.0004			
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Upper Limit, mg.	2434 3.4524 3.4520 0.4 220 785.0 2.32E-06 \(\nu\)						

CONDENSIBLE PARTICULATE MATTER LABORATORY RESULTS

Acetone/MeCl ₂ Container # 1379		Air Contro OTM-028	ol Tec	hniques, Inc.				RFA:	#:	1436-F
Date Init Date Date Date Date	Run Number			API-2.5/028	3-1		API-2.5/028-2		,	API-2.5/028-3
6/14/2010 BNL F 3.5491 6/14/2010 F 3.7056 6/14/2010 F 3.5700 RINSE SAMPLE WT., g. 0.0017 0.0010 0.0010 0.0020 DI H ₂ O Container # Date Init Date Init Date Init Date 0.16/2010 F 3.5792 6/17/2010 F 3.6829 6/17/2010 F 3.5712 G/16/2010 BNL F 3.5792 6/16/2010 F 3.6829 6/16/2010 F 3.5712 G/16/2010 BNL F 3.5792 6/16/2010 F 3.6829 6/16/2010 F 3.5712 RINSE SAMPLE WT., g. 0.0092 0.0203 0.0128 Diganic CPM Mass, mg 9.2 2.03 12.8 Prorganic CPM Mass, mg 9.2 20.3 12.8 Prorganic CPM Mass, mg 9.2 20.3 12.8 Prorganic CPM Mass, mg 1.19 1.87 2.04	Acetone/MeCl ₂ Conta		Init	1379	Date	_	610	Date	_	1554
Date Init Date Date Date Date Date	· -	6/14/2010		F 3.549 3.547	91 6/14/2010 74		3.7056 3.7046			3.5701 3.5701 3.5681 0.0020
6/16/2010 BNL F 3.5792 6/16/2010 F 3.6829 6/16/2010 F 3.5719 Tare Wt., g. 3.5700 3.6626 3.5599 RINSE SAMPLE WT., g. 0.0092 0.0203 0.0128 Organic CPM Mass, mg. 1.7 1.0 2.0 Inorganic CPM Mass, mg 9.2 20.3 12.8 Volume of NH 4 OH Added (N=0.1), ml 0.70 1.10 1.20 Correction For NH 3 Added, mg 1.19 1.87 2.04	OIH ₂ O Container#	Date	Init	1479	Date	····	2097	Date	_	846
corganic CPM Mass, mg 9.2 20.3 12.8 colume of NH ₄ OH Added (N=0.1), ml 0.70 1.10 1.20 correction For NH ₃ Added, mg 1.19 1.87 2.04		6/16/2010		F 3.579 3.570	2 6/16/2010 0		3.6829 3.6626		F -	3.5722 3.5719 3.5591 0.0128
Volume of NH $_4$ OH Added (N=0.1), ml 0.70 1.10 1.20 Correction For NH $_3$ Added, mg 1.19 1.87 2.04	rganic CPM Mass, n	ng.		1.	7		1.0			2.0
	olume of NH ₄ OH Ad orrection For NH ₃ Ad	ded (N=0.1), n dded, m g		0.79 1.1	<i>0</i> 9		1.10			12.8 1.20 2.04 10. 8

CONDENSIBLE PARTICULATE MATTER LABORATORY RESULTS

Client: Air Control Techr Method: OTM-028	niques, Inc.			RFA #:	1436-F
Run Number	M5B/028-1		M5B/028-2		M5B/028-3
acetone/MeCl ₂ Container # Date Init	235	Date	1693	<u>Date</u>	1591
6/16/2010 BNL F 6/14/2010 BNL F Tare Wt., g. NNSE SAMPLE WT., g.		6/16/2010 F 6/14/2010 F	3.5968 3.5968 3.5945 0.0023	6/16/2010 F 6/14/2010	3.4950 3.4951 3.4927 0.0023
I H ₂ O Container # <u>Date</u> Init	1563	Date	2277	Date	1273
6/17/2010 BNL 6/16/2010 BNL F Tare Wt., g. INSE SAMPLE WT., g.	3,4433 3,4432 3,4137 0.0295	6/17/2010 6/16/2010 F	3.5976 3.5975 3.5775 0.0200	6/17/2010 F 6/16/2010 F	3.8896 3.8896 3.8683 0.0213
rganic CPM Mass, mg.	2.9		2.3	***************************************	2.3
Forganic CPM Mass, mg Folume of NH $_4$ OH Added (N=0.1), ml For NH $_3$ Added, mg	29.5 4.80 8.17 21.3		20.0 2.90 4.94 15.1		21.3 3.40 5.79 15.5
otal CPM Mass, mg	22.4		15.6		16. 0

FIELD TRAIN BLANK LABORATORY RESULTS

hniques, Inc.	RFA #: 1436-F
Field Train Blank	
1248	
3.6456 F 3.6454 3.6449 0.0005	
2285	
F 3.5791 3.5792 3.5776 0.0015	
0.5	
1.5 0.10 0.17 1.3 1.8	
	T248 F 3.6456 3.6454 3.6449 0.0005 2285 F 3.5791 3.5792 3.5776 0.0015 0.5 1.5 0.10 0.17 1.3

FIELD REAGENT BLANK LABORATORY RESULTS

Client: Method:	Air Contro OTM-028	ol Teci	hnique	es, Inc.				RFA	#: 14	436-F
Run Number				Aleksania		Ac	etone/MeCl ₂			Di H ₂ O
Container#	Date	Init	-		Date	_	2175	Date		1579
Tare Wt., g. SAMPLE WT., g.	(### ml)	#N/A #N/A	6/16/2010 6/14/2010 (135		3.6761 3.6759 3.6757 0.0002	6/16/2010 6/14/2010 160	F ml)	3.6545 3.6547 3.6533 0.0012
Field Reagent Blank	Mass, mg			#N/A			0.2		•	1.2

PARTICULATE WORKSHEET

RFA # 143/9	DATE 4/3/10
	METHOD <u>61M-028</u>
GLIENT ACT	ANALYST BN

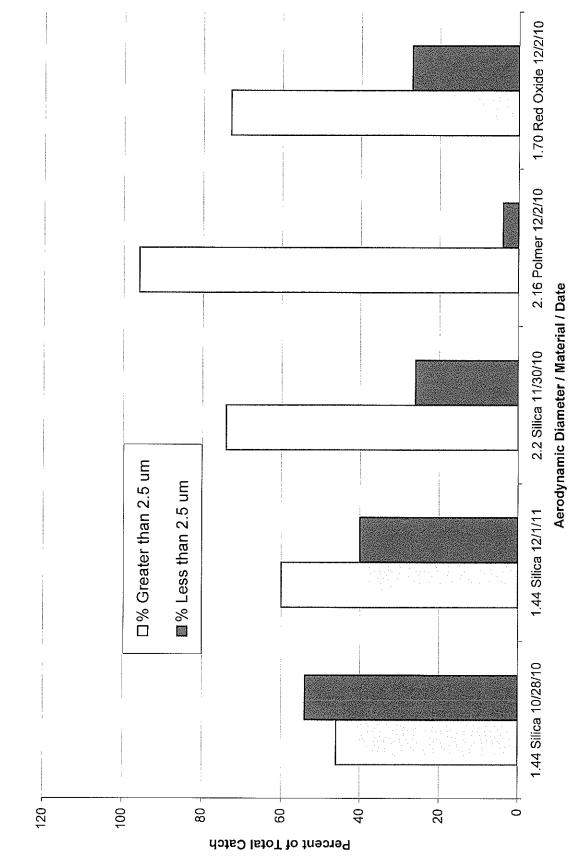
			4	 <u>-</u>	, 7	ī	4.8		2.9		3.4	<u>د</u>							
	MPINGER	VOL.(ML)						-						160					
	DI HZO IMPINGER	# LNDO	6541	2007年	oul i.	<i>6</i> +0	1563		2277	,	1273	2285		240					
TOLUENE	WETHER	VOL.(ML)										:		135			- 11 minutes		
MEGLZ TOLUENE	CHLOROFORW/ETHER	#"HNOU	1379	010	. [120	235		1693		1591	1248		2175					
	GYCLONE	אסרי(אור)																	
	Nozzle Gyclone	本・トハロロ																	
į	ACETONE RINBE	CONT.# VOL.(ML)																	
					-														
		# TARE WT.(B)]									:				:
Ī	FILTER	CONT.# FILTER #																•	
		CONT.#																	
	# ZJE		APT-2.5/028-1	7-	2		M56 128 - 1		7-		-3	Field Blank	1. 10 10	Kat Blank		Addition to the state of the st	THE REAL PROPERTY OF THE PERTY		

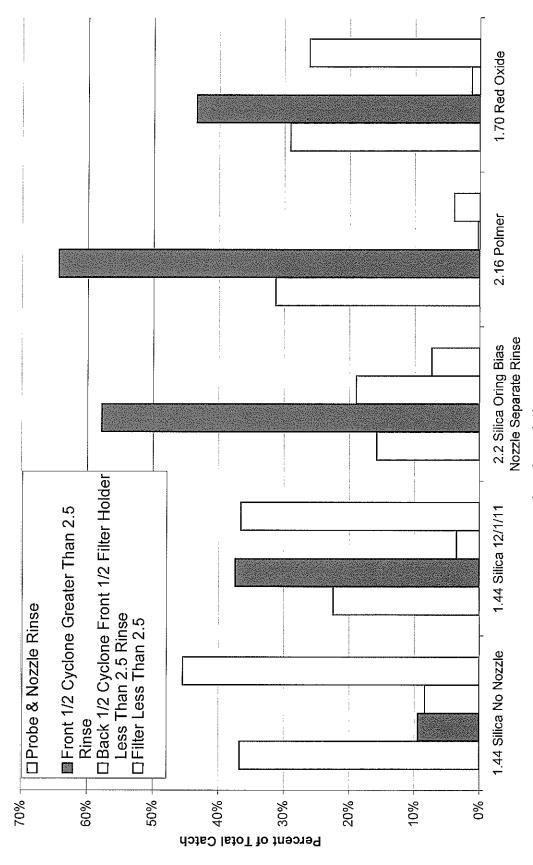
OTM-036

Page 329 of 643

4/11/2016

OTM 027 Particulate Bench Sheet


6/3/10	0/8/9	PADRE	า Rinse	gie# Volume	230	170	3	220											
Date Received: 6/3/10	Analyzed:	NO324 +	. > √10µπ	Baggie #	1488	1659	<i>pp91</i>	1877											
Date	Date		>2.5µm ≤10µm Rinse	Volume	8	20	(0		-										
			>2.5µm ≤1	Baggie #	156 I	1040	1373												
RFA #: 1436 F	527		≤ 2.5µm Rinse	Volume	2	0	Ð												
RFA #:	Method: C27	-	≤ 2.5µn	Baggie #	1 d	ħħ	1621					3							
				Filter Tare	0.1256	b .1134	0.1128				:								
1			Filter	Filter#	476-1801	476-1802	49-683												
			•	Baggie #													=		
Client: ACT	Analyst: JEC		# 552		APT-25 028 -1	2-	-3	KIB (ACETO NE)							and the state of t				


1: 6 13 lcs	d: 6/8/10	Acetone Rinse	Rinse Volume	(20	130	(20		220										
Date Received: 6 15 10	_ Date Analyze	Aceto	Baggie #	548)	1639	1259	•	243 <i>4</i>									*	
RFA#: 1436 F	: 58		Filter Tare	0-3370	0.3357	0.3362												
RFA#	Methoc	Filter	Filter #	830-6573	834-6544	830-6575					The second secon							
			Baggie #															
Client: ACT	Analyst: <u>15</u> C	# 6	# 1117	M56 1028 - 1	7-	to		KB (Acetore)						THE PROPERTY OF THE PROPERTY O				

APPENDIX IV Data Sheets for Laboratory Analyses

VOLUME IV

VOLUME IV Appendix A – Test Results

Combined Cyclone PM10 & PM2.5 Run Data Sheet

ominal	z.z um Aerodynamic ITA	Vacuum	.4% 15	6	(Remove cyclone sampling head before posttest leak check. Keep cyclone	rt changes.	1			V.C. 0.00		-	28 84	28.62		nulative D ₅₀ s,	microns	-	2.21		2.22	2.22	2.22	2.22	2.22	2.22	2.22	2.22	77.7		2.26
1.5 um Nomina	Z.z um A DATA	Req'd	< 0.02 or 4%	0.020	ak check. 1	k during po	ш	0	0	Static Pressure, In. W.C.		COMPOSITION	Md rin	Mw_run	Checks	Run Cummulative	0	0 82	9.83	9.88	9.87	9.87	9.87	9.87	9.87	9.87	9.87	9.87	0.0		9.99
Run ID	CKS AND	Actual		0	posttest le	ot leak chec	٧		0	Static Pro		GAS COM			40		osl %	198.3	197.5	194.1	197.6										194.0
	PRELIMINARY CHECKS AND DATA		Full Train Pretest Leak Check, ACFM	Partial Train Posttest Leak Check, ACFM	head before	head upright prior to recovery.) Do not leak check during port changes.		Pitot Tube Pretest Leak Check	Pitot Tube Posttest Leak Check	29.65	ŀ	STURE &	co./	2		H	(in.H ₂ O)	0.563	0.567	0.568	0.569	1.401	1.401	1.401	1.401	1.401	1.401	1.401	<u>-</u>		
eres	PRELIMII		etest Leak C	stest Leak C	e sampling	rior to recov		Tube Pretest	ube Posttest	Barometric Pressure, In.,Hg.		ACTUAL MOISTURE	valei Necovereu, granis	02 %		117	(in. H ₂ O)	0.46	0.46	0.46	0.46										0.460
Silica Spheres			Full Train Pr	ial Train Pos	ove cyclon	d upright p		Pitot 7	Pitot T	metric Pres		AC	אמופו אפרטא			Impinger	Exit Gas	67	29	64	64										
			1	Part	(Rem	hea	-			Baro		V 1	>			Sample	Train Vac.	2	2	2	2									-	
															. .	Stack	Temp.,	327	324	324	324									0	324.8
a Sheet					10		1235		ŀ	ale					Information	T may a	(°F)	81	81	82	83									2	81.8
Combined Cyclone PM10 & PM2.5 Run Data Sheet	IDENTIFICATION INFORMATION				Date	Start] Stop		(<u>†</u>	LIIELID					Sampling Informa) O	H ₂ O)	0.265	0.265	0.265	0.265										0.202
& PM2.	N INFO	q														Meter	Volume	506.9	511.39	515.87	520.28	524.779								17.879	Averages
ne PM10	IFICATIO	Plant Name ACTPC Lab	Cary	NC	N/A		TTB PJJ		000000		잋	API 0.472		_		Elapsed	Time,	0	10:00	20:00	30:00	40:00	40:00	40:00	40:00	40:00	40.00	40.00		Total Volume, ACF	•
Cyclo	IDENT	t Name	<u>\$</u>	State	Jumber	ocation	rsonne		Motorbov ID	DOX	Gamma, γ	Nozzie IU Diamater	Orsat/Fyrite	•		Dwell	Time,	10.00	10.00	10.00	10.00	0.00	0.00	0.00	0.00	00.0	90.0	0.00	n Time	otal Volu	
bined		Plan			Source Number N/A	Sampling Location	Test Personnel		MOTO			Nozzie ID	Orse				Point	L	2	3	4	2	9	- (.7 (.n <	4 u	ဂ	otal Run Time	ĭ	
Con					U	Sar						Ž	-				Port	 					اھ						ľ		

Com	Combined Cyclone PM10 & PM2.5 Run Data Sheet	ne PM10	& PM2.5	i Run Data	a Sheet		Silica Spheres	eres			Run ID	1 5 um Nominal	<u></u>
							•				Condition	2.2 um Aerodynamic	mamic
	IDENI	TIFICATIC	ON INFOF	IDENTIFICATION INFORMATION					PRELIMIT	PRELIMINARY CHECKS AND DATA	KS AND D	ATA	
	Plant Name ACTPC Lab	ACTPCL	-ab								Actual	Req'd	Vacuum
	ָלֵב <u>ׁי</u>	City Cary		11111			ш	ull Train Pr€	etest Leak C.	Full Train Pretest Leak Check, ACFM	0	< 0.02 or 4%	15
	State	State					Partik	al Train Pos	ttest Leak C	Partial Train Posttest Leak Check, ACFM[0	0.020	9
Ø	Source Number N/A	r N/A] Date	11/30/2010	-	(Кешс	ove cyclone	e sampling l	head before	posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cvclone
San	Sampling Location Lab	Lab		Start	0240	,	heac	l upright pi	rior to recov	rery.) Do not	t leak check	head upright prior to recovery.) Do not leak check during port changes.	anges.
	Test Personnel TTB PJJ	ITTB PJJ		Stop	0320					'	∢	· @	1
								Pitot T	ube Pretest	Pitot Tube Pretest Leak Check ☐	0	0	
			г	<u>1</u>	ŀ			Pitot Tu	rpe Posttest	Pitot Tube Posttest Leak Check \llbracket	0	0	
	Meterbox IU ∆ H @	1.9070		-Ilter ID	lare		Baror	netric Press	Barometric Pressure In Ho	29 65	Static Pre	Static Pressure In W.C.	00.0
	Gamma, γ	y 1.0206				**			.6			.)	0.
	Nozzle ID		_					AC	ACTUAL MOISTURE	વ્ય	GAS COMP	COMPOSITION	And the second s
ž	Nozzle Diameter	r 0.173	_				W	ater Recove	Water Recovered, grams			Moisture. %	2.001
	Orsat/Fyrite	N/A							CO ₂ %	0			28.84
			ı						0 ⁵ %	20.9		Mw_run	28.62
				Sampling	Sampling Informatio								
				Samping	monnan	110					J ₩Ď	CHECKS	
	Dwell		Meter	ΔP (In.	(In. Meter Temp.	Stack	Sample	Impinger	ЧΥ	Target ∆H	,	Run Cummulative	ve D ₅₀ S,
Port	Point (Min.)	h:me,	(ff ³)	H ₂ O)	(°F)	remp., (°F)	Train Vac. (in. Hg)	Exit Gas Temp., (°F)	(in. H ₂ O)	(in.H ₂ 0)	osl %	microns PM ₁₀	ons PM.,
∢	1 10.00	0	253.6	0.265	71	321	2	62	0.56	0.587	170 1	10.94	2 64
		10:00	257.45	0.265	72	321	2	63	0.56	0.588	172.9	10.88	2.62
			261.37	0.265	73	321	2	64	0.56	0.590	175.6	10.81	2.59
			265.36	0.265	74	321	2	65	0.56	0.591		10.80	2.59
١	5 0.00	4	269.322							1.467		10.80	2.59
n		_								1.467		10.80	2.59
	1	40:00								1.467		10.80	2.59
	1	40:00								1.467		10.80	2.59
		40:00								1.467		10.80	2.59
		40:00								1.467		10.80	2.59
	5 0.00	40:00								1.467		10.80	2.59
	00.0									1.467		10.80	2.59
-	Total Run Time	40:00											
	Total Vol	Total Volume, ACF						L		L			
- 1	1	<u>.</u>	Averages	0.265	72.5	321			0.560		173.2	10.80	2.59
Kun	1.5 um Nomina	<u></u>		In. H20	4	<u></u>		1	in H20		%	microns	suc

Combined Cyclone PM10 & PM2.5 Run Data Sheet	Run Data Sheet	Silica Spheres	Rin ID	11 0 um Nominal	-
			Condition	1.4 um Aerodynamic	namic
IDENTIFICATION INFORMATION	ATION	PRELIMINARY CHECKS AND DATA	CKS AND D	ATA	
Plant Name ACTPC Lab			Actual	ייים מ	1/00/1
		· · · · · · · · · · · · · · · · · · ·		ויבח מ	VacuuIII
City Cary		Full Train Pretest Leak Check, ACFM	0	< 0.02 or 4%	15
State NC		Partial Train Posttest Leak Check, ACFM	0	0.020	ပ
Source Number N/A	Date 12/1/2010	(Remove cyclone sampling head before posttest leak check. Keep cyclone	posttest lea	k check. Keep	cvclone
Sampling Location Lab	Start 1013	head upright prior to recovery.) Do not leak check during port changes.	i et leak check	during port ch	andes.
Test Personnel TTB PJJ	Stop 1053		<	- a	
		Pitot Tube Pretest Leak Check	0	0	
		Pitot Tube Posttest Leak Check	0	0	
	Filter ID Tare				
Δ H @ 1.9070		Barometric Pressure, In., Hg. 29.65	Static Pres	Static Pressure, In. W.C. [0.00
Gamma, y 1.0206					
		ACTUAL MOISTURE & GAS COMPOSITION	SAS COMP	OSITION	
Nozzle Diameter 0.173		Water Recovered, grams 6.89		Moisture, %	2.000
Orsat/Fyrite N/A		CO ₂ % 0		Md_run	28.84
		O ₂ % 20.9		Mw_run	28.62

-					Sampling Informs	Informatio	fion				The second secon	7 70	OA Chapta	
	ĺ				Sunding							ン 【ぎ	HECKS	
		Dwell	Elapsed	Meter	ul) dv	Motor	Stack	Sample	Impinger	7.	Tagget ALI		Run Cummulative	ve D ₅₀ S,
		Time,	Time,	Volume	Ć	Tomp (°E)	Temp.,	•	Exit Gas	Ç I	(in UC)	% Iso	microns	
Port	Point	(Min.)	h:m:s	(ft³)	,5	/ - \ .dillo:	(°F)	(in. Hg)	Temp., (°F)	(111. 1120)	(IIII:II ₂ O)		PM ₁₀	PM _{2.5}
		10.00	0	269.6	0.265	71	321	7	99	0.56	0.587	172.7	10.82	2.59
	7	10.00	10:00	273.51	0.265	72	321	2	99	0.56	0.588	165.8	10.97	2.66
	ဗ	10.00	20:00	277.27	0.265	72	320	2	64	0.56	0.590	175.4	10.88	2.62
_	4	10.00	30:00	281.25	0.265	73	321	7	63	0.56	0.590	183.1	10.75	2.57
—	ည	0.00	40:00	285.41							1.467		10.75	2.57
	9	0.00	40:00								1.467		10.75	2.57
	-	0.00	40:00								1.467		10.75	2.57
	2	0.00	40:00								1.467		10.75	2.57
	9	0.00	40:00								1.467		10.75	2.57
	4	0.00	40:00								1.467		10.75	2.57
	5	0.00	40:00								1.467		10.75	2.57
	9	00.00	40:00								1.467		10.75	2.57
ု	tal Ru	otal Run Time	40:00											
	ĭ	otal Volu	Total Volume, ACF 15.810	15.810										
			-	Averages	0.265	72.0	320.8			0.560		174.3	10.75	2.57
7	.0 um	Run 1.0 um Nominal			in. H20	Ļ.	ij.		•	in H2O	4	%	microns	suc
١			_											

Data Sheet
Run
PM2.5
8
PM10
Cyclone
ombined (

Run ID 2.1 um Nominal Condition 2.2 um Aerodynamic	PRELIMINARY CHECKS AND DATA	Actual Req'd Vacuum	0 < 0.02 or 4%		it leak chech heck during	Α	Pitot Tube Pretest Leak Check 0 0	20 6K Static Drassura	ACTUAL MOISTURE & GAS COMPOSITION	8.97	0 Md_run	20.9	QA Checks	Target AH		0.966 197.2 8.88	0.966 202.3 8.80	3 0.971 201.3 8.79 1.70	0.970 201.1	8.78	8.78	8.78	1,467 8.78 1,69	87.8	8.78	8.78		0 200.5 8.78 1.80	
Polymer Spheres	PREL		Full Train Pretest Leak Check, ACFM	Partial Train Posttest Leak Check, ACFM	(Remove cyclone sampl		Pitot Tube Pre	Barometric Pressure In Ho	ACTUAL	Water Recovered, grams	00	-		Sample	Train Vac. Exit Gas (in (in. Hg) Temp., (°F)	8	3 62		3									0.560	
M2.5 Run Data Sheet	FORMATION				Date 12/1/2010 Start 1400			Filter ID Tare					Sampling Information	AP (In. Meter	^{1е} H ₂ O) Тє	0.265 73	0.265	0.265 74	0.265 75 150	.148							648	ages 0.265 73.8 149.8	
Combined Cyclone PM10 & PM2.5 Run Data Sheet	IDENTIFICATION INFORMATION	Plant Name ACTPC Lab	City Cary	State NC	Source Number N/A Sampling Location Lab Test Personnel TTR P I	-	-	Meterbox ID 909083 △ H @ 1 9070	Nozzle ID API	Nozzle Diameter 0.173	Orsat/Fyrite N/A			Elapsed	Port Point (Min.) h:m:s (ft³)	0	10.00 10:00	3 10.00 20:00 295.77	10.00 30:00	5 0.00	0.00	7 0.00 40:00	0.00	00.0	5 0.00 40:00	6 0.00 40:00	Total Run Time 40:00 Total Volume, ACF 20.648	Averages	

•
eet
Sh
ţ
Da
2
R
5
M2
Д.
w)
0
-
5
4
<u>9</u>
õ
3
S
C)
Ø
ě
-
ã
٤
,0

	Sombined	Cyclor	ne PM/10	& PM2.5	Combined Cyclone PM10 & PM2.5 Run Data Sheet	a Sheet	_	Polymer Spheres	Spheres			Run ID Condition	2.1 um Nominal 2.2 um Aerodynamic	al namic
ТМ-		DENTIL	-ICATIO	N INFOR	IDENTIFICATION INFORMATION					PRELIMI	NARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
036	Plar	Plant Name ACTPC		Lab							•	A	Req'd	Vacuum
		State NC	City Cary tate NC					Parti	⁻ ull Train Pr al Train Pos	etest Leak C ittest Leak C	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	0 0	< 0.02 or 4%	7
	Source Number Sampling Location	Source Number N/A mpling Location Lab	N/A Lab		Date	12/2/2010 0930		(Reme	ove cyclon d upright p	e sampling rior to reco	head before verv.) Do no	posttest leal	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during nort changes	cyclone
	Test Pe	Test Personnel			Stop				- -			¥	B	
									Pitot Pitot To	Tube Pretest ube Posttest	Pitot Tube Pretest Leak Check	0 0	0 0	
	Mete	Meterbox ID △ H @	909083 1.9070		Filter ID	Tare		Baror	metric Pres	Barometric Pressure, In.,Hg.	29.65		Static Pressure, In. W.C.	0.00
	Š	Gamma, γ[1.0206				•							
	ž	Nozzle ID	API						AC	ACTUAL MOISTURE &		GAS COMPOSITION	SITION	
	Nozzle Diameter	iameter	0.173					\$	/ater Recov	Water Recovered, grams	4.96		Moisture, %	2.002
F	Ors	Orsat/Fyrite	N/A							CO ₂ %	0		Md_run	28.84
Page 3										0,2%	20.9		Mw_run	28.62
41 of 6					Sampling Inform	Information	uo					QA C	Checks	
43		Dwell	Elapsed	Meter	n[) GV	Motor	Stack	Sample	Impinger	Ţ	Target AH		Run Cummulative	re D ₅₀ S,
	Port Point	Time,	Time, h.m.s	Volume	H ₂ 0)	ř	Temp.,	Train Vac.	Exit Gas	(in. H ₂ O)	(in.H ₂ O)	osl %	microns	ins Ma
. ⊲		10.00		306.6	0.265	88	150	6 0	() () () () () () () () () ()	0.52	0.057	1 48 1	10 07	7 42
1		10.00	10:00	310.38	0.265	89	145	2	90	0.52	0.937	140.4	10.07	2.43
<u> </u>	33	10.00	20:00	314.16	0.265	69	150	2	56	0.52	0.959	146.6	10.92	2.45
	4	10.00	30:00	317.9	0.265	70	155	2	53	0.52	0.945		10.90	2.45
	2	0.00	40:00								1.467		10.90	2.45
<u>m</u>		0.00	40:00								1.467		10.90	2.45
	_	0.00	40:00								1.467		10.90	2.45
ļ	2	0.00	40:00								1.467		10.90	2.45
	E .	0.00	40:00								1.467		10.90	2.45
_	4	0.00	40:00								1.467		10.90	2.45
_ _	5	0.00	40:00								1.467		10.90	2.45
4	9	0.00	40:00								1.467		10.90	2.45
1/11/20	Total Run Time Total Volu	ın Time otal Volu	Run Time 40:00 Total Volume, ACF	11.300										
	ľ		•	Averages		68.8	150			0.520		147.7	10.90	2.45
포	Run 2.1 um	2.1 um Nomina	<u>-</u>	_	in. H20	ų,	Ļ.		-	in H20		%	microns	SUC

O	ombinea	l Cyclor	ne PM10	& PM2.5	Combined Cyclone PM10 & PM2.5 Run Data Sheet	3 Sheet		Red Oxide	ø			Run ID	0.8 um Nominal	3	
C												Condition	1.7 um Aerodynamic	namic	
TM-		DENTIL	IDENTIFICATION INFORMATION	N INFOR	MATION					PRELIMII	PRELIMINARY CHECKS	SKS AND DATA	ATA		
036	Plar	Plant Name ACTPC	ACTPCL	Lab								Actual	Req'd	Vacuum	
		City	Cary					ш	-ull Train Pre	etest Leak C	Full Train Pretest Leak Check, ACFM	0	< 0.02 or 4%	15	_
		State	NC					Parti	al Train Pos	ttest Leak C	Partial Train Posttest Leak Check, ACFM	0	0.020	9	_
	Source Number N/A	Source Number N/A	N/A		Date	12/2/2010		(Rem	ove cyclone	sampling	head before	posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone	
	Test Pe	Test Personnel	TTB PJJ		Stop			164 164	a uprignt pr	lor to reco	/ery.) Do no	t ieak cneck Δ	nead uprignt prior to recovery.) Do not leak check during port changes.	anges.	
		~			-				Pitot T	ube Pretest	Pitot Tube Pretest Leak Check		0		_
	:	<u>.</u>			!	-			Pitot Tu	ube Posttest	Pitot Tube Posttest Leak Check	0	0		
	Mete	Meterbox IU △ H @	- ·		Filter ID	Tare		Barol	Barometric Pressure, In.,Hg.	sure, In.,Hg.	29.65	Static Pres	Static Pressure, In. W.C.	0.00	
	Ö	Gamma, γ	1.0206												_
	ž	Nozzle ID	API						AC	ACTUAL MOISTURE &	STURE & C	GAS COMP	COMPOSITION		_
	Nozzle Diameter	iameter	0.173					'	Water Recovered, grams	ered, grams	6.83		Moisture, %	2.000	
I	Ors	Orsat/Fyrite	N/A							CO ₂ %	0		Md_run	28.84	
Page 3										02 %	20.9		Mw_run	28.62	
42 o					Samuling Inform	Information						120			
f 64				1	Jamping	monnan) WX	CHECKS		_
13		Dwell	Elapsed	Meter	ΔP (In.	Meter	Stack	Sample	Impinger	Р	Target ∆H	;	Run Cummulative	ve D ₅₀ s,	
Δ.	Port Point	Time, (Min.)	Time, h:m:s	Volume (ft³)	H ₂ O)	Temp. (°F)	Temp., (°F)	Train Vac. (in. Hg)	Exit Gas Temp., (°F)	(in. H ₂ O)	(in.H ₂ 0)	% Iso	microns PM ₁₀	ons PM, s	
⋖	_	10.00	0	339	0.265	71	320	2	99	0.56	0.589	174.8	10.73	2.56	_
	2	10.00	10:00	342.96	0.265	71	320	4	61	0.56	0.589	170.4	10.82	2.59	
[3	10.00	20:00	346.82	0.265	71	321	5	64	0.56	0.587	176.3	10.77	2.57	_
	4	10.00	30:00	350.81	0.265	73	321	5	65	0.56	0.590	169.4	10.82	2.59	
[ı	2	0.0	40:00	354.659							1.467		10.82	2.59	
n	9	0.00	40:00								1.467		10.82	2.59	
		0.00	40:00								1.467		10.82	2.59	
	2	0.00	40:00								1.467		10.82	2.59	
l_	က	0.00	40:00								1.467		10.82	2.59	
	4	0.00	40:00								1.467		10.82	2.59	
	2	0.00	40:00								1.467		10.82	2.59	
	9	0.00	40:00								1.467		10.82	2.59	
4/11/	Total Ru	rotal Run Time	40:00	,											_
/201	_	otal Volu	Total Volume, ACF	15.659			,		L		_				
		-		Averages		71.5	320.5		<u>1</u>	0.560		172.7	10.82	2.59	_
Ý	Run 0.8 um Nomina	Nomine Nomine			in. H20	¥,	Ļ.			in H2O		%	microns	suc	

Pui and Brockmann Equations

McFarland Equations

$$P = \exp\left(\frac{4.61 + a_m\theta Stk}{1 + b_m\theta Stk + c_m\theta Stk^2 + d_m\theta^2 Stk}\right) \times \frac{1}{100\%}$$

$$P = \exp[-(2)(0.706) \text{ Stk } \theta]$$

$$a_m = -0.9526 - 0.05686 R_o$$

 $b_m = \frac{-0.297 - 0.0174 R_o}{1 - 0.07 R_o + 0.0171 R_o^2}$

Stk =
$$\tau U_0/a$$

$$c_m = -0.306 + \frac{1.895}{\sqrt{R_0}} - \frac{2.0}{R_0}$$

$$d_m = \frac{0.131 - 0.0132 \text{ R}_0 + 0.000383 \text{ R}_0^2}{1 - 0.129 \text{ R}_0 + 0.0136 \text{ R}_0^2}$$

 R_0 is the curvature ratio or the radius of the bend divided by the radius of the duct ($R_0 = R_b/a$)

Input Parameters

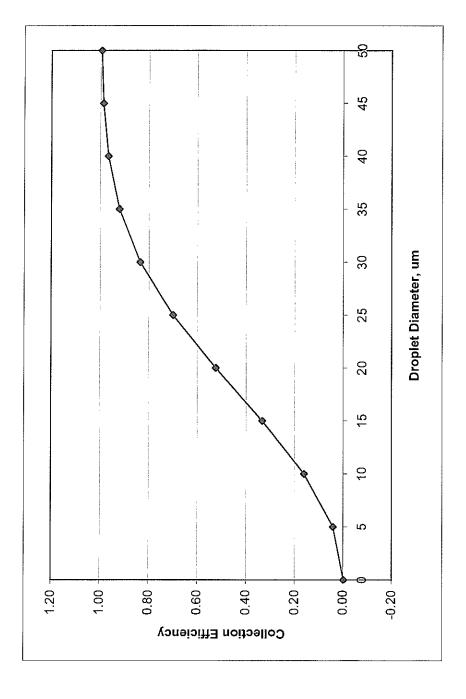
gas viscosity =
$$1.81E-05 \text{ kg/m s}$$

particle density = 1000 kg/m 3
tube velocity = 1 m/s
stack velocity = $50 \text{ fps} = 1.64$

s/w

Bend Parameters

0.05 m	0.0035 m	1.57 radians	
5 cm =	0.35 cm =	90 degrees =	14.29
bend radius =	tube radius =	Theta =	Ro II


0.889 in

McFarland Parameters

am = -1.764886 bm = -0.156333 cm = 0.05537 dm = 0.010655

Calculated Data

	Average	00.0	0.04	0.16	0.33	0.52	0.70	0.84	0.92	0.97	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	Effy	0.00	0.03	0.14	0.31	0.51	0.70	0.84	0.93	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
McFarland	¥	1.00	0.97	0.86	0.69	0.49	0.30	0.16	0.07	0.02	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ann	Effy	00.0	0.05	0.18	0.35	0.54	0.70	0.83	0.91	96.0	0.98	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Pui-Brockmann	Pt	1.00	0.95	0.82	0.65	0.46	0.30	0.17	60.0	0.04	0.02	0.01	00.00	00:00	00.00	00.00	00.00	00.00	0.00	00.00	00.00	0.00
	Stk	0.0	0.0	0.1	0.2	0.4	0.5	0.8	1.1	1.4	1.8	2.2	2.7	3.2	3.7	4.3	4.9	5.6	6.3	7.1	7.9	8.8
Stop Dist	ш	0.00E+00	1.26E-04	5.04E-04	1.13E-03	2.01E-03	3.15E-03	4.53E-03	6.17E-03	8.06E-03	1.02E-02	1.26E-02	1.52E-02	1.81E-02	2.13E-02	2.47E-02	2.83E-02	3.22E-02	3.64E-02	4.08E-02	4.54E-02	5.04E-02
	tau	0.00E+00	7.67E-05	3.07E-04	6.91E-04	1.23E-03	1.92E-03	2.76E-03	3.76E-03	4.91E-03	6.22E-03	7.67E-03	9.28E-03	1.10E-02	1.30E-02	1.50E-02	1.73E-02	1.96E-02	2.22E-02	2.49E-02	2.77E-02	3.07E-02
neter	E	0.00000.0	0.000005	0.000010	0.000015	0.000020	0.000025	0.000030	0.000035	0.000040	0.000045	0.000050	0.000055	0.000060	0.000065	0.000070	0.000075	0.000000	0.000085	0.000000	0.000095	0.000100
Droplet Diameter	mn	0	5	10	15	20	25	30	35	40	45	20	55	9	65	70	75	80	85	06	95	100

VOLUME IV Appendix B – Field Data

Data Sheet No NOZZ O

3m|dilutel Vacuum エミングのアグ 0.00 (Remove cyclone sampling head before posttest leak check. Keep cyclone 5 RIGE 44 LAME DI GRAD head upright prior to recovery.) Do not leak check during port changes. かが diluted to 30m microns Notes MM 0.600 < 0.02 or 4% Static Pressure, In. W.C. Moisture, % Reg'd A/A Ϋ́ Md_run ACTUAL MOISTURE & GAS COMPOSITION Mw_run **QA Checks** 图 S PRELIMINARY CHECKS AND DATA Filter Cyclone Temp, (°F) Actual SII, Casher Condition OBO N/A X/N % 100 J Partial Train Posttest Leak Check, ACFM Full Train Pretest Leak Check, ACFM Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check Probe Temp, 29.65 (F) 6 OC 02 % Water Recovered, grams CO₂ % Barometric Pressure, In., Hg. in H2O (in. H₂O) 0,46 53 Temp., (°F) Exit Gas Impinger **EU**U すり Train Vac. Sample (in. Hg) \mathcal{S} Chamber Temp., (°F) <u>श्ल</u> ३३० B 9 Ş Sampling Information Temp. (°F) Combined Cyclone PM10 & PM2.5 Run Data Sheet Date [0]契||Þ Meter Tare Stop 1335 Start 479236 (In. H₂O) Filter ID in. H20 IDENTIFICATION INFORMATION N/A N/A Y ∀ Plant Name API PM2.5 Lab Study Averages Volume 515.87 520.38 520.37 Total Volume, ACF Test Personnel TTB PJJ Elapsed Source Number IX3 Box Gamma, γ<mark>09γ_κω</mark> Time, h:m:s Meterbox ID <u>903013</u> △ H @ I *S5*4 9 8 8 Orsat/Fyrite N.A. Nozzle ID N. W. City Cary Sampling Location Lab State NC Nozzle Diameter 10.CE Run Time 10.00 10.00 10.00 Time, (Min.) Dwell Point Total Port

OTM-036

Page 347 of 643

4/11/2016

3min on POly Mins 21-24

Combined Cyclone PM10 & PM2.5 Run Data Sheet

Sum Nowiga

Silica Sphores

Vacuum SAR SAME (Remove cyclone sampling head before posttest leak check. Keep cyclone 0.00 5 head upright prior to recovery.) Do not leak check during port changes. 1 minutes NICE WILL GALE C Static Pressure, In. W.C. < 0.02 or 4% Moisture, % Red'd N/A A/N ACTUAL MOISTURE & GAS COMPOSITION Md_run Mw_run QA Checks PRELIMINARY CHECKS AND DATA Probe Temp, Filter Cyclone (°F) Temp, (°F) Run ID Condition Actual A A Partial Train Posttest Leak Check, ACFM Full Train Pretest Leak Check, ACFM Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check 29.65 32 302 CO₂ % 02% Barometric Pressure, In., Hg. Water Recovered, grams (in. H₂O) 3626 Temp., (°F) **Impinger** Exit Gas SE Train Vac. (in. Hg) Sample 8:4 **C**4 Chamber Temp., (°F) K K 路場 £8, Sampling Information Temp. (°F) Tare Meter Date Start Stop[ੈ (In. H₂O) Filter ID IDENTIFICATION INFORMATION N/A N/A ¥ Plant Name API PM2.5 Lab Study Volume (#3) Test Personnel TTB PJJ Source Number IX3 Box Elapsed h:m:s Time, Nozzle ID AT Gamma, 11,0306 989 Neterbox ID 1990 △ H @ II 904 2 City|Cary Orsat/Fyrite| N H Sampling Location Lab State NC Fotal Run Time 10.00 10.00 10.00 Dwell Time, (Min.) Point Port

OTM-036

Page 348 of 643

4/11/2016

Total Volume, ACF

rnicrons

%

in H2O

in. H20

Averages

3 min 76 M

Siliasylogs
Run ID HPT
Condition

Combined Cyclone PM10 & PM2.5 Run Data Sheet

PRELIMINARY CHECKS AND DATA	,	V V	000	(Remove cyclone sampling head before posttest leak check. Keen cyclone	head upright prior to recovery.) Do not leak check during port changes.	м В	Pitot Tube Pretest Leak Check N/A N/A	Pitot Tube Posttest Leak Check N/A N/A		Barometric Pressure, In., Hg. 29.65 Static Pressure, In. W.C. 0.00	ACTUAL MOISTURE & GAS COMPOSITION	Water Recovered, grams Moisture, %	CO ₂ % Md_run	O ₂ % Mw_run	QA Checks	Sample Impinger &H Probe Temp, Filter Cyclone Train Vac. Exit Gas (in. H ₂ O) (°F) Temp, (°F) Notes (in. Hg)	10.50 337 321 321 10.4		3/20	4 63 1 87 181 King W/GMI		CAD 11/11/1 dr.					
IDENTIFICATION INFORMATION	Plant Name API PM2.5 Lab Study	City Cary	State NC	Source Number IX3 Box Date 13/1/10		Test Personnel TTB PJJ Stop (1253			_ ਹ	Gamma, 7 7307	<u> </u>	Nozzle Diameter <u>D. 円</u>	Orsat/Fyrite N/利		Sampling Information	Dwell Elapsed Meter AP Meter St 320 Time, Time, Time, Volume (In. H ₂ O) Temp. (°F) Temp. (°F)	0 369.600 N/A 7/	10 4435/ N/A	20 47+47 N/A to	次/d5 NA	70 80.20				Total Run Time	lotal Volume, ACF	

OTM-036

Page 349 of 643

4/11/2016

Paka 3mins

PONJ 3MINS POND PONDES SONGES AUN #/	PRELIMINARY CHECKS AND DATA	Actual Req'd Vacuum Full Train Pretest Leak Check, ACFM 0 < 0.02 or 4% 15 Partial Train Posttest Leak Check, ACFM 0/QO > 5	posttest leak che	Pitot Tube Pretest Leak Check N/A N/A Pitot Tube Posttest Leak Check N/A N/A Barometric Pressure, In., Hg. 29.65 Static Pressure, In. W.C. 0.00	ACTUAL MOISTURE & GAS COMPOSITION Water Recovered, grams Moisture, % CO2 % Md_run O2 % Mw_run	in QA Checks	#HPO Sample Impinger 9H Probe Temp, Filter Cy 1 (in. Hg) Temp, (°F) Temp, (°F	°F rnicrons
Combined Cyclone PM10 & PM2.5 Run Data Sheet	DENTIFICATION INFORMATION	Plant Name API PM2.5 Lab Study City Cary State NC	Source Number IX3 Box Sampling Location Lab Test Personnel TTB PJJ Stop PHO	Meterbox ID <u>109</u> 035 Δ H @ 1907 Gamma, γ [.0306	Nozzle ID Nozzle Diameter O, H3 Orsat/Fyrite	Sampling Informa	Dwell Elapsed Meter	Total Run Time Total Volume, ACF Averages in. H2O °F

Combined Cyclone PM10 & PM2.5 Run Data Sheet

Polymer Spheres Runta

Vacuum Remove cyclone sampling head before posttest leak check. Keep cyclone 0.00 SAME AS KRW. 605 head upright prior to recovery.) Do not leak check during port changes. 2.1 Nomina rnicrons Notes < 0.02 or 4% Static Pressure, In. W.C. Red'd Moisture, ¥ N/A Mw_run ACTUAL MOISTURE & GAS COMPOSITION Md_run QA Checks PRELIMINARY CHECKS AND DATA Filter Cyclone Temp, (°F) 0.00 Actual Condition A N % Run ID 1812 10 Probe Temp, (°F) Partial Train Posttest Leak Check, ACFM Full Train Pretest Leak Check, ACFM Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check 29.65 Water Recovered, grams CO₂ % 0,% Barometric Pressure, In., Hg. (in. H₂O) in H20 Temp., (°F) Exit Gas Impinger Train Vac. Sample (in. Hg) Stok Chamber Temp., (°F) 単形 **欧和** Sampling Information Temp. (°F) Meter Tare 900 P Date 13/ Stop | Start Filter ID IDENTIFICATION INFORMATION (In. H₂O) in. H20 ξ N/A × アン Plant Name API PM2.5 Lab Study Averages Volume 34.16 £ Total Volume, ACF Test Personnel TTB PJJ Source Number IX3 Box Elapsed h:m:s Time, 9 20 ဗ္ဗ 0开3 0 City Cary Sampling Location Lab State NC Meterbox ID 🕅 D H Ø Orsat/Fyrite Gamma, γ Nozzle ID Nozzle Diameter 10.00 10.00 Run Time 10.00 (Min.) 5 Time, Dwell Point Total Port

ASYMINS 15-17

Redoxide

Run ID Condition

Combined Cyclone PM10 & PM2.5 Run Data Sheet

	IDENTIF	FICATION	IDENTIFICATION INFORMATION	MATION			\$ 10 mm		PRELIMII	VARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
٥	omely taci	Chia lak	1 O 4 O 1 1	7		81							
<u> </u>	ialit Nallie	AFI FINIZ	Figure AFI FWZ.3 Lab Study	ay							Actual	Req'd	Vacuum
	Sign Circles	Cary						Full Train Pı	Full Train Pretest Leak Check, ACFM	heck, ACFIV	0	< 0.02 or 4%	15
	State NC	NC					Part	ial Train Po	Partial Train Posttest Leak Check, ACFM	heck, ACFIV	0.0		9
Sourc	Source Number IX3 Box	IX3 Box		Date	13/01/15		(Rem	יטוסעס פעטו	e sampling	hood hefor	poettoct los	(Remove cyclone sampling head before posttost took about 1	0.00
Samplin	Sampling Location Lab	de de		Start	2017		104	d unsight	ic samping	ilead beloic	postiest red	IN CHIECK, Neep	cyclone
Test	Test Personnel	TTB PJJ		Stop	1435		ב	d uprigint p	oper of reco	very.) Do no	or leak cneck A	iread uprignit prior to recovery.) Do not reak check during port changes. △ B	anges.
						7		Ditot	Ditot Tube Bratest Last The	بامملات باده ا		N N	
								7 HOL	i upe rielest	Leak Clieck		N/A	
M	Meterhox ID	1.70/22	r	Eilter ID	Tare			71[0] 10	Pitot Tube Posttest Leak Check	Leak Check	N/A	N/A	
į	© H ∇	が記		1750	5		Barc	metric Pres	Barometric Pressure, In., Hg.	29.65	Static Pre	Static Pressure. In. W.C.	00.0
	Gamma, γ					,							
	Nozzle ID					1		A(STUAL MO	STURE &	ACTUAL MOISTURE & GAS COMPOSITION	OSITION	
Nozzle	Nozzle Diameter	0.形	 ,				^	Vater Recov	Water Recovered, grams			Moisture, %	
0	Orsat/Fyrite		···.,						CO ₂ %			Md_run	
									% 20		1	Mw_run	
					A section of the sect								
			-,	Sampling Informa	Informa	tion					QA	Checks	The state of the s
		Elapsed Time,	Meter Volume	(O.H. (In.	Meter Temn (°E)		Sample Train Vac.	Impinger Exit Gas	H& H&	Probe Temp,	Filter Cyclone	Notes	es
Port Point	-	h:m:s	(ft ²)	(27)	1 1 2 2 1 1	Temp., (°F)	(in. Hg)	Temp., (°F)	(20)	(1)	remp, (r)		
- - -	10.00) C	37.000 340.0%	A/N A/N	- 1, 1-	200 100	6,	83	දි ල	2017	00 C	JON TENDING	200
	10.00	20	146.92	N/A	4	500	14	7.9		22	1.00	(X)(A)	100000
	10.00	30	150.05	¥2	43	276	VØ	65	>	324	331	XX.	
		(354 (GP)										
-													
Total	Total Run Time Total Voll	kun Time Total Volume_ACE											
			Averages										626
Run	7 () () () () () () () () () (in. H20	나	ļL.			in H2O		%	rnicrons	ar suc

VOLUME IV Appendix C – Calibration Data

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

5-POINT ENGLISH UNITS

Meter Console Information	tion		Callbration Conditions	Conditions	:	
Number	522	Date	Тітс	02/01/10		Std Temp
Number	909033	Barometric Pressure	اره	29.80	in Hg	Std Press
mber	RW 110	Theoretical Critical Vacuum ¹	Vacuum¹	14.07	in Hg	Ā
mber	328893	Calibration Technician	ian	DLS		

in Hg

29.92

528

Factors/Conversions

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (R^{2,4}ºR⁴³)/(in.Hg*min).

_			_						
	Actual	Vacuum		in Hg	24	22	21	19	17
	Атр Тетр	Final	(t _{emb})	٥F	68	68	68	68	68
Critical Orifice	Атр Тетр	Initial	(t _{amb})	%	68	89	68	89	99
	Coefficient		ኍ	see above2	0.2387	0.3483	0.4592	0.5907	0.8085
	Serial	Number			FO 40	FO 48	FO 55	FO 63	FO 73
	Outlet Temp	Final	(t _{est})	유	73	72	72	72	72
	Outlet Temp	Initial	(t _m)	샤	73	72	72	72	72
Metering Console	Volume	Final	(V _{mt})	cubic feet	612.801	618,490	624.231	630.014	635.817
	Volume	Initial	(V _m)	cubic feet	607.140	612,900	618,630	624.340	630,150
	DGM Orifice	Нδ	(P _m)	in H ₂ O	0.34	0.71	1.20	1.95	3.60
Run Time		Elapsed	(e)	min	18.5	12.5	9.5	7.5	5,5
	Metering Console	Metering Console Coultet Temp Outlet Temp Serial Coefficient Amb Temp Amb Temp Amb Temp Amb Temp	Metering Console Critical Orifice DGM Orifice Volume Volume Outlet Temp Outlet Temp Serial Coefficient Amb Temp Amb Temp ΔH Initial Final Final Final Final Final	DGM Orifice Volume Volume Outlet Temp Outlet Temp Outlet Temp Outlet Temp Serial Coefficient Amb Temp Amb Temp Final ΔH Initial Final Final Final Final Final Final (Pm) (Vm) (Vm) (Vm) (Vm) (Vm) (Vm) (Vm)	DGM Orifice Volume Volume Outlet Temp Outlet Temp Outlet Temp Serial Coefficient Amb Temp Amb Temp Final ΔH Initial Final Initial Final Initial Final (Pm) (Vm) (Vm) (Im) (Im)	Metering Console Cutlet Tomp Outlet Tomp Clarical Orifice AH (P _m) (V _m) (I _m)	DGM Orifice Critical Orifice DGM Orifice Volume Volume Outlet Temp Outlet Temp Serial Coefficient Amb Temp Amb Temp Amb Temp Final Final	DGM Orifice	DGM Orifice

			Results				
Standardized Data		••••			Dry Gas Meter		
			Calibration	Calibration Factor	Flowrate	₩	ΔH @
Dry Gas Meter Critical Orifice	ifice		Value	Variation	Std & Corr	0.75 SCFM	Variation
(VCF(stal) (Octestal)	(Q _{cr(std)})		W	(∆Y)	(Qm(std)(corr))	(0HQ)	(ØHØ)
cfm cubic feet cfm	cfm				cfm	in H2O	
0.302 5.727 0.310	0.310		1.024	0.004	0.310	1.974	0.067
0.443 5.646 0.452	0.452		1,020	-0.001	0.452	1.943	0.037
0.585 5.658 0.596	0.596		1.019	-0.002	0.596	1.894	-0.012
0.751 5.745 0.766	0.766		1.019	-0.001	0.766	1.867	-0,040
1.028 5.767 1.049	1.049		1.020	0.000	1.049	1,855	-0.052
			1.0206	Y Average		1.907	ΔH@ Average

Note. For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02

accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 certify that the above Dry Gas Meter was calibrated in

Signature

Date 2-0 |-10

Console Model Number
Console Serial Number
DGM Model Number
DGM Serial Number

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

5-POINT ENGLISH UNITS

Meter Console Information	ation		Calibration Conditions	Conditions			Fa
Console Model Number	522	Date	Time	01/28/10	:	Std Temp	
Console Serial Number	802012	Barometric Pressure	ıre	29.60	in Hg	Std Press	
DGM Model Number	RW 110	Theoretical Critical Vacuum ¹	II Vacuum¹	13.97	in Hg	K	
DGM Serial Number	964447	Calibration Technician	cian	υ -			

	Factors/Conversions	
Std Temp	528	'n
Std Press	29.92	in Hg
Kı	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,}°R¹⁷)/(in.Hg²min).

		Actual	Vacuum		in Hg	23	22	20	18	16	
		Amb Temp	Final	(t _{amb})	ĥ	99	99	99	99	99	
	Critical Orifice	Amb Temp	Initial	(t _{amb})	¥	99	99	99	99	99	
		Coefficient		K'	see apove2	0.2387	0.3483	0.4592	0.5907	0.8085	
	7,000,000	Serial	Number			FO 40	FO 48	FO 55	FO 63	FO 73	
Calibration Data		Outlet Temp	Final	(t _{mt})	4	72	73	73	73	74	
		Outlet Temp	Initial	(t _{ml})	늄	71	72	73	73	73	
	Metering Console	Volume	Final	(V _m)	cubic feet	307.074	312.656	319.004	325.386	331.795	
		Volume	Initial	(V _{mi})	cubic feet	301,230	307,200	313,040	319.310	325.700	
		DGM Orifice	Чγ	(P _m)	in H ₂ O	0.25	0.56	1.00	1.65	3.15	
	Run Time		Elapsed	(0)	min	18.0	11.5	9.5	7.5	5.5	

,
Value
ε
0.9649
0.9646
0.9609
0.9563
0.9542
0.9602

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meterwas calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Date 1-28-10

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	ıtion		Calibration	Calibration Conditions		
Console Model Number	522	Date	Time	12/01/10		Std Temp
Console Serial Number	802012	Barometric Pressure	9	29.70	in Hg	Std Press
DGM Model Number	RW 110	Theoretical Critical Vacuum	Vacuum ¹	14,0	in Hg	Ā.
DGM Serial Number	964447	Calibration Technician	lan	DLS		

	Factors/Conversions	
Std Temp	528	'n
Std Press	29.92	in Hg
Ę.	17,647	oRvin Hg

'For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Onfice Coefficient, K', must be entered in English units, (ft^{3,o}R^{/2})/(in.Hg^{*}min).

	and the same	Actual	Vacuum		i.	20.50	20.50	20.50
a a a a a a a a a a a a a a a a a a a		Amb Temp	Final	(t _{amb})	ű	89	89	89
	Critical Orifice	Amb Temp	Initial	(t _{amb})	ᆉ	89	89	89
		Coefficient		£	see above2	0.4592	0.4592	0,4592
3.00		Serial	Number			FO 55	FO 55	FO 55
Calibration Data		Outlet Temp	Final	(t _{mt})	٦,	74	75	75
		Outlet Temp	Initial	(t _{mi})	占。	74	74	75
	Metering Console	Volume	Final	(V _m t)	cubic feet	815.543	821.300	827.061
		Volume	Initial	(V _m)	cubic feet	809.800	815.543	821.300
		DGM Orifice	НΔ	(P _m)	in H ₂ O	0.98	0.98	0.98
	Run Time		Elapsed	(0)	min	9.0	9.0	9.0

		AH @	Variation	(AAH@)		0.001	0.000	-0.001	AH@ Average
			0.75 SCFM	(ØH∇)	in H2O	1,545	1,543	1.542	1.543
	Dry Gas Meter	Flowrate	Std & Corr	(Q _{m/std/kcorr)})	cfm	0.594	0.594	0.594	
		Calibration Factor	Variation	(AY)		0.001	-0.001	0.000	Y Average
Results		Callbrati	Value	(λ)		0.945	0.944	0.944	0.945
			Critical Orifice	(Q _{cr(std)})	cfm	0.594	0.594	0.594	1.6
	Standardized Data		Critical	(Vcr _(std))	cubic feet	5.342	5.342	5.342	% Deviation
	Standard		Dry Gas Meter	(Q _{m(skd)})	cfm	0.628	0.629	0.629	0.9602
			Dry Gas	(Vn(std))	cubic feet	5,650	5.659	5.658	Pretest Gamma

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Signature

12-01-10

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	ıtion		Calibration	Calibration Conditions		manyly V _{ery y}	Factors/Con
Console Model Number	522	Date	Time	12/02/10		Std Temp	528
Console Serial Number	909033	Barometric Pressure	sure	30.00	in Hg	Std Press	29.97
DGM Model Number	RW 110	Theoretical Critical Vacuum	cal Vacuum¹	14.2	în Hg	, x	17.64
DGM Serial Number	328893	Calibration Technician	niclan	DLS			

oR/in Hg in Hg nversions 347

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (tt^{3,c}R¹²)/(in.Hg^{*}min).

				_				
	***	Actual	Vacuum		in Hg	24.00	24.00	24.00
		Amb Temp	Final	(t _{amb})	노	64	54	64
	Critical Orifice	Amb Temp	Initial	(t _{emb})	ሖ	64	64	64
		Coefficient		ż	see above2	0.2387	0.2387	0.2387
		Serial	Number			FO 40	FO 40	FO 40
Calibration Data		Outlet Temp	Final	(t _{nt})	J .	0.2	69	69
		Outlet Temp	Initial	(t _{mi})	°F	69	70	69
	Metering Console	Volume	Final	(V _{rsf})	cubic feet	401.727	407.078	412,435
		Volume	Initial	(V _m)	cubic feet	396.370	401.727	407.078
		DGM Orifice	ΔH	(P _m)	in H ₂ O	0.34	0.34	0.34
	Run Time		Elapsed	(0)	mim	17.5	17.5	17.5

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	HQ.	AH @
Dry Gas Meter	Meter	Critical Orifice	Driffice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(V _{ny(std)})	(Q _{m(std)})	(Vcr _(std))	(Q _{cr(std)})	(λ)	(AY)	(Q _{m/std/(corr)})	(ØHØ)	(AAH@)
cubic feet	cfm	cubic feet	cfm		ATT NO.	cfm	in H2O	
5.361	0,306	5.475	0.313	1,021	0.000	0.313	1.959	-0,001
5.355	908'0	5,475	0.313	1.022	0.001	0.313	1.959	-0.001
5.366	0.307	5.475	0.313	1.020	-0.001	0.313	1.961	0.001
Pretest Gamma	1.0206	% Deviation	0.1	1.021	Y Average		1.959	∆H@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

OTM-036

VOLUME IV Appendix D – Analytical Data

Silica 1.44 Aerodynamic or 1.0 Nominal

10/28/2010 Test Run	No Nozzle Probe Only	Greater Than 2.5 Rinse	Less Than 2.5 Rinse	Filter Less Than 2.5	Run Cut Size, microns	
					2.26	
Final Wt.	3.5494	3.7292	4.0843	0.1299		
Initial Wt.	3.5358	3.7257	4.0812	0.1131		Total
	13.6	3.5	3.1	16.8		37.0
% of Total	37%	9%	8%	45%	100%	
Fo	r 1 micron sphe	eres			Greater Than %	46%
Aer	odynamic Diam	ieter	1.44		Less Than %	54%

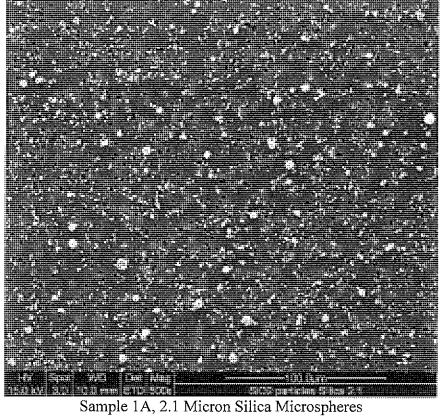
Silica 1.44 Aero	dynamic or 1.0	Nominal				
12/1/2010 Test Run	Probe & Nozzle Rinse	Front 1/2 Cyclone Greater Than 2.5 Rinse	Back 1/2 Cyclone Front 1/2 Filter Holder Less Than 2.5 Rinse	Filter Less Than 2.5	Run Cut Size, microns	
Bag #	134	N/A	A12	Q238	2.57	•
Final Wt.	3.8676	3.5011	3.5382	0.1189		
Initial Wt.	3.8625	3.4926	3.5374	0.1106	Total	
	5.1	8.5	8.0	8.3	22.7	
% of Total	22%	37%	4%	37%	100%	
	1 micron spherodynamic Diame		1.44		Greater Than % Less Than %	60% 40%

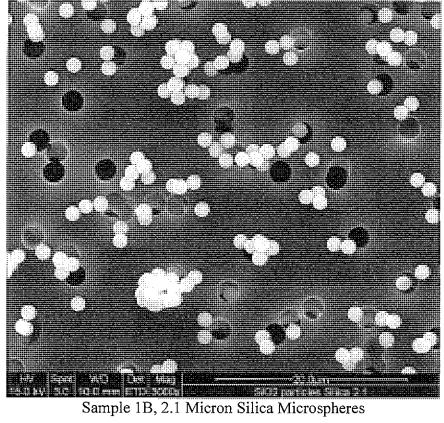
Silica 2.2 Aerodynamic or 1.5 Nominal

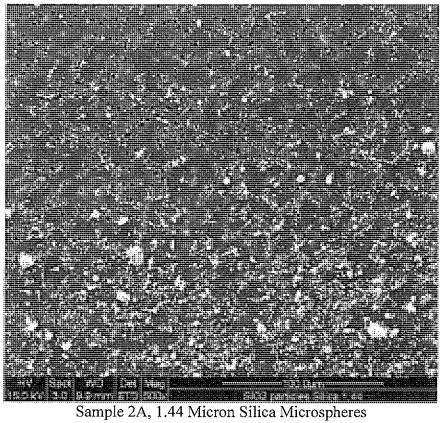
11/30/2010 Test Run	Nozzle Rinse	Probe Front 1/2 Cyclone Greater Than 2.5 Rinse	Back 1/2 Cyclone Front 1/2 Filter Holder Less Than 2.5 Rinse	Filter Less Than 2.5	Run Cut Size, microns
Bag #	160	A38	N/A	Q237	2.59
Final Wt.	3.6629	3.3944	3.7736	0.117	
Initial Wt.	3.6614	3.3889	3.7718	0.1163	Total
	1.5	5.5	1.8	0.7	9.5
% of Total	16%	58%	19%	7%	100%

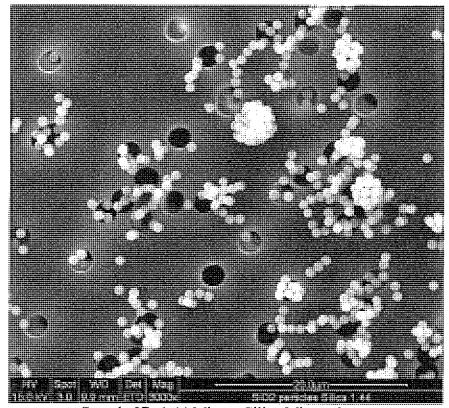
O-ring was broken tried to remove pieces from rinse, may be heavy.

For 1.5 micron spheres		Greater Than %	74%
Aerodynamic Diameter	2.16	Less Than %	26%

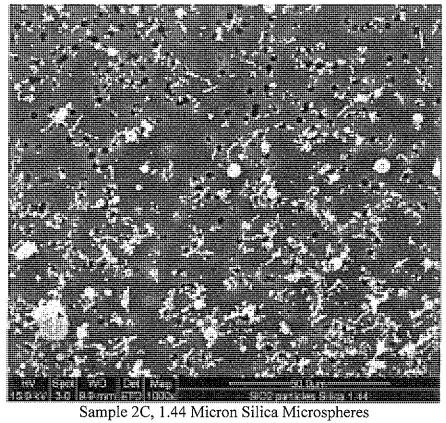

Polymer 2.2 Aerodynamic or 2.1 Nominal RUN # 2

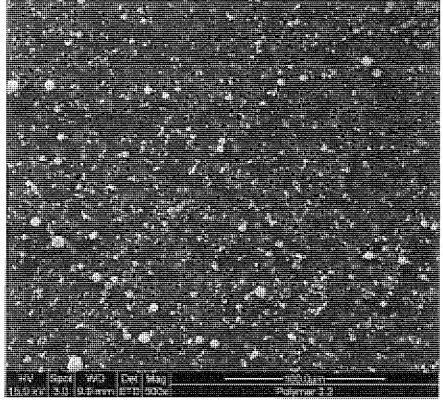

			Back 1/2			
		Front 1/2	Cyclone Front			
12/2/2010 Test	Probe &	Cyclone	1/2 Filter	Filter Less		
Run	Nozzle Rinse	Greater Than	Holder Less	Than 2.5		
		2.5 Rinse	Than 2.5		Run Cut Size,	
			Rinse		microns	
Bag #	A99	8A	33	Q240		
Final Wt.	3.531	3.6941	3.6993	0.1187	2.45	
Initial Wt.	3.4999	3.6301	3.699	0.1148	Total	
	31.1	64	0.3	3.9	99.3	
% of Total	31%	64%	0%	4%	100%	
For	3.0 micron sphe	eres			Greater Than %	96%
Aero	odynamic Diame	eter	2.18		Less Than %	4%

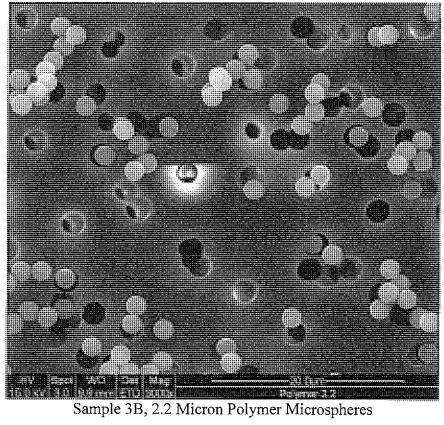

12/1/2010 Test Run	Probe & Nozzle Rinse	Front 1/2 Cyclone Greater Than 2.5 Rinse	Back 1/2 Cyclone Front 1/2 Filter Holder Less Than 2.5 Rinse	Filter Less Than 2.5	Run Cut Size, microns	
Bag #	8	N/A	A49	Q239	1.80	
Final Wt.	4.1326	3.5145	3.4935	0.1183	Run cut too Sharp	
Initial Wt.	4.0814	3.4364	3.4923	0.1171	Total	
	51.2	78.1	1.2	1.2	131.7	
% of Total	39%	59%	1%	1%	100%	
	3.0 micron sphe		2.18		Greater Than % Less Than %	98% 2%

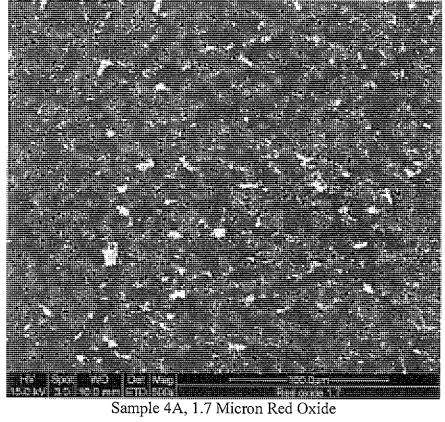

Red Oxide 1.7	Aerodynamic or	0.8 Nominal				
			Back 1/2		•	
		Front 1/2	Cyclone Front			
11/30/2010	Probe &	Cyclone	1/2 Filter	Filter Less		
Test Run	Nozzle Rinse	Greater Than	Holder Less	Than 2.5		
		2.5 Rinse	Than 2.5		Run Cut Size,	
			Rinse		microns	
Bag #	49	45	A15	Q241	2.59	
Final Wt.	3.788	4.1082	3.6831	0.1663		
Initial Wt.	3.7267	4.0166	3.6804	0.1111	Total	
	61.3	91.6	2.7	55.2	210.8	
% of Total	29%	43%	1%	26%	100%	
For	1.5 micron sphe	eres			Greater Than %	73%
Aer	odynamic Diame	eter	1.70		Less Than %	27%

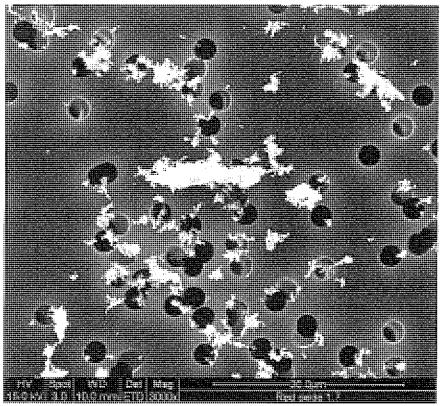
VOLUME IV Appendix E – Research Triangle Institute Report

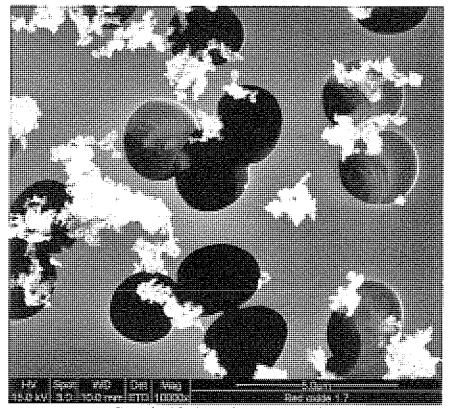







Sample 2B, 1.44 Micron Silica Microspheres




Sample 3A, 2.2 Micron Polymer Microspheres

Sample 4B, 1.7 Micron Red Oxide

Sample 4C, 1.7 Micron Red Oxide

Equivalent Aerodynamic Diameters of Sphere Clusters

Microsphere Sizes, in Micrometers, Aerodynamic 2.2 (Aerodynamic)

Silica Spheres		
		Equivalent
Number of Spheres	Mass	Diameter
1	5.6	2.2
2	11.1	2.7
3	16.7	3.1
4	22.3	3.4
5	27.9	3.7
9	33.4	3.9
7	39.0	4.1
8	44.6	4.3
6	50.2	4.5
10	55.7	4.7
11	61.3	4.8
12	6.99	5.0
13	72.4	5.1
14	78.0	5.2
15	83.6	5.3
16	89.2	5.4

odynamic)
(Aero(
1.44

Silica Spheres

Number of		Equivalent
Spheres	Mass	Diameter
1	1.6	1.4
2	3.1	1.8
3	4.7	2.1
4	6.3	2.3
5	2.8	2.4
9	9.4	2.6
7	10.9	2.7
8	12.5	2.8
6	14.1	3.0
10	15.6	3.1
11	17.2	3.2
12	18.8	3.3
13	20.3	3.3
14	21.9	3.4
15	23.4	3.5
16	25.0	3.6

2.16 (Aerodynamic)

<u>~</u>	
5	
Į.	
٢	
2	
,	Ŋ
4	eres
	Spl
	ĕ
	<u> </u>
	ó

Equivalent	Diameter	2.1	2.7	3.1	3.4	3.6	3.9	4.1	4.3	4.4	4.6	4.7	4.9	5.0	5.1	5.2	5.4
	Mass	5.3	10.5	15.8	21.1	26.4	31.6	36.9	42.2	47.5	52.7	58.0	63.3	9:89	73.8	79.1	84.4
	Number of Spheres	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16

1.7 (Aerodynamic) Red Iron Oxide Particles

Number of		Equivalent
Spheres	Mass	Diameter
I	2.6	1.7
7	5.1	2.1
3	2.7	2.4
4	10.3	2.7
5	12.9	2.9
9	15.4	3.1
7	18.0	3.2
8	20.6	3.4
6	23.1	3.5
10	25.7	3.6
11	28.3	3.7
12	30.9	3.8
13	33.4	3.9
14	36.0	4.0
15	38.6	4.1
16	41.1	4.2

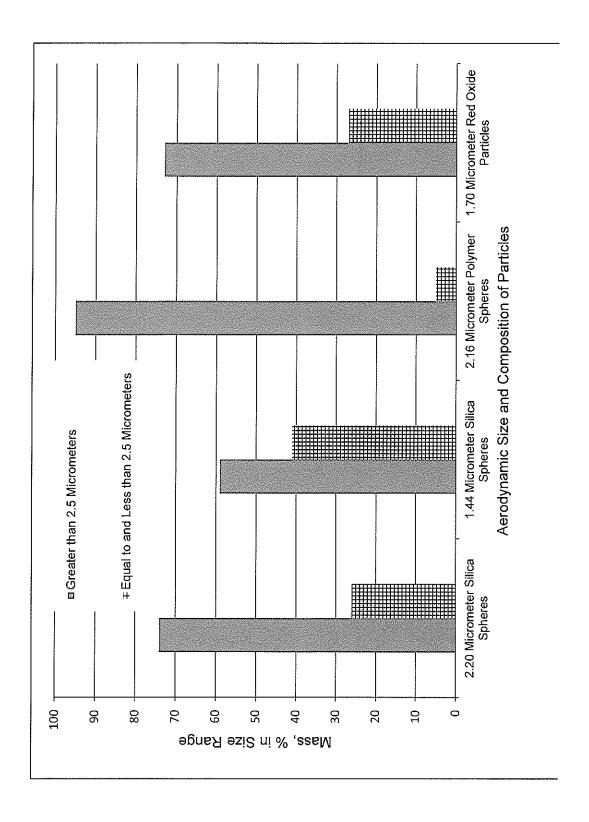
2.20 Silica Spheres

0 0.24 217.66 0.33	61.30 4.82 2 66.87 4.96 2 % of Aerosol Anticipated in PM2.5 Fraction	4.82 4.96 nticipated in F	61.30 66.87 6 of Aerosol Ar		9	0 1 349 6
0.9	n m	4.51	55.72	30	3	10
0.54	· (n	4.51	50.15	18	2	
0.64	4	4.34	44.58	16	2	
0.28	4	4.15	39.01		1	
1.5	2	3.94	33.43	30	5	
2.8	7	3.71	27.86	40	8	
8.8	10	3.45	22.29	88	22	
14.4	15	3.14	16.72	96	32	
37.76	32	2.74	11.14	118	59	
149.8	02	2.18	5.57	214	214	
Spheres	Efficiency	Lyduvalent Diameter	Mass	Spheres	Counted	in Cluster
Captured			Equivalent	Total	Number of	

1.44 Silica Microspheres

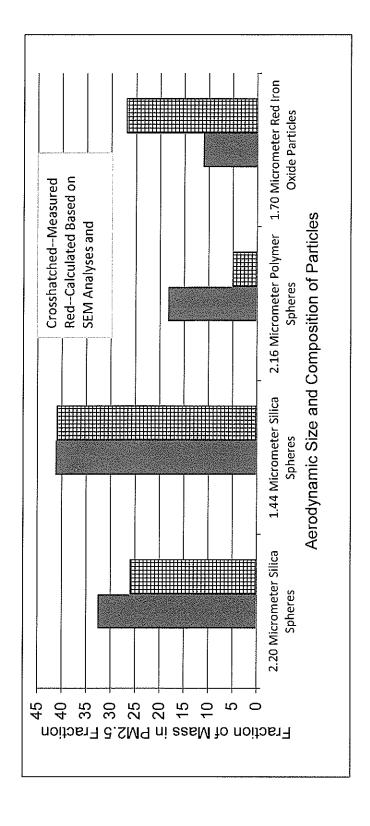
			т				·				_						
-	Captured	spheres	151.32	130,64	165.6	88.4	83.2	69.12	49.91	26.4	21.42	15	15.84	21.6	16.32	854.77	0.41
	Penetration	Efficiency	97	92	80	65	52	48	31	22	17	15	12	10	9		u
	Equivalent	Diameter	1.43	1.80	2.06	2.27	2.44	2.59	2.73	2.85	2.96	3.07	3.17	3.26	3.58		PM2.5 Fractio
	Equivalent	IVIdSS	1.56	3.13	4.69	6.25	7.81	9:38	10.94	12.50	14.06	15.63	17.19	18.75	25.00		% of Aerosol Anticipated in PM2.5 Fraction
Total	Number of	Spheres	156	142	207	136	160	144	161	120	126	100	132	216	272	2072	% of Aerosol ,
Number of	Clusters	Counted	156	71	69	34	32	24	23	15	14	10	12	18	17		
	Number of Spheres	in Cluster	П	2	3	4	5	9	7	8	б	10	11	12	16		

2.16 Polymer Microspheres


			1		<u> </u>	l —	<u> </u>			П		<u> </u>					
Position,	najnina Cabinian	spneres	30.8	11.52	4.95	2.8	2.1	1.5	1.4	96'0	0.27	0.3	0.44	0.24	0	57.28	0.18
	Penetration	Efficiency	70	32	15	10	7	5	4	4	3	3	2	2	2		n.
	Equivalent	Diameter	2.14	2.69	3.08	3.39	3.65	3.87	4.07	4.26	4.43	4.58	4.73	4.87	5.00		PM2.5 Fractio
Fauivalent	Lydivaient	IVIdSS	5.27	10.55	15.82	21.10	26.37	31.64	36.92	42.19	47.47	52.74	58.01	63.29	84.38		% of Aerosol Anticipated in PM2.5 Fraction
Total	Number of	Spheres	44	98	33	28	30	30	35	24	6	10	22	12	0	313	% of Aerosol /
Number of	Clusters	Counted	44	18	11	7	9	5	7	3	П	1	2	1	0		
	Number of Spheres	in Cluster	П	2	3	4	5	9	7	8	6	10	11	12	16		

1.70 Red Iron Oxide Particles

0.11	_	% of Aerosol Anticipated in PM2.5 Fraction	Anticipated in	% of Aerosol ,			
53.19			54.11	478.00			
0.00	0	Large	33.82	240	12	20	4
9.12	9	3.6	13.53	152	19	8	3
17.10	30	2.7	5.07	57	19	3	2
26.97	93	1.7	1.69	29	29	1	
Catch		Diameter	Mass		Counted	Cluster	Group
in PM2.5	ETTICIENCY	Equivalent	Equivalent	Particles	Clusters	Particles in	
Particles	Penetration			Number of	Number of	Number of	
				Total	Total	Average	
						Estimated	


Lab Test Mass Recovery Values

Aerodynamic Diameter and Material	Greater than 2.5 Micrometers	Equal to and Less than 2.5 Micrometers
2.20 Micrometer Silica Spheres	7.4	56
1.44 Micrometer Silica Spheres	65	41
2.16 Micrometer Polymer Spheres	56	5
1.70 Micrometer Red Iron Oxide Pa	23	27

Comparison of Estimated and Measured PM2.5 Fractions

Aerodynamic Diameter and Materi PM2.5 Mass PM2.5 Mass Fraction	Expected PM2.5 Mass Fraction	Measured PM2.5 Mass Fraction
2.20 Micrometer Silica Spheres	33	26
1.44 Micrometer Silica Spheres	41	41
2.16 Micrometer Polymer Spheres	18	5
1.70 Micrometer Red Iron Oxide Page 1.70 Micrometer Red Iron Oxide	11	27

Appendix C

Method 301 Test Protocol
October 15, 2012

API WET STACK FILTERABLE PM_{2.5} TEST METHOD METHOD 301 VALIDATION TEST PROGRAM PROTOCOL

Prepared for:

American Petroleum Institute 1220 L Street, NW Washington, D.C. 20005-4070

Prepared by:

Air Control Techniques, P.C. 301 E. Durham Road Cary, North Carolina 27513

October 15, 2012

TABLE OF CONTENTS

			Page Number
1.	PR	OJECT PURPOSE AND BACKGROUND	1
		Limitations of Available Test Methods for Filterable PM _{2.5}	1
		Purpose	1
		Description of the API Wet Stack Filterable PM _{2.5} Sampling System	2
		API Test Method Performance Criteria	7
	1.5	EPA Review Comments and Data Requirements	10
2.	TES	ST APPARATUS	11
	2.1	Method 301 Testing Requirements	11
	2.2	Validation Testing Apparatus	11
3.	ME	THOD 301 BIAS AND PRECISION TESTS	13
	3.1	Bias Measurements	13
	3.2	Precision	16
	3.3	PM _{2.5} Losses in the Nozzle and Probe	16
	3.4	Nozzle Droplet Performance	17
4.	TES	ST METHODS	18
	4.1	Flue Gas Velocity and Volumetric Flow Rate Using EPA Method 2	18
	4.2	Flue Gas Moisture Content Using EPA Method 4	18
	4.3	Flue Gas Composition and Molecular Weight	18
	4.4	Filterable PM _{2.5} Using the API Wet Stack Sampling Method	18
5.	QU	ALITY ASSURANCE AND QUALITY CONTROL	20
	5.1	Analyte Spiking	20
	5.2	Emission Testing Equipment	20
6.	PR	OGRAM SCHEDULE AND MANAGEMENT	22
	6.1	Test Program Schedule	22
	6.2	Test Program Management	226

American Petroleum Institute

November 15, 2011

i

TABLES

Table 3-1 Bias and Precision Test Matrix Table 6-1 Proposed Project Schedule	14 22
FIGURES	
Figure 1-1 API Wet Stack PM _{2.5} Sampling System	3
Figure 1-2 Heated Filter Box with Cyclone and PM _{2.5} Filter	3
Figure 1-3 Precutter Nozzle	4
Figure 1-4. Collection Efficiency of EPA-S.R.I. Cyclone IV and	
API PM _{2.5} Cyclone	6
Figure 1-5 Required Sample Flow Rate for the PM _{2.5} Cyclone in the API PM _{2.5} Sampling System	7

American Petroleum Institute

November 15, 2011

ii

1. PROJECT PURPOSE AND BACKGROUND

1.1 Limitations of Available Test Methods for Filterable PM_{2.5}

American Petroleum Institute (API) member companies will be required to measure and report PM_{2.5} emissions from fluidized catalytic cracking units (FCCUs). The EPA reference methods designed to measure PM_{2.5} emissions are Method 201A for filterable PM_{2.5} and Method 202 for condensable PM_{2.5}. Method 201A cannot be used in saturated or droplet-laden gas streams because of (1) a potential bias to lower-than-true PM₁₀ emissions caused by the sizes of the droplets entering the probe and (2) problems caused by large water droplets on the cyclone walls. EPA states the rationale for this limitation to Method 201A in the following statement posted on the EPA EMC website (www.epa.gov/ttn/EMC).

Method 201A cannot be used to measure emissions from stacks that have entrained moisture droplets (e.g., a wet scrubber stack), since these stacks may have water droplets larger than the cut size for the PM_{10} -sizing device. To measure PM_{10} in stacks where water droplets are known to exist, EPA's Technical Information Document (TID-099-Methods 201 and 201A in Presence of Water Droplets) recommends use of Method 5 of Appendix A to 40 CFR part 60 (or a comparable method) and consideration of the particulate catch as PM_{10} emissions. U.S.EPA, www.epa.gov/ttn/EMC

Due to the limitations of Method 201A, regulatory agencies require FCCU operators to use Method 5B and to classify all of the particulate matter as $PM_{2.5}$. Field test data compiled previously using the API wet stack filterable $PM_{2.5}$ sampling system ("API test method") demonstrate that this assumption of 100% $PM_{2.5}$ in the stack gas streams introduces a bias to higher-than-true $PM_{2.5}$ emissions that can affect the accuracy of emission inventories and the effectiveness of control strategies.

1.2 Purpose

The American Petroleum Institute (API) would like to eliminate this bias to higher-than-true filterable PM_{2.5} emissions by developing a filterable PM_{2.5} test method designed for wet stacks serving FCCUs equipped with flue gas desulfurization systems (FGDs). Because there is nothing unique about the gas stream conditions in the wet, droplet-laden stacks of FCCUs, it is clear that this new test method could potentially be applicable to power plants, chemical plants, and other industrial sources operating wet scrubbers for sulfur dioxide and particulate matter control.

API has contracted with Air Control Techniques, P.C. to develop and evaluate the performance of the API test method. Air Control Techniques, P.C. has completed (1) initial laboratory testing, (2) field testing of the sampling system at three FCCUs, and (3) follow-up laboratory testing. Based, in part, on these already completed tests, EPA has agreed that the method may be promulgated as a reference method based on the results of the Method 301 Validation tests. The EPA letter is reproduced as Appendix A to this protocol. The purpose

American Petroleum Institute 1

October 15, 2012

of the test program described in this protocol is to provide the Method 301 validation data required by EPA.

The basic objective of the API test method development project is to design a sampling system that can simultaneously capture solids-containing droplets and dry particles entrained in the effluent gas streams of wet scrubbers. EPA has requested 100% capture of droplets of 20 micrometers and 0% capture of droplets equal to or larger than 40 micrometer to adequately capture all droplets that could potentially evaporate to yield PM_{2.5} particles in the atmosphere.

These EPA design criteria inherently include a conservative bias because most 20 micrometer-sized droplets released to the atmosphere will settle rapidly to the ground well before they can evaporate to dryness. In fact, the terminal settling velocities for these large droplets exceed 1.2 centimeters per second. Accordingly, some of the suspended and dissolved solids in these large droplets will be removed from the atmosphere by deposition on vegetation, adjacent surfaces, and the ground within several hundred feet from the stack.

The purpose of this project is to develop a sampling train that enhances the formation of dry particles from droplets equal to or less than 20 micrometers (aerodynamic diameter) by using rapid evaporation in the probe. The new sampling train must provide for high efficiency transport of the dry $PM_{2.5}$ particles to the $PM_{2.5}$ filter and must avoid premature capture in the sampling system.

1.3 Description of the API Wet Stack Filterable PM_{2.5} Sampling System

Sampling Train Configuration—The proposed API wet stack sampling system is a simple modification of Method 201A as promulgated in December 2010. The in-stack PM₁₀ and PM_{2.5} cyclones on the Method 201A probe were replaced with a PM_{2.5} cyclone and filter located in an out-of-stack heated box. The probe heaters used in Method 201A were enhanced to ensure complete and rapid droplet evaporation in the initial zone of the probe. The buttonhook nozzle of the Method 201A sampling system was replaced with a precutter nozzle having a 50% cut point of 30 micrometers (aerodynamic diameter) and a 100% capture efficiency for droplets equal to or less than 20 micrometers.

The API wet stack PM_{2.5} sampling train shown in Figures 1-1 and 1-2 includes a nozzle, a heated probe, a heated PM_{2.5} cyclone, and a heated 47mm non-reactive filter. An EPA Method 202 sampling train is used as the "back half" of this sampling train to measure the condensable PM_{2.5} emissions along with the "front half" filterable PM_{2.5}emissions.

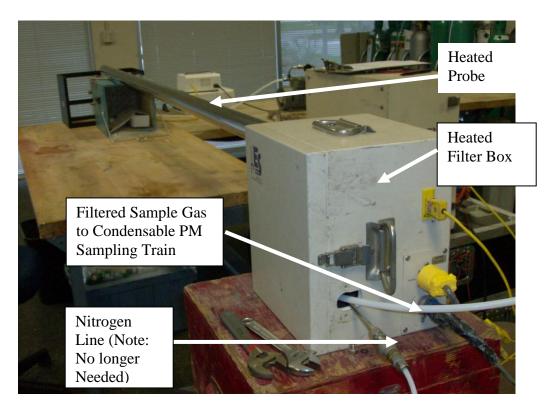


Figure 1-1. API Wet Stack PM_{2.5} Sampling System

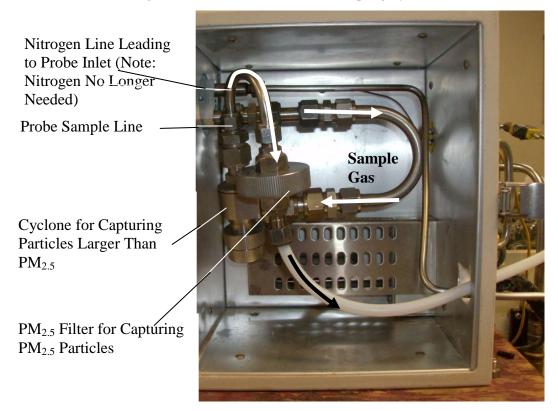


Figure 1-2. Heated Filter Box with Cyclone and PM_{2.5} Filter

Originally, the API sampling system included a high-purity nitrogen injection line to the inlet of the probe to ensure proper droplet evaporation prior to the cyclone and filter. The field tests conducted in 2009 and 2010 demonstrated that the probe was capable of rapid and complete droplet evaporation. Accordingly, the nitrogen dilution line was not needed, even in gas streams with high droplet loadings. Accordingly, this part of the sampling system was eliminated to reduce the complexity in cyclone cut size and isokinetic sampling rate calculations conducted on a point-by-point basis during the emission tests.

Nozzle— A 90-degree nozzle was used for gas stream sampling in the laboratory tests and the field tests. During the stack tests at two FCCU wet scrubbers, the test crews observed liquid from droplets impacting on the exterior surface of the nozzle draining downward and being pulled into the nozzle with the sample gas stream. The droplets in the sample gas stream and the liquid pulled in from the exterior surface were pulled upward through the nozzle and into the probe. The capture of solids-containing liquid from the exterior surface of the nozzle resulted in a bias to higher-than-true measured total filterable particulate matter emissions. ¹

Air Control Techniques, P.C. has modified the nozzle to a precutter arrangement conceptually similar to the inertial droplet separator (IDS) nozzle being evaluated by EPA. A sketch of this precutter nozzle is shown in Figure 1-3.

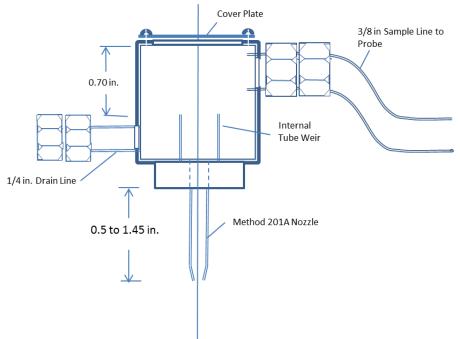


Figure 1-3. Precutter Nozzle

-

¹ The measurement of total filterable particulate matter was a secondary objective of this method development program.

The gas stream is captured in a set of sampling nozzles identical to those used in Method 201A. The gas stream then enters a sampling tube where the velocity is set at approximately 15 feet per second when the overall sample flow rate is in the range of 0.55 ACFM—a typical sample flow rate for wet stacks having a gas stream temperature of 140°F.

The droplets in the sample gas stream turn 90 degrees to enter the probe. Droplets larger than 40 micrometers strike the interior wall of the precutter nozzle and are collected as a liquid at the bottom of the nozzle assembly. The liquid can be drained during port changes. If the reentrained liquid levels in the stack are extreme, the liquid collected in the precutter can be removed continuously using a peristaltic pump.

This precutter nozzle is designed to provide 100% capture of droplets having an aerodynamic diameter equal to or less than 20 micrometers, 50% capture of droplets of 30 micrometers, and 0% capture of droplets having an aerodynamic diameter equal to or greater than 40 micrometers. This satisfies EPA's method requirement stated in comments concerning previous versions of this protocol.

Probe—The probe used in the previous laboratory and field tests was a 1/2 inch (I.D.) stainless steel tube. As required by Method 5, a glass probe will be used instead. A conventional probe with supplemental heaters sufficient to maintain sample gas stream temperatures at $320^{\circ}F \pm 25^{\circ}F$ will be used. A set of three thermocouples will be mounted inside the probe. These thermocouples will be monitored by a standard sampling console or a separate set of temperature readouts. Another thermocouple will monitor the filter box temperature.

PM_{2.5} Cyclone—The PM_{2.5} cyclone used in the API sampling train is identical to the PM_{2.5} cyclone used in Method 201A. This cyclone is based on a unit termed "cyclone IV" in a five-cyclone sampling system originally developed jointly by Southern Research Institute (SRI) and the U.S. EPA. The performance curve for this cyclone at ambient temperature is illustrated in Figure 1-4.

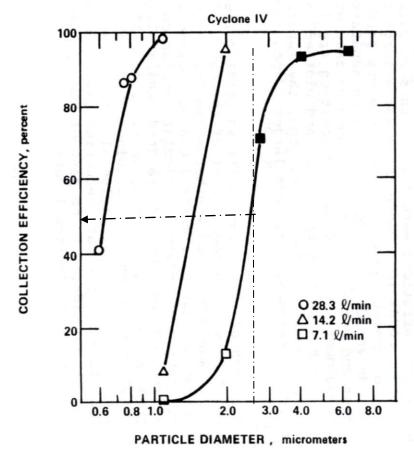


Figure 1-4. Collection Efficiency of EPA-S.R.I. Cyclone IV and API $PM_{2.5}$ Cyclone (Source: EPA-600/7/78-008, January 1978, page 25, dashed lines added)

This curve demonstrates that 50% of the particles that are exactly 2.5 micrometers (aerodynamic diameter) are captured in the cyclone. As indicated in the curve, the cyclone does not reach 100% capture efficiency for particles of at least 6 micrometers and perhaps even larger. Accordingly, some large particles can penetrate the cyclone, reach the $PM_{2.5}$ filter, and be counted as $PM_{2.5}$ particulate matter. Based on this curve, the $PM_{2.5}$ cyclone used in the API sampling system has a slight bias to higher-than-true particulate matter penetrating the $PM_{2.5}$ cyclone.

Sampling Rates—Sample gas flow in the API sampling system will be maintained within the PM_{2.5} cyclone performance limits as shown in Figure 1-5 from Method 201A. The sample gas flow rate must be adjusted to maintain a 2.5 ± 0.25 micrometer cut size.

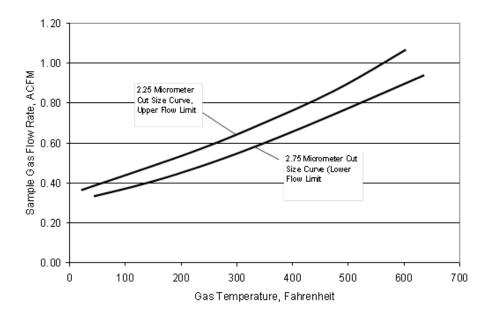


Figure 1-5. Required Sample Flow Rate for the PM_{2.5} Cyclone in the API Sampling System

1.4 API Test Method Performance Criteria

API has adopted the following performance criteria in modifying the Method 201A sampling train to develop the API test method. Criteria 4, 5 and 6 are drawn partially from EPA's requirements.

- 1. Measurement of filterable PM_{2.5} independently from condensable PM_{2.5}
- 2. Temperatures in the range of $320^{\circ}\text{F} \pm 25^{\circ}\text{F}$ in the probe, PM_{2.5} cyclone, and PM_{2.5} filter, even when sampling gas streams with high droplet loadings
- 3. Isokinetic sampling rates in the range of 80% to 110%
- 4. Capture of 100% of the droplets and particles equal to or less than 20 micrometers and 0% of the droplets and particles equal to or greater than 40 micrometers
- 5. Bias of equal to or less than 10% to higher-than-true PM_{2.5} emissions caused by evaporative shattering of solids-containing droplets and inadvertent capture of droplets impacting on the exterior surface of the nozzle
- 6. Bias of equal to or less than 10% to lower-than true $PM_{2.5}$ emissions caused by $PM_{2.5}$ particle losses in the sampling train from the nozzle through the $PM_{2.5}$ cyclone

Independent measurement of filterable and condensable $PM_{2.5}$ is needed to allow operators at refineries and other industrial sources to evaluate the possible emission control techniques to minimize $PM_{2.5}$ emissions. Filterable and condensable $PM_{2.5}$ particles form due to quite different mechanisms, and their emission rates are affected by entirely different process and air pollution control system operating parameters.

The temperature range of $320 \pm 25^{\circ}F$ is consistent with EPA Reference Method 5B, the test method used to measure total filterable particulate matter emissions. This temperature is necessary for the independent measurement of filterable and condensable PM_{2.5}. Most condensable vapor remains in the gas phase at $320 \pm 25^{\circ}F$. This sampling system temperature ensures that the vapor phase materials pass through the PM_{2.5} filter and are captured in the Method 202 impingers used as the back half of the overall sampling system.

An isokinetic sampling rate of 80% to 110% is needed to adequately capture droplets that can potentially evaporate to form $PM_{2.5}$ particles. While the isokinetic sampling rate is relatively unimportant for dry $PM_{2.5}$ particles and droplets, it is moderately important for particles and droplets larger than 10 micrometers.

A droplet capture efficiency of 100% of the droplets equal to or smaller than 20 micrometers in the nozzle is needed to ensure consistency with the EPA PM_{2.5} continuous emission monitor that is presently under development.

Air Control Techniques, P.C. and API placed considerable emphasis on the practicality of the sampling equipment. Any manual test method for filterable PM_{2.5} testing should include readily-available stack sampling equipment that can be purchased at reasonable cost. Testing organizations experienced with EPA Method 201A should be able to conduct the test method. To the maximum extent possible, the sample gas flow rates must be sufficient to provide accurately measurable particulate matter catch weights with run durations of equal to or less than 4 hours. Furthermore, the test method must be compatible with EPA Method 202 used as the "back half" of the overall sampling train.

Potential Biases—There are potential biases to both higher-than-true and lower-than-true emissions. A bias to higher-than-true PM_{2.5} emissions can potentially be caused by Rayleigh shattering of rapidly evaporating droplets containing suspended and dissolved solids. (Hinds, <u>Aerosol Technology</u>, page 334) The PM_{2.5} formation rate can significantly exceed the formation rate of PM_{2.5} particles from droplets evaporating slowly in plumes and air masses. The API method development program has included an evaluation of the extent of PM_{2.5} formation due to Rayleigh shattering in the probe of the sampling system.

A bias to lower than true $PM_{2.5}$ emissions can potentially be caused by (1) $PM_{2.5}$ particle inertial impaction into droplets in the sampling train, (2) Brownian diffusion of $PM_{2.5}$ particles to the nozzle and probe surfaces, and/or (3) electrostatic attraction of $PM_{2.5}$ particles with static charge to the nozzle and probe surfaces. This method development program is designed to evaluate the extent of $PM_{2.5}$ losses in the sampling system and to minimize these losses to the maximum extent possible.

Summary of Completed Laboratory and Field Tests—API and Air Control Techniques, P.C. have completed (1) an initial set of laboratory tests, (2) field tests at two wet scrubber-controlled FCCUs and one electrostatic precipitator-controlled FCCU, and (3) a follow-up laboratory test. The results of these test programs are summarized in a combined test report that provides much of the information requested by EPA in their April 8, 2011 letter to Air Control Techniques, P.C. (reproduced in Appendix A). The already

compiled data and information from these test programs are summarized below with respect to each of the seven performance criteria discussed earlier.

Independent Measurement of Filterable and Condensable PM_{2.5}—The API wet stack sampling system is inherently capable of independently measuring filterable and condensable PM_{2.5} emissions. During tests at the FCCUs, Air Control Techniques, P.C. simultaneously measured the condensable particulate matter emissions using a Method 5B/Method 202 sampling system and an API wet stack/Method 202 sampling system. There were no significant differences except for one of the tests when approximately 10% of the condensable particulate matter condensed at a cold spot in the relatively large wet stack probe. This probe has since been modified to eliminate the cold spot issue.

Ability to Maintain $320 \pm 25^{\circ}$ F Sample Gas Temperatures—During laboratory tests with droplet loadings exceeding 4.5 grams per cubic meter², the API wet stack probe remained within the specified temperature range. Tests at the two wet scrubber-controlled FCCUs also demonstrated the ability of the probe to maintain the design temperature range at droplet loadings exceeding 4.5 grams per actual cubic meter.

<u>Isokinetic Sampling Rates</u>—The API PM_{2.5} sampling system can operate at sampling rates of 80% to 110%. The elimination of the nitrogen dilution line, which proved to be unnecessary, simplifies the field calculations needed to maintain isokinetic sampling rates. With the refined sampling train configuration, testing organizations capable of conducting Method 201A can also successfully conduct the wet stack test method.

<u>Micrometers</u>—Tests using NIST traceable polydisperse microspheres will be conducted as part of the Method 301 validation tests to provide the data needed to determine the capture efficiency for droplets and particles equal to or below 20 micrometers. These polydisperse microspheres are in four distinct sizes of 5, 10, 20, and 50 micrometers. After accounting for the known density of these microspheres, the aerodynamic diameters are 7, 14, 28, and 70 micrometers. Samples recovered the precutter nozzle, probe, PM_{2.5} cyclone, and PM_{2.5} filter will be microscopically analyzed to determine the nozzle capture efficiency curve.

<u>Minimal Positive Bias Due to Droplet Rayleigh Shattering</u>—Laboratory test results indicate that droplet Rayleigh shattering causes a possible bias of less than 1% even when the droplet loadings and dissolved solids levels are extremely high.

Minimal Negative Bias Due to $PM_{2.5}$ Losses in the Nozzle and Probe—The field test program at the ESP controlled FCCUs and the follow-up laboratory tests using three types of NIST traceable monodisperse microspheres and SEM analyses demonstrated that $PM_{2.5}$ losses in the nozzle and probe are small. However, these tests did not accurately quantify the losses. The Method 301 validation tests addressed in this protocol will provide the additional data needed to demonstrate that $PM_{2.5}$ losses in the nozzle and probe are very small.

_

October 15, 2012

² This droplet concentration is equivalent to a very high loading of 2 grains per SCF.

The field tests at the three FCCUs demonstrated that the API wet stack sampling system is as practical and easy to use as EPA Method 201A. All of the sampling equipment is readily available from a variety of the standard suppliers.

The need for the API wet stack sampling system was clearly demonstrated by the results of the tests at the FCCUs. The use of Method 5 or 5B total filterable particulate matter emissions data as a surrogate for filterable $PM_{2.5}$ emissions introduces a bias to higher-than-true filterable $PM_{2.5}$ emissions.

1.5 EPA Review Comments and Data Requirements

The U. S. EPA stated in its letter dated April 8, 2011 (Appendix A to this protocol) that, "...the method has the potential to be a promulgated method for measuring PM_{2.5} at cat crackers with wet stacks." They went on to encourage API to seek broader support and testing of the method in other industries having sources with wet stacks.

EPA requested the following three categories of data to support promulgation of the method.

- Data demonstrating that the method satisfies the Method 301 accuracy and bias criteria
- Laboratory data showing that PM_{2.5} is not retained in the front half of the sampling system
- Data demonstrating that the method captures a representative sample of the droplets having the potential to form PM_{2.5} particulate matter

With respect to the Method 301 accuracy and bias criteria, EPA has requested an analyte spike in a droplet form to fully simulate the behavior of evaporating droplets captured in full scale systems. As part of the analyte spiking system, the droplets must be sized to equal to or less than 2.5 micrometers (aerodynamic).

EPA's requirement for data on $PM_{2.5}$ penetration through the front half of the sampling train has already been completed during the follow-up laboratory evaluation described above. The $PM_{2.5}$ droplet spiking tests conducted as part of the Method 301 validation tests will provide further confirmation of $PM_{2.5}$ loss of equal to or less than 10% of the total filterable $PM_{2.5}$ sample.

EPA has required that the sampling system capture 100% of the particles and droplets having an aerodynamic diameter of equal to or smaller than 20 micrometers.

2. TEST APPARATUS

2.1 Method 301 Testing Requirements

Method 301 establishes procedures to measure the systemic error (bias) and random error (precision) of proposed air emission test method. The bias must be within a range of plus or minus 10% (Section 8.0) of a reference standard. A correction factor is allowed to account for biases up to ± 30 percent.

The random error of the test data at catch weights equivalent to the levels expected at a promulgated emission standard must have a relative standard difference of equal to or less than 20% (Section 10). The Method 301 validation tests must be conducted under conditions representative of actual stack conditions.

Section 6 of Method 301 includes three alternative techniques for bias and precision testing: (1) isotopic spiking, (2) comparison with a validated test method, and (3) analyte spiking. Only the third approach is applicable to the API test method.

The analyte spiking tests described in Method 301 involve six test runs using a set of four identical API sampling trains. The inlet nozzles for the sampling trains must be located within a 6 cm square area as specified in Section 6.4.2 of Method 301. During each of the six test runs, two of the sampling trains must be spiked, and two must be unspiked.

2.2 Validation Testing Apparatus

Dryer Stack—Air Control Techniques, P.C. will conduct the Method 301 validation tests at a stack serving a wet scrubber controlled dryer at a MDF plant. This sampling location is 1.9 stack diameters downstream and 3.7 diameters upstream of the nearest flow disturbances. We will use dual probes that are positioned at a single point within the stack. The sampling ports are each 4 inches inner diameter.

This system is representative of a large population of wet stacks in the petroleum and pulp and paper industries. The stack temperature ranges from $125^{\circ}F$ to $135^{\circ}F$. Based on previous test data, the actual moisture levels are approximately 3% moisture above the calculated saturated levels. Accordingly, we anticipate a typical droplet loading in the stack gas stream. This source has condensed organic particulate matter that is believed to be primarily in the $PM_{2.5}$ size range. Two hour test runs should provide adequate $PM_{2.5}$ catch weights.

Analyte Spiking System—Air Control Techniques, P.C. will generate a PM_{2.5} droplet analyte spike using an ammonium chloride droplet generator. Known quantities of hydrogen chloride, ammonium hydroxide, and deionized water will be placed in an evaporation chamber. The chamber will be heated to evaporate the hydrogen chloride, ammonium

hydroxide, and water to form the ammonium chloride aerosol. The evaporated gas stream will be pulled through an impinger immersed in a water bath to decrease the temperature to approximately 120°F. Sufficient water will be added to ensure the growth of the ammonium chloride particles.

The ammonium chloride droplets are highly hygroscopic and will absorb water and grow larger. The ammonium chloride droplets will grow into the size range of 0.1 to 5 micrometers. The upper size of the droplets will be limited by the competition between condensation nuclei for moisture. The ammonium chloride—containing gas stream will pass through a standard $PM_{2.5}$ cyclone identical to the cyclones used in Method 201A to remove droplets larger than 2.5 micrometers.

By maintaining an analyte spike gas flow rate of 0.44 ACFM at $120^{\circ}F$ (0.59 ACFM at $320^{\circ}F$), the 50% cut size of the PM_{2.5} cyclone will be within 2.25 to 2.75 micrometers. The treated gas stream from the PM_{2.5} cyclone outlet will be directed to the inlet of the API sampling train being spiked. The entire gas handling system will be maintained at approximately $120^{\circ}F$ in the droplet generator to avoid water vapor condensation on the interior surfaces of the PM_{2.5} cyclone and tubing handling the ammonium chloride.

The ammonium chloride-containing droplets will be injected into the inlet of the probe shown in Figure 1-3. From this injection point, the $PM_{2.5}$ particles will travel the entire length of the probe prior to reaching the $PM_{2.5}$ cyclone in the heated sampling box. The spike will be conducted in the middle of each test run. During spike injection, the API sampling systems will be operated at the same temperature range and sampling rate as the remainder of the test run. The duration of the spike will be set to provide a spike quantity of 50 milligrams in both trains. The probes used in the Method 301 tests will be three feet long.

4/11/2016

12

3. METHOD 301 BIAS AND PRECISION TESTING

3.1 Bias Measurements

The API test method bias will be determined in accordance with the Method 301 procedures described in Section 12 of Method 301. A set of six tests will be conducted with quad API PM_{2.5} sampling trains. Each sampling train will have a 90 degree curved nozzle for gas stream capture.

Prior to each test run, an S-type Pitot tube will be used to measure the gas velocity at the sampling location. A total of twelve traverse points will be used for the flow measurements. A Method 4 sampling train will also be used to measure the gas stream moisture content and droplet loadings. The operating conditions of the simulated stack will be adjusted if either measurement indicates operating conditions outside of the intended level. The stack gas velocity and moisture measurements will be repeated if any adjustments are made to the gas flow rate and/or droplet loadings.

The test matrix for the bias and precision tests is summarized in Table 3-1. The sampling time for each API PM_{2.5} sampling train will be 120 minutes.

Prior to recovering the samples, the glass probe liner and the glass nozzle will be removed from the sampling train and photographed to document the presence or absence of dried solids. The API sampling trains will be recovered using deionized water to yield the following samples.

- Sample Jar 1 Nozzle rinse
- Sample Jar 2 Probe rinse
- Sample Jar 3 PM_{2.5} cyclone inlet and catch cup rinse
- Sample Jar 4 PM_{2.5} outlet tube and PM_{2.5} front half filter holder rinse
- Sample Container 5 PM_{2.5} filter

The material in all four sample jars will be dried and weighed. The filter will be desiccated and weighed. Filterable $PM_{2.5}$ will be considered to be the sum of Sample Jar 4 and Sample Container 5for each of the quad sampling trains.

13

Table 3-1. Bias and Precision Test Matrix							
Run	Method	Sampling Train	Spiking Condition	Run Duration			
	PM _{2.5}	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
1	$PM_{2.5}$	3	Unspiked	120			
1	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			
	PM _{2.5}	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
2	$PM_{2.5}$	3	Unspiked	120			
2	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			
	$PM_{2.5}$	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
3	$PM_{2.5}$	3	Unspiked	120			
3	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			
	PM _{2.5}	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
4	$PM_{2.5}$	3	Unspiked	120			
4	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			
	$PM_{2.5}$	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
5	$PM_{2.5}$	3	Unspiked	120			
]	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			
	$PM_{2.5}$	1	Spiked	120			
	$PM_{2.5}$	2	Spiked	120			
6	$PM_{2.5}$	3	Unspiked	120			
U	$PM_{2.5}$	4	Unspiked	120			
	Moisture (Method 4)	1, 2, 3, 4	N/A	120			
	Velocity (Method 2)	Pitot tube	N/A	120			

The first step in calculating the bias is to calculate the differences in the paired spiked sampling train test results in accordance with Method 301 Equation 301-13.

$$d_{i} = \left(\frac{S_{1i} + S_{2i}}{2}\right) - \left(\frac{M_{1i} + M_{2i}}{2}\right) - CS$$
 Equation 301-13

Where:

 d_i = Bias during run i S_{1i} = First measured value of the ith spiked sample (total PM_{2.5}) S_{2i} = Second measured value of the ith spiked sample (total PM_{2.5}) M_{1i} = First measured value of the ith unspiked sample (total PM_{2.5}) M_{2i} = Second measured value of the ith unspiked sample (total PM_{2.5}) M_{2i} = Analyte spike value (ammonium chloride PM_{2.5} spike quantity)

The standard deviation of the differences in the means of the spiked sampling train tests will be calculated in accordance with Method 301 Equation 301-2.

$$SD_{d} = \sqrt{\frac{\sum_{i}^{n} (d_{i} - d_{m})^{2}}{n - 1}}$$
Equation 301-2

Where:

 SD_d = The standard deviation of the differences, milligrams/DNm³ d_i = The differences in the results of the i^{th} sample d_m = The mean of the paired sample differences n = Total number of paired samples (6)

The t-statistic for the differences will be calculated from the means of the paired sample differences, the standard deviation of the differences, and the number of paired samples (6).

$$t = \frac{\left|d_{m}\right|}{\frac{SD_{d}}{\sqrt{n}}}$$
 Equation 301-3

Where:

OTM-036

t = t statistic

 d_m = the mean of the paired sample differences

 SD_d = The standard deviation of the differences, milligrams/DNm³

n = Total number of paired samples (6)

The t-statistic will be compared with the critical value of the t-statistic to determine if the bias is significant at the 95 percent confidence interval. The two-sided confidence level critical value is 2.571 for the five degrees of freedom applicable to a set of six runs.

If the calculated t-value is less than the critical value, the bias will not be considered to be statistically significant, and the data will be acceptable. If the calculated t-value is greater than the critical value, the bias will be considered statistically significant, and the relative magnitude of the bias will be calculated in accordance with Equation 301-10 from Method 301. If the relative bias is less than or equal to 10 percent, the bias will be considered as acceptable in accordance with Method 301 Section 8.0.

$$B_R = \frac{|B|}{|CS|} 100$$
 Equation 301-10

Where:

 B_R = Relative bias at the spike level, milligrams/DNm³

CS = Mean spike level, milligrams/DNm³

B = Bias calculated in Equation 301-13, milligrams/DNm³

If the bias is less than or equal to 30 percent, a correction factor will be calculated to adjust the test results. If the bias exceeds 30 percent, the data will be considered unacceptable.

3.2 Precision

To evaluate the precision of the API sampling system, the relative standard deviation will be calculated in accordance with Equation 301-8.

$$RSD = \left(\frac{SD_d}{S_M}\right) 100$$
 Equation 301-8

Where:

OTM-036

RSD = Relative standard deviation, %

SD_d = Standard deviation of the differences, milligrams/DNm³ S_M = Mean of the twelve spiked test runs, milligrams/DNm³

The API sampling system will meet the requirements of Method 301 Section 9.0 if the RSD is equal to or less than 20%

3.3 PM_{2.5} Loss in the Sampling System

In addition to providing the $PM_{2.5}$ spike, the ammonium chloride analyte spike generator described in Section 2 of this protocol provides a direct means to evaluate the extent of $PM_{2.5}$ loss in the nozzle and probe of the API wet stack sampling train.

All five of the samples will be analyzed by ion chromatography to determine the ammonium and chloride levels. The combined total ammonium and chloride levels in sample jar 4 and sample container 5 from each test will be compared with the combined ammonium and chloride quantities in sample jars 1, 2, and 3. This will provide a measure of the loss of $PM_{2.5}$ droplets and particles in the sampling train. This value will be compared with the bias value measured as described in Section 3.1 of this protocol.

3.4 Nozzle Droplet Performance

The performance of the precutter nozzle used in the API test method will be evaluated based on microscopy analyses of nozzle rinses during tests will polydisperse NIST-traceable microspheres having four mixed monodisperse sizes of 7, 14, 28, and 70 micrometers.

4. TEST METHODS

4.1 Flue Gas Velocity and Volumetric Flow Rate Using EPA Method 2

The flue gas velocity and volumetric flow rates during the emission tests will be determined according to the procedures outlined in U.S. EPA Reference Method 2. Velocity measurements will be made using S-type Pitot tubes conforming to the geometric specifications outlined in Method 2. Velocity pressures will be measured with fluid manometers. Effluent gas temperatures will be measured with chromel-alumel thermocouples equipped with digital readouts. A cyclonic flow check will be performed prior to and following each of the six tests.

The flue gas velocity and volumetric gas flow rate tests will be conducted prior to each of the test runs summarized in Table 3-1.

4.2 Flue Gas Moisture Content Using EPA Method 4

The flue gas moisture content and droplet loadings during the Method 301 validation tests will be determined using Method 4 procedures. The impingers will be connected in series and contain water as listed in the method descriptions. The impingers will be contained in an ice bath to assure condensation of the flue gas moisture. Any moisture that is not condensed in the impingers is captured in the silica gel; therefore, all moisture can be weighed and entered into moisture content calculations.

The droplet loading will be calculated based on the percent of over-saturation of the gas stream measured using the Method 4 data.

4.3 Flue Gas Composition and Molecular Weight

The gas stream molecular weight will be determined based on the measured moisture level and ambient oxygen and carbon dioxide concentrations.

4.4 Filterable PM_{2.5} Using the API Wet Stack Sampling System

Sampling System—The API PM_{2.5} sampling system shown in Figures 1-2 and 1-2 includes a nozzle, heated probe, heated PM_{2.5} cyclone, and heated 47mm filter. The probe will be a 1/2 inch (I.D.) glass tube extending 2 inches from the end of the heated probe. A set of three thermocouples will be mounted inside to the probe. The thermocouples will be monitored by a separate set of temperature readouts. Another thermocouple will monitor the filter box temperature.

Sample gas flow will be maintained within the $PM_{2.5}$ cyclone performance limits as shown in Figure 9 of Method 201A. The sample gas flow rate will be adjusted to maintain a 2.5 \pm 0.25 micrometer cut size. A total sample flow rate of approximately 0.60 cubic feet per minute is anticipated.

The data quality objectives for the API sampling system tests include the following.

- Isokinetic sampling rates equal to or greater than 80% and equal to or less than 110%
- Stack gas sample volumes equal to or greater than 36 DSCF
- Pre-run leak check rates equal to or less than 0.02 DSCFM at 15 in. Hg (pre-run leak)
- Post-run leak check rates equal to or less than 0.02 DSCFM at maximum run vacuum (post-run leak check from outlet of cyclone)
- Sampling train exit temperatures equal to or less than 68°F
- Filter and probe temperature 320±25°F

Sample Recovery—The particulate matter captured in the API sampling trains will be divided into the following sample jars.

Sample Jar #1, Particulate Matter > 2.5 micrometers

• Solids in deionized water rinse of the sampling nozzle

Sample Jar #2, Particulate Matter > 2.5 micrometers

• Solids in deionized water rinse of the probe

Sample Jar #3, Particulate Matter >2.5 micrometers

- Solids in the deionized water rinse of the PM_{2.5} cyclone cup
- Solids in the deionized water rinse of the PM_{2.5} cyclone body

Sample Jar #4, Particulate Matter ≤ 2.5 micrometers

- Solids in inlet pipe to PM_{2.5} filter
- Solids in inlet side of PM_{2.5} filter housing

Sample Container #5, Particulate Matter ≤ 2.5 micrometers

• PM_{2.5} filter

The total particulate matter is the sum of all the particulate matter recovered from the API cyclone sampling assembly (sample jars #1 through #4 and sample container #5). $PM_{2.5}$ particulate matter is the sum of the solids recovered from sample jar #4 and sample container #5.

Sample Analysis—EPA Method 5 analytical procedures will be used to analyze the filter and the deionized water rinses for particulate matter. The nozzle rinse, probe rinse, cyclone rinse, and filter will be sent to Resolution Analytics for gravimetric analyses and ion chromatography analyses for ammonium and chloride ions.

5. QUALITY ASSURANCE AND QUALITY CONTROL

5.1 Analyte Spiking

The concentration of ammonium chloride particulate matter generated by the analyte spiking system will be measured prior to the start of the bias and precision tests described in Section 3 of this protocol. A set of three mass concentration tests will be conducted using Method 5 test equipment operating at 120°F to avoid any disassociation of the captured ammonium chloride on the filter, in the probe, and in the front half of the filter holder.

The target mass concentration in 10 minutes is 20 milligrams. The HCl and/or NH₃ quantities will be adjusted as necessary to achieve 50 ± 5 milligrams with an analyte spike flow rate of 0.44 ACFM, a temperature of 120° F, and a sample flow duration of 10 minutes.

During these mass concentration tests, the quantity of water charged with the ammonium hydroxide and hydrogen chloride will be adjusted as needed to achieve adequate droplet sizes.

The analyte sample gas flow rate during spiking will be measured using the same meter box used to control sample gas flow during the test run. The meter box operating parameters monitored during spiking will include (1) vacuum, (2) dry gas meter box volumetric flow, (3) meter box temperature, (4) delta H, and (5) impinger exit temperature. With the exception of the operating temperature, the sampling system operating conditions during the spike will be essentially identical to those during the remainder of the test run. The sampling system temperatures will be maintained at or below 120°F to avoid disassociating the ammonium chloride particles. The same sampling run forms used for the test run will be used to monitor the spike.

5.2 Emission Testing Equipment

All testing will be conducted using QA/QC procedures established by the EPA for Methods 1, 2, 4, and 201A. Complete records concerning the QA/QC procedures will be prepared during the tests.

Leak Checks—Pretest and posttest leak checks will be conducted on each sampling train used in the tests. The leak checks will be conducted in accordance with Method 201A procedures. The PM_{2.5} cyclone will be removed prior to the post-run leak check. The observed leak rates must be below 0.02 actual cubic feet per minute to be acceptable.

S-Type Pitot Tube Calibration and Use—The S-type Pitot tube used in this project will conform to EPA guidelines concerning construction and geometry. The Pitot tube will be calibrated in a wind tunnel.

The gas flow velocities at the sampling locations will be measured using EPA Methods 1A and 2. Each leg of the Pitot tube will be leak checked before and after each run. The yaw and

the pitch axis of the Pitot tube will be maintained 90 degrees to the airflow. Checks for cyclonic flow will be completed before the start of the first test run.

No Pitot tubes will be attached to the four API sampling trains in the wet stack simulator. The Pitot tubes would increase the blockage factor for the sampling equipment.

Temperature Monitor Calibration—The thermocouples used in this project will be calibrated using the procedures described in Section 3.4.2 of EPA Publication No. 600/4-77-027b. Each temperature sensor will be calibrated at a minimum of three points over the anticipated range against NIST-traceable mercury in glass thermometers.

Dry Gas Meter Calibration—All dry gas meters will be fully calibrated to determine the volume correction factor prior to field use. Post-test calibration checks will be performed. Pre-and post-test calibrations must agree within ± 5 percent. The calibration procedure is documented in Section 3.3.2 of EPA Publication No. 600/4-77-237b.

Moisture Scale Calibration—The scales used in the test program to determine flue gas moisture content will be calibrated using a standard set of weights.

Sample Recovery and Custody—The filters, impinger contents, and rinses will be recovered using standard EPA procedures specified in EPA Method 201A. All sampling equipment will be sealed to prevent contamination during transport to the recovery area.

All chemicals used for sampling train preparation and sample recovery will be American Chemical Society ACS, High Performance Liquid Chromatography (HPLC) or pesticide grade. Deionized water will meet or exceed the American Society for Testing Materials (ASTM) specifications for Type I reagent water.

All of the samples will be labeled immediately after recovery. The samples will be packed in numbered boxes and sealed. A chain of custody record and sample log will be maintained during the test program. The samples will be delivered to Resolution Analytics along with the appropriate chain of custody record forms.

Sample Identification—The test runs will be uniquely identified with designations that will follow each sample from collection through reporting. For example, the API wet stack test runs for the first Method 301 validation test run will be designated as M301-Train 1-Run 1, M301-Train 2-Run 1, M301-Train 3-Run 1, and M301-Train 4-Run 1.

OTM-036

6. PROJECT SCHEDULE AND MANAGEMENT

6.1 Test Program Schedule

The overall project will require 3 months. The project will be performed in accordance with the proposed schedule provided in Table 6-1.

	Table 6-1. Proposed Project Schedule						
Subtask #	Description of Subtask	Date					
1	Submit protocol	November 15, 2011					
	Submit revised protocol based on tests at MDF Plant	October 15, 2012					
	Complete testing	October 25, 2012					
4	Complete laboratory analysis	November 15, 2012					
5	Submit final report	January 15, 2012					

6.2 Test Program Management

The API Project Manager for this testing project is Cathe Kalisz. The Air Control Techniques, P.C. project manager is John Richards. Addresses and phone numbers of these individuals are provided below.

Cathe Kalisz
Director of Regulatory and Scientific Affairs
American Petroleum Institute
1220 L Street, NW Washington, DC 20005-4070
(202) 682-8472

John Richards, Ph.D., P.E. Air Control Techniques, P.C. 301 E. Durham Road Cary, North Carolina, 27513 (919) 460-7811

John Richards will be responsible for test program management and coordination with API and plant personnel. Tom Holder, David Goshaw, Tom Holder, and/or Jeff Aims will assist John Richards in test program implementation. Resolution Analytics will perform the API Sampling Method gravimetric and ion chromatography sample analyses.

Resolution Analytics, Inc. Sanford, NC 27332 (919) 774-5557

OTM-036

Appendix D

Method 301 Test Report
September 16, 2013

WET STACK FILTERABLE PM_{2.5} SAMPLING SYSTEM METHOD 301 VALIDATION TEST REPORT

Report Prepared for

American Petroleum Institute Washington, D.C.

Report Prepared by

Air Control Techniques, P.C. 301 East Durham Road Cary, North Carolina 27513 (919) 460-7811

> Report Date September 16, 2013

TABLE OF CONTENTS

1. SUMMARY 1.1 Purpose and Scope	1 1
1.2 Conclusions	1
1.3 Test Program Participants	2
2. API SAMPLING SYSTEM DESIGN CHARACTERISTICS	3
2.1 Performance Criteria	3
2.2 Basis of the Method	5
2.3 Sampling Train	7
3. METHOD 301 VALIDATION TESTS	15
3.1 Sampling Locations	15
3.2 Method 301 Sampling Train	17
3.3 Method 301 Test Procedures	20
3.4 Method 301 Test Data	20
3.5 Bias and Precision Calculations	26
4. REFERENCES	30
FIGURES	
Figure 2-1. WS2.5 Wet Stack Filterable PM ₂ Sampling Train	8
Figure 2-2. Heated Filter Box with Cyclone and PM _{2.5} Filter	9
Figure 2-3. Precutter Nozzle	10
Figure 2-4. Precutter Method 201A Nozzles	11
Figure 2-5. Nozzle Droplet Capture Efficiency	12
Figure 2-6. Collection Efficiency of EPA-S.R.I. Cyclone IV and WS2.5 PM _{2.5} Cyclone	13
Figure 2-7. Required Minimum and Maximum Sample Flow Rates for the	
PM _{2.5} Cyclone in the WS2.5 Sampling System	14
Figure 3-1. Sampling Port Internal Diameter	15
Figure 3-2. Sampling Platform	16
Figure 3-3. Dual Sampling Train with Two Sets of Method 4 Impingers	16
Figure 3-4. Dual Sampling Train During Method 301 Validation Tests	17
Figure 3-5. Dual PM _{2.5} Cyclone/Filter Assemblies in Dual Train Hot Box	18
Figure 3-6. Dual Sampling Train with Two Method 4 Trains	18
Figure 3-7. Crack in Filter S2-5	24
Figure 3-8. Crack in Filter S2-6 Figure 3-9. Correlation of the Unspiked Sampling Trains	24 28
Figure 3-9. Correlation of the Unspiked Sampling Trains	40

TABLES

Table 2-1. Particle Sizes Formed During Droplet Evaporation	7
Table 3-1. Bias and Precision Test Matrix	21
Table 3-2. Moisture Concentration	22
Table 3-3. PM _{2.5} Sampling Conditions	22
Table 3-4. Quad Train Sampling Data	23
Table 3-5. Sodium Chloride Spike Quantities	25
Table 3-6. Alternative 1, Runs 1 Through 4	27
Table 3-7. Alternative 2, Runs 1 Through 6 (5S-2 and 6S-2 Excluded)	27
Table 3-8. Precision Calculations	28

WET STACK FILTERABLE PM_{2.5} SAMPLING SYSTEM METHOD 301 VALIDATION TEST REPORT

1. SUMMARY

1.1 PURPOSE AND SCOPE

The U.S. Environmental Protection Agency (EPA) and state regulatory agencies are now requesting that American Petroleum Institute (API) member companies provide PM_{2.5} emissions data for sources such as fluid catalytic cracking units (FCCUs) equipped with flue gas desulfurization systems (FGDs). EPA is also requesting that Pulp and Paper Industry sources and other industry sources report PM_{2.5} emissions data for sources controlled with wet scrubbers.

Droplets entrained in the effluent gas streams exiting the FGDs and wet scrubbers preclude the use of EPA Reference Method 201A¹ for the measurement of filterable PM_{2.5}. Current EPA guidance states that companies required to measure filterable PM_{2.5} in saturated or droplet-laden stacks should use EPA Reference Method 5 or 5B and use the total filterable particulate matter as a surrogate for filterable PM_{2.5}. This Method 5-based approach is biased to higher-than-true emission rates of PM_{2.5} because a portion of the material measured as total filterable particulate matter is larger than 2.5 micrometers. A filterable PM_{2.5} test method suitable for use in moisture-saturated and droplet-laden stacks is needed to provide accurate filterable PM_{2.5} emissions data to regulatory agencies.

API has contracted with Air Control Techniques, P.C. to design, fabricate, and test a filterable PM_{2.5} sampling system for wet stack applications. The National Council of Air & Stream Improvement (NCASI) has contributed to this method development project. This method is intended to serve as a logical extension of EPA Methodx 201A and 5B. For the purposes of this report, this wet stack filterable PM_{2.5} test method is termed "WS2.5."

Test programs at three FCCUs demonstrated that the WS2.5 sampling system can operate well in wet stacks of FGD-controlled catalytic crackers. The system can operate at conventional Method 201A isokinetic sampling rates of $100 \pm 20\%$ and at conventional Method 5B sampling temperatures of $320 \pm 25^{\circ}$ F even when the droplet loadings approach an especially high level of 0.40 grams per standard cubic meter. The results of these field tests, along with the laboratory studies conducted as part of the method development efforts, are discussed in the accompanying report "Wet Stack Filterable PM_{2.5} Sampling System Method Development Report."

This report describes how the WS2.5 method was tested at a representative source and satisfied the EPA precision and bias requirements of Method 301.

1.2 CONCLUSIONS

The WS2.5 method is designed to provide an accurate means to measure filterable PM_{2.5} particles in gas streams with entrained water droplets. The sampling system captures particles that are (1) suspended in water droplets, (2) present as dry particles in the stack gas stream, and (3) formed from dissolved solids during the in-probe evaporation of water droplets.

¹ EPA Reference Method 201A was substantially revised and re-promulgated on December 21, 2010.

This wet stack filterable PM_{2.5} sampling system consists of (1) a precutter nozzle, (2) a probe with heaters and sufficient heating capacity to maintain a temperature of $320 \pm 25^{\circ}$ F in droplet-laden gas streams, and (3) a heated sampling box at a temperature of $320 \pm 25^{\circ}$ F that includes a PM_{2.5} cyclone and a PM_{2.5} filter.

The WS2.5 sampling train operates with sample gas flow rates of approximately 0.55 to 0.65 ACFM. Run times vary from two to three hours in order to obtain sufficient PM_{2.5} catch weights. Sample recovery and emission calculations parallel those specified in Method 201A. Quality assurance procedures for the WS2.5 sampling train are also similar to the procedures used in Method 201A.

API and NCASI are proposing that this modification of the EPA Method 201A sampling train be accepted for compliance testing based on satisfactory field tests and the successful method 301 validation tests.

Method 301 validation tests conducted on a wet scrubber controlled fiberboard dryer stack indicated that the precision of the new method was 7.9%, well within Method 301 requirements and that the bias was not statistically significant as defined in Method 301.

The new sampling method provides a practical, economical, and accurate means of measuring $PM_{2.5}$ emissions from wet stacks and should be adopted by the EPA as it has been shown to meet the requirements of Method 301.

1.3 TEST PROGRAM PARTICIPANTS

The API Project Manager for this testing project is Ms. Cathe Kalisz. The NACSI Project Manager is Mr. Lee Carlson. The Air Control Techniques, P.C. project manager is Mr. John Richards. Addresses and phone numbers of these individuals are provided below.

Ms. Cathe Kalisz
Regulatory and Scientific Affairs
American Petroleum Institute
1220 L Street, NW
Washington, DC 20005-4070
(202) 682-8318
kaliszc@api.org

Mr. Lee Carlson
National Council of Air & Stream Improvement
NCASI Southern Regional Center
402 SW 140th Terrace
Newberry, FL, 32669
352-331-1745 ext 259
lcarlson@src-ncasi.org

Mr. John Richards, Ph.D., P.E.
Air Control Techniques, P.C.
301 E. Durham Road
Cary, North Carolina, 27513
(919) 460-7811
John.richards@aircontroltechniques.com

Resolution Analytics performed the WS2.5 method sample analyses. The laboratory manager is Mr. Bruce Nemet.

Mr. Bruce Nemet Resolution Analytics, Inc. 2733 Lee Avenue Sanford, NC 27332 Tel: (919) 774-5557

Research Triangle Institute provided electron microscopy services for both the laboratory and field testing programs. The laboratory manager is Dr. Owen Crankshaw.

Owen Crankshaw, Ph.D. Research Triangle Institute 6000 Cornwallis Road Research Triangle Park, NC Tel: (919) 542-7470

2. WS2.5 SAMPLING SYSTEM DESIGN CHARACTERISTICS

2.1 PERFORMANCE CRITERIA

The following performance criteria were adopted in designing the wet stack filterable PM_{2.5} sampling method:

- 1. Measurement of filterable PM_{2.5} independently from condensable PM_{2.5}
- 2. Temperatures in the range of $320^{\circ}\text{F} \pm 25^{\circ}\text{F}$ in the probe, PM_{2.5} cyclone, and PM_{2.5} filter, even when sampling gas streams with droplet loadings of 0.40 grams per cubic meter
- 3. Isokinetic sampling rates in the range of $100\% \pm 20\%$
- 4. Nozzle² capture efficiency of 100% for droplets larger than 20 micrometers
- 5. Less than 1% bias to higher-than-true PM_{2.5} emissions caused by evaporative shattering of solids-containing droplets
- 6. Minimal bias to lower-than true $PM_{2.5}$ emissions caused by $PM_{2.5}$ particle losses in the nozzle or probe
- 7. Practical and economical stack sampling method that uses readily available commercial equipment

Independent measurement of filterable and condensable PM_{2.5} is needed to allow refineries, paper industry sources, and other operators with saturated, droplet-laden stacks to evaluate control strategies to minimize PM_{2.5} emissions. Filterable and condensable PM_{2.5} particles form due to quite different mechanisms, and their emission rates are affected by entirely different process and air pollution control system operating parameters.

The temperature range of $320 \pm 25^{\circ}F$ is consistent with EPA Reference Method 5B, the test method used to measure total filterable particulate matter emissions. This temperature range is necessary for the independent measurement of filterable and condensable PM_{2.5}. Most condensable vapor remains in the gas phase at $320 \pm 25^{\circ}F$. This sampling system temperature ensures that the vapor phase materials pass through the PM_{2.5} filter and are captured in the Method 202 impingers used as the back half of the overall sampling system. The Method 202 sampling system also captures any organic particulate matter vaporized while the sample gas passes through the heated probe and filter box.

Operating a probe at 320 ± 25 °F also favors rapid evaporation of droplets to dryness. This minimizes losses of the droplets to the walls.

An isokinetic sampling rate of $100\% \pm 20\%$ is needed to ensure consistency with Method 201A. While the isokinetic sampling rate is relatively unimportant for dry PM_{2.5} particles and droplets, it is moderately important for particles and droplets larger than 10 micrometers.

EPA has recently provided comments indicating that they will require a nozzle capture efficiency of 100% for droplets having an aerodynamic diameter equal to or larger than 20 micrometers. Thus, this design criterion was adopted.

٠

² Initially, a design criterion of 50% cut size of 20 micrometers. The 100% capture efficiency at 20 micrometers is based on EPA review comments.

An acceptable sampling method must not provide results that have either a significant positive or negative bias. A bias to higher-than-true $PM_{2.5}$ emissions can be caused by Rayleigh shattering of rapidly evaporating droplets containing suspended solids. Droplet shattering can result in a $PM_{2.5}$ formation rate that can significantly exceeds that of particles from droplets evaporating slowly in plumes or air masses.

A bias to lower than true $PM_{2.5}$ emissions can be caused by (1) $PM_{2.5}$ particle inertial impaction into droplets in the nozzle and probe, (2) Brownian diffusion of $PM_{2.5}$ particles to the nozzle and probe surfaces, and (3) electrostatic attraction of $PM_{2.5}$ particles to the nozzle and probe surfaces.

As shown in the accompanying method development report, the studies carried out in the laboratory show that this sampling system meets all of the performance criteria. In addition, the field tests at three FCCUs demonstrate that the method can be carried out with readily available stack sampling equipment that can be purchased at reasonable cost by testing organizations experienced with EPA Method 201A.

2.2 BASIS OF THE METHOD

Droplet Losses in the Probe—EPA guidance presently specifies Method 5 for use in droplet-laden gas streams. The sampling probes used in these tests operate at 248 ±25°F and can be as short as 3 feet. These sampling conditions are not necessarily well-suited for droplet evaporation. Nevertheless, Method 5 tests of droplet-laden stacks are not subject to filter wetting problems. This suggests that droplets in the size range typically present in wet scrubber stacks evaporate under these mild heating conditions and are collected as dry particles on the filter.

The wet stack filterable PM_{2.5} sampling train has an equipment arrangement similar to Method 5. The filter and the cyclone upstream of the filter are enclosed in an external hot box. Droplet evaporation conditions are significantly enhanced by operating at 320 ± 25 °F. Droplet evaporation is further accelerated by concentrating the probe heat at the inlet to maximize heat transfer to the gas stream. Droplet penetration to the cyclone and filter in the new sampling train is highly unlikely due to the more aggressive evaporation conditions in the probe.

PM_{2.5} Particle Losses in the Probe—The gas velocities in a probe having a diameter of 1/2 inch have a transport velocity of only 7 feet per second when the sampling rate is 0.60 ACFM. This is an extremely low transport velocity that is unlikely to create conditions favorable for inertial impaction, even for particles having aerodynamic diameters well above 3 micrometers. At this velocity, the residence time for the sample gas stream in a probe of 8 feet is only 0.6 seconds. This is very little time for Brownian Diffusion. The low sample gas stream velocity in the probe also minimizes electrostatic charge buildup. Accordingly, there is little PM_{2.5} loss due to electrostatic attraction. All of the physical forces that can contribute to capturing PM_{2.5} particles in the probe are especially weak. Based on general aerosol physics considerations, the sampling system should have minimal bias to lower-than-true PM_{2.5} emissions due to losses in the probe.

The general assessment of physical forces in the probe is supported by data concerning the relative differences in the rinse and filter catch weights observed in many Method 5 tests. When it is clear that most of the particulate matter is in the $PM_{2.5}$ size range, the filter usually has 80 to 99% of the total filterable particulate matter catch weight. When the particulate matter is

composed primarily of large particles (e.g., clinker coolers), more than one-half of the filterable particulate matter catch weight is in the nozzle and probe rinse.

NCASI has provided information indicating that 87% of the filterable particulate matter was in the filter, and 13% was in the probe in a set of 91 tests of wet scrubbers in the Wood Products Industry. This distribution of solids in the sampling system is possible only because a large fraction of the particulate matter penetrates the probe. These data suggest that PM_{2.5} losses in the nozzle and probe are extremely small. Air Control Techniques, P.C. has had a similar experience in a variety of emission tests of industrial sources.

These observations suggest that particles in the $PM_{2.5}$ size range are not captured significantly in the probe. Accordingly, placement of the $PM_{2.5}$ cyclones in a hot box external to the stack should be possible without experiencing much bias due to $PM_{2.5}$ losses in the probe.

The lack of particle capture in the probe obviously does not necessarily apply to suspended and dissolved solids in large droplets entering the probe. The large droplets can impact or settle due to gravity during transport through the probe.

To avoid this bias, it is important to rapidly evaporate the droplets or at least cause sufficient droplet evaporation to reduce the droplet size below the $PM_{2.5}$ size range. Rapid droplet evaporation can be achieved by using additional heaters in the initial part of the probe and by keeping the entire probe at 320 ± 25 °F. With this approach, it should be possible to avoid losses of the $PM_{2.5}$ particulate matter that can potentially form as these droplets evaporate to dryness.

There are no data that suggest that all of the suspended and dissolved solids in droplets in the range of 5 to 50 micrometers convert to $PM_{2.5}$ particles upon evaporation in the atmosphere or in sampling train probes. The rapid evaporation needed to minimize droplet deposition in the probes can increase the fraction of $PM_{2.5}$ particles formed by Rayleigh shattering. This will create a bias to higher-than-true measured $PM_{2.5}$ emissions. This bias cannot be avoided due to the need to minimize droplet deposition in the probe.

Organic Particulate Matter Capture—Organic particulate matter in the gas stream being sampled will be vulnerable to vaporization. The extent of vaporization will be limited by the short residence time of the gas stream in the probe and filter box. A Method 202 sampling train after the filter box is needed to capture vaporized organic particulate matter.

Droplet Evaporation Rates—Droplets in the size range of 10 to 40 micrometers have droplet evaporation times of <0.1 to 1.2 seconds at ambient temperature. Several factors significantly increase the droplet evaporation rates in the WS2.5 sampling probe.

- 1. The droplets are evaporating in a gas stream that has an absolute temperature that is 42 to 52% higher than the atmosphere.
- 2. The droplets enter the evaporation zone at a liquid temperature of 130 to 180°F.
- 3. The solids content of the droplets is relatively low.

These factors reduce the droplet evaporation times substantially. Laboratory tests indicated that the droplets evaporate within the first foot of the probe inlet, even for the relatively large 40-micrometer sized droplets.

Particle Formation During Droplet Evaporation—The nozzle cut size was selected by EPA based on the size of the particle formed as the droplet evaporates to dryness. This particle

size is directly related to the total suspended and dissolved solids content of the inlet droplet as indicated in Table 2-1. The shaded areas indicate combinations of droplet sizes and solids levels that can result in the formation of $PM_{2.5}$ particles (particle weight equal to or less than of 8.2 x 10^{-12} grams) during evaporation.

	Table 2-1. Particle Sizes Formed During Droplet Evaporation								
	Weight		Mass of I	Particle at V	Various Sol	ids Concer	trations (V	Veight %)	
Droplet	of			iı	n Evaporati	ion Droplet	S		
Size,	Droplet,	0.1	0.2	0.5	1	1.5	2	5	10
μm	grams	0.1	0.2	0.5	1	1.3	2	3	10
5	6.5E-11	6.5E-14	1.3E-13	3.3E-13	6.5E-13	9.8E-13	1.3E-12	3.3E-12	6.5E-12
10	5.2E-10	5.2E-13	1.0E-12	2.6E-12	5.2E-12	7.9E-12	1.0E-11	2.6E-11	5.2E-11
15	1.8E-09	1.8E-12	3.5E-12	8.8E-12	1.8E-11	2.6E-11	3.5E-11	8.8E-11	1.8E-10
20	4.2E-09	4.2E-12	8.4E-12	2.1E-11	4.2E-11	6.3E-11	8.4E-11	2.1E-10	4.2E-10
25	8.2E-09	8.2E-12	1.6E-11	4.1E-11	8.2E-11	1.2E-10	1.6E-10	4.1E-10	8.2E-10
30	1.4E-08	1.4E-11	2.8E-11	7.1E-11	1.4E-10	2.1E-10	2.8E-10	7.1E-10	1.4E-09
40	3.3E-08	3.3E-11	6.7E-11	1.7E-10	3.3E-10	5.0E-10	6.7E-10	1.7E-09	3.3E-09
50	6.5E-08	6.5E-11	1.3E-10	3.3E-10	6.5E-10	9.8E-10	1.3E-09	3.3E-09	6.5E-09

This table indicates that droplets of 30 micrometers and above form particles larger than PM_{2.5}. Droplets larger than 15 micrometers form particles larger than PM_{2.5} if the solids content of the evaporating droplets exceeds 0.5 weight percent—a very common range.

Considering that the solids content of reentrained droplets is usually in the range of 0.2 to 2 weight percent, the calculations summarized in Table 2-1 suggest that the WS2.5 wet stack sampling train should capture droplets equal to or less than 15 micrometers. A 50% cut size of 20 micrometers, as specified by EPA, provides for high efficiency capture of the 15-micrometer droplets.

2.3 SAMPLING TRAIN

The WS2.5 test method is a logical extension of EPA Method 201A, which uses two cyclones mounted in series and inserted into the gas stream. Particle separation into the Method 201A PM_{10} (10 to 2.5 micrometers) and $PM_{2.5}$ size fractions occurs at stack temperature. Method 201A cannot be used in saturated or droplet-laden gas streams because of (1) a potential bias to lower-than-true PM_{10} emissions because droplets may have larger sizes than the cut size of the collection device and (2) problems caused by water droplets on the cyclone walls. EPA states the rationale for this limitation to Method 201A in the following statement posted on the EPA EMC website (www.epa.gov/ttn/EMC).

Method 201A cannot be used to measure emissions from stacks that have entrained moisture droplets (e.g., a wet scrubber stack), since these stacks may have water droplets larger than the cut size for the PM10-sizing device. To measure PM10 in stacks where water droplets are known to exist, EPA's Technical Information Document (TID-099-Methods 201 and 201A in Presence of Water Droplets) recommends use of Method 5 of Appendix A to 40 CFR part 60 (or a comparable method) and consideration of the particulate catch as PM10 emissions. U.S.EPA, www.epa.gov/ttn/EMC

Most regulatory agencies assume that all particulate matter captured in Methods 5 or 5B are in the $PM_{2.5}$ size range. This assumption introduces a significant bias to higher-than-true $PM_{2.5}$ emissions that adversely affects State Implementation Plan emission inventories and control strategies.

Sampling Train Configuration—The proposed WS2.5 wet stack sampling train is a simple modification of Method 201A as promulgated in December 2010. The in-stack PM₁₀ and PM_{2.5} cyclones on the Method 201A probe were replaced with a PM_{2.5} cyclone and filter located in an out-of-stack heated box. The probe heaters used in Method 201A were enhanced to ensure complete and rapid droplet evaporation in the initial zone of the probe. The cyclone inlet nozzle of the Method 201A sampling system was replaced with a precutter nozzle having a 50% cut point of 27 to 45 micrometers (aerodynamic diameter) and a 100% capture efficiency for droplets equal to or less than 20 micrometers.

The WS2.5 sampling train shown in Figures 2-1 and 2-2 includes a nozzle, a heated probe, a heated PM_{2.5} cyclone, and a heated 47mm non-reactive filter. An EPA Method 202 sampling train is used as the "back half" of this sampling train to measure the condensable PM_{2.5} emissions along with the "front half" filterable PM_{2.5}emissions.

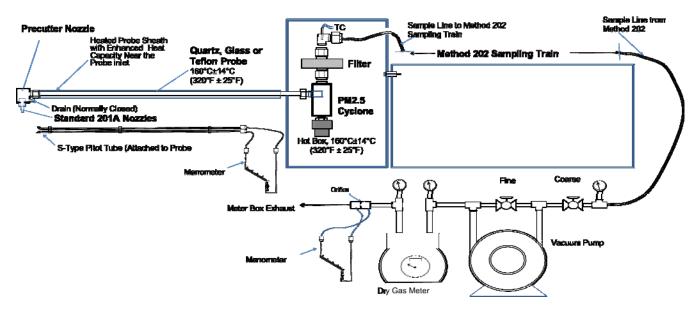


Figure 2-1. WS2.5 Wet Stack PM_{2.5} Sampling Train

Figure 2-2. Heated Filter Box with PM_{2.5} Cyclone and PM_{2.5} Filter

Originally, the WS2.5 sampling system included a high-purity nitrogen injection line to the inlet of the probe to ensure proper droplet evaporation prior to the cyclone and filter. The field tests conducted in 2009 and 2010 demonstrated that the probe was capable of rapid and complete droplet evaporation. Accordingly, the nitrogen dilution line was not needed, even in gas streams with high droplet loadings. This part of the sampling system was eliminated to reduce the complexity in cyclone cut size and isokinetic sampling rate calculations conducted on a point-by-point basis during the emission tests.

Nozzle— A 90-degree nozzle was used for gas stream sampling in the laboratory tests and the field tests. During the stack tests at two FCCU wet scrubbers, the test crews observed liquid from droplets impacting on the exterior surface of the nozzle draining downward and being pulled into the nozzle with the sample gas stream. The droplets in the sample gas stream and the liquid pulled in from the exterior surface were pulled upward through the nozzle and into the probe. The capture of solids-containing liquid from the exterior surface of the nozzle resulted in a bias to higher-than-true measured total filterable particulate matter emissions.³

³ The measurement of total filterable particulate matter was a secondary objective of this method development program.

Air Control Techniques, P.C. modified the nozzle to a precutter arrangement conceptually similar to the inertial droplet separator (IDS) nozzle being evaluated by EPA. A sketch of this precutter nozzle is shown in Figure 2-3.

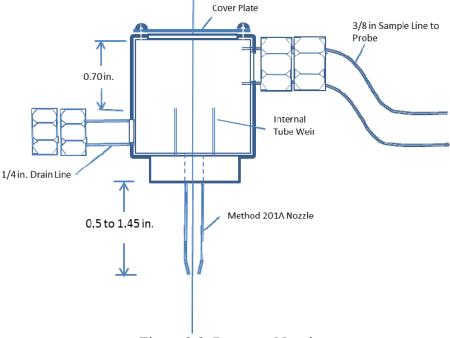


Figure 2-3. Precutter Nozzle

The gas stream is captured in a set of sampling nozzles identical to those used in Method 201A. The gas stream then enters a sampling tube where the velocity is set at approximately 15 feet per second when the overall sample flow rate is in the range of 0.55 ACFM—a typical sample flow rate for wet stacks having a gas stream temperature of 140°F.

The droplets in the sample gas stream turn 90 degrees to enter the probe. Droplets larger than 60 micrometers strike the interior wall of the precutter nozzle and are collected as a liquid at the bottom of the nozzle assembly. The liquid can be drained during port changes. If the reentrained liquid levels in the stack are extreme, the liquid collected in the precutter can be removed continuously using a peristaltic pump and the drain at the bottom of the nozzle chamber.

The precutter nozzle has a threaded fitting at the bottom that allows the use of a set of tapered nozzles (Figure 2-4) identical to those used in Method 201A. The fitting can be removed following the run to facilitate rinse recovery of solids

Figure 2-4. Precutter Method 201A Nozzles

The droplet capture efficiency of the precutter was evaluated using microspheres with physical sizes ranging from 5 to 50 micrometers. The aerodynamic diameters of the spheres were calculated based on the specific gravity of 2.1.

Prior to the capture efficiency tests, the precutter interior surfaces were coated with WD40 to minimize bounce of the rigid glass microspheres. A 47 mm filter was used immediately downstream of the nozzle. A sample of the polydisperse microspheres was pulled into the precutter through the nozzle at a flow rate of 0.55 ACFM. After several minutes of sampling, the sample flow was stopped, and the filter, precutter, and nozzle rinse was recovered. After desiccation, the samples were analyzed microscopically to determine the fraction of particles in each size range that penetrated the precutter to reach the filter.

The droplet capture efficiency curve is shown as the solid line in Figure 2-5. The data indicated a 50% cut efficiency between 27 and 45 micrometers. This is well above the 20 micrometer 50% cut size that was the design target. As indicated by the actual and design curves, the precutter has much lower droplet removal efficiency than intended. This creates a possible bias to higher-than-true PM_{2.5} emissions to the extent that large droplets evaporate and shatter to form PM_{2.5} particles.

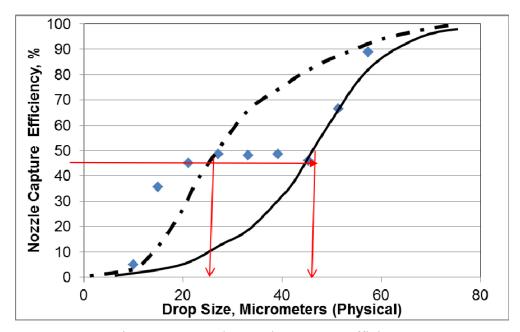


Figure 2-5. Nozzle Droplet Capture Efficiency

Probe—The probe used in the previous laboratory and field tests was a 1/2 inch (I.D.) stainless steel tube. A glass probe is now used instead. The probe is enclosed in a high temperature probe sheath, or a conventional probe with heaters sufficient to maintain sample gas stream temperatures at $320^{\circ}F \pm 25^{\circ}F$. A set of thermocouples near the probe inlet monitors the probe temperature. Another thermocouple monitors the sample gas temperature exiting the filter.

PM_{2.5} Cyclone—The PM_{2.5} cyclone used in the WS2.5 sampling train is identical to the PM_{2.5} cyclone used in Method 201A. This cyclone is based on a unit named "Cyclone IV" in a five-cyclone sampling system originally developed jointly by Southern Research Institute (SRI) and the U.S. EPA. The performance curve for this cyclone at ambient temperature is illustrated in Figure 2-6.

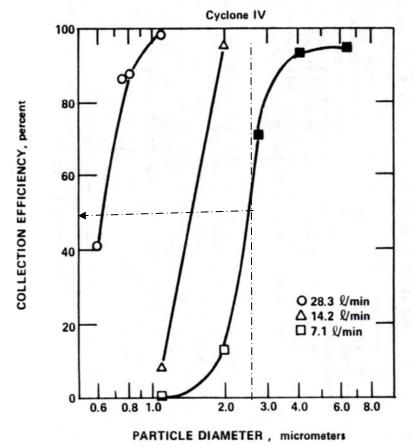


Figure 2-6. Collection Efficiency of EPA-S.R.I. Cyclone IV and WS2.5 Cyclone (Source: EPA-600/7/78-008, January 1978, page 25, dashed lines added)

This curve demonstrates that 50% of the particles that are exactly 2.5 micrometers (aerodynamic diameter) are captured in the cyclone. As indicated in the curve, the cyclone does not reach 100% capture efficiency for particles of at least 6 micrometers and perhaps even larger. Accordingly, some large particles can penetrate the cyclone, reach the $PM_{2.5}$ filter, and be counted as $PM_{2.5}$ particulate matter. Based on this curve, the $PM_{2.5}$ cyclone used in the WS2.5 sampling system has a slight bias to higher-than-true particulate matter penetrating the $PM_{2.5}$ cyclone.

Sampling Rates—Sample gas flow in the WS2.5 sampling system is maintained within the PM_{2.5} cyclone performance limits as shown in Figure 2-7, which is based on Figure 10 of Method 201A. The sample gas flow rate must be adjusted to maintain a 2.5 ± 0.25 micrometer cut size.

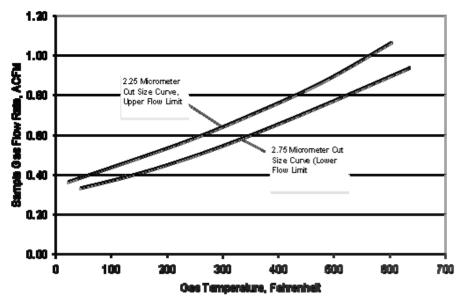


Figure 2-7. Required Minimum and Maximum Sample Flow Rates for the $PM_{2.5}$ Cyclone in the WS2.5 Sampling System

3. METHOD 301 VALIDATION TESTS

Air Control Techniques, P.C. has conducted Method 301 Validation Tests in accordance with the protocol submitted to the U.S. EPA on November 15, 2011 and revised on October 15, 2012. These tests were conducted at a Wood Products Industry facility located in North Carolina on October 21-23, 2012. This section presents a summary of the test location, spiking procedures, and test results. As indicated in this section, the WS2.5 sampling system satisfied the Method 301 bias and precision requirements.

3.1 SAMPLING LOCATIONS

Testing was performed at an exhaust stack serving a set of packed bed scrubbers. The stack had a diameter of 114 inches and four sampling ports located 90 degrees apart. The sampling ports were located 3.7 stack diameters downstream (35 feet) and 1.9 diameters upstream (18 feet) from flow disturbances. The upstream and downstream distances met EPA Method 1 specifications. During the Method 301 tests, two separate dual trains approached the middle of the stack using two ports located 180 degrees apart. As required by Method 301, the four sampling locations were located within one inch of each other at the sampling point.

The upstream flow disturbance was the converging section on top of the cylindrical packed bed scrubbers. The downstream flow disturbance was the stack discharge point. There were no stiffeners or other flow obstructions in the center of the stack.

The ports were slightly less than four inches I.D as indicated in Figure 3-1. The clearance for the dual sampling train with the attached nozzle and Pitot tube was extremely limited. The selection of nozzles was restricted due to the close clearances.

Figure 3-1. Sampling Port Internal Diameter

As indicated in Figure 3-2, the large sampling platform allowed the use of a jumper umbilical to one of the two sets of impingers needed for the dual trains. The second set of impingers remained on the grating (Figure 3-3), while the first set of impingers was attached to the hot box suspended on a rail.

Figure 3-2. Sampling Platform

Figure 3-3. Dual Sampling Train with Two Sets of Method 4 Impingers

Each of the dual sampling trains had a set of two PM_{2.5} cyclones and filters. These cyclones were identical to those used in Method 201A. The PM_{2.5} cyclones and filters were maintained at 320 ± 25 °F in the filter box shown in Figure 3-4.

Figure 3-4. Dual Sampling Train During Method 301 Validation Tests

One of the two sampling trains in each of the dual trains was spiked with a sodium chloride aerosol following the test run. The spiking system consisted of a nebulizer and a PM_{2.5} cyclone mounted in a heated box. The outlet of the cyclone containing droplets less than 2.5 micrometers in size entered the precutter nozzle positioned immediately adjacent to the analyte spiking system hot box. The nebulizer handled a salt solution of 8% by weight. The duration of the spike was established to provide sodium and chloride concentrations well in excess of the native salt and chloride levels in the source effluent gas stream.

3.2 METHOD 301 DUAL SAMPLING TRAIN

Method 301 requires the use of four identical sampling trains. Air Control Techniques, P.C. fabricated two dual trains, each having two sets of $PM_{2.5}$ cyclones and filters in a hot box designed to operate at $320F \pm 25$ °F. The cyclones are shown in Figure 3-5.

Figure 3-5. Dual PM_{2.5} Cyclone/Filter Assemblies in Dual Train Hot Box

The dual train had two separate Method 4 trains. One of the Method 4 trains was mounted in the conventional position behind the hot box. The second was placed on the platform grating as shown in Figure 3-6. A jumper line connected the outlet of the $PM_{2.5}$ filter to the inlet of the Method 4 sampling train.

Figure 3-6. Dual Sampling Train with Two Method 4 Trains

The data quality objectives for the WS2.5 wet stack sampling system tests included the following.

- Isokinetic sampling rates $\geq 80\%$ and $\leq 120\%$
- Stack gas sample volumes equal to or greater than 36 DSCF
- Pre-run leak check rates equal to or less than 0.02 DSCFM at 5 psig (pre-run leak check of entire sampling train)
- Post-run leak check rates equal to or less than 0.02 DSCFM at maximum run vacuum (post-run leak check from outlet of the filter)
- Sampling train exit temperatures equal to or less than 68°F
- Filter and probe temperature equal to 320±25°F

The WS2.5 wet stack sampling system head was recovered using a nylon brush and ultra-pure acetone rinse. The particulate matter was divided into six separate sample jars and a filter container.

Sample Jar #1, Particulate Matter > 2.5 micrometers

• Solids in the acetone rinse of the sampling nozzle

Sample Jar #2, Particulate Matter > 2.5 micrometers

• Solids in the water rinse of the sampling nozzle

Sample Jar #3, Particulate Matter > 2.5 micrometers

- Solids in the acetone rise of the probe
- Solids in the acetone rinse of the PM_{2.5} cyclone cup
- Solids in the acetone rinse of the PM_{2.5} cyclone body

Sample Jar #4, Particulate Matter > 2.5 micrometers

- * Solids in the water rise of the probe
- * Solids in the water rinse of the PM_{2.5} cyclone cup
- * Solids in the water rinse of the PM_{2.5} cyclone body

Sample Jar #5, Particulate Matter ≤2.5 micrometers

- Solids in the acetone rinse of the outlet tube of the cyclone body
- Solids in the acetone rinse of the inlet pipe to PM_{2.5} filter
- Solids in the acetone rinse of the inlet side of PM_{2.5} filter housing

Sample Jar #6, Particulate Matter ≤2.5 micrometers

- Solids in the water rinse of the outlet tube of the cyclone body
- Solids in the water rinse of the inlet pipe to PM_{2.5} filter
- Solids in the water rinse of the inlet side of PM_{2.5} filter housing

Filter, Container #7, Particulate Matter ≤ 2.5 micrometers

• PM_{2.5} Filter

The total particulate matter is the sum of all the particulate matter recovered from the cyclone sampling assembly--sample jars #1 through #6 and the filter (sample #7). PM_{2.5} particulate matter is the sum of the solids recovered from sample jars #5 and #6, and filter (sample #7).

EPA Method 5 analytical procedures were used to analyze the filter and the front half acetone rinses for particulate matter. Standard EPA procedures were used to recover the samples. Sample recovery was performed in a mobile lab at the facility. Each sampling train was sealed to prevent contamination during transport to and from the clean-up area.

3.3 METHOD 301 TEST PROCEDURES

The procedures described in Method 301 have been used to validate the WS2.5 method for PM_{2.5} sampling in wet stacks. The bias and precision of the method has been determined by spiking two out of the four sampling trains with sodium chloride solutions and analyzing the results to calculate the precision and bias of the new method. The WS2.5 test method bias was determined in accordance with the Method 301 procedures described in Section 12 of Method 301.

The test matrix for the bias and precision tests is summarized in Table 3-1. The sampling time for each WS2.5 sampling train was adjusted to 90 minutes from the initially anticipated 120 minutes because the initial test demonstrated that there would be adequate catch weight, and the plant indicated that the process might not be available for portions of each day.

The WS2.5 sampling trains were recovered using deionized water and acetone because the emissions from the source include both inorganic and organic particulate matter.

The material in all of the sample jars was dried and weighed. The filter was desiccated and weighed.

3.4 METHOD 301 TEST DATA

The measured moisture concentrations in the various sampling trains are summarized in Table 3-2. The moisture levels ranged from approximately 1.5% to more than 5.5% over saturation calculated based on the gas temperature at the stack sampling point. The large differences between the calculated saturation moisture levels and the measured moisture levels demonstrate that there is a high concentration of entrained droplets in the stack.

Table 3-1. Bias and Precision Test Matrix								
Run	Method	Sampling Train	Spiking Condition	Run Duration				
	WS2.5	1	Spiked	120				
	WS2.5	2	Spiked	120				
1	WS2.5	3	Unspiked	120				
1	WS2.5	4	Unspiked	120				
	Moisture (Method 4)	1, 2, 3, 4	N/A	120				
	Velocity (Method 2)	Pitot tube	N/A	120				
	WS2.5	1	Spiked	90				
	WS2.5	2	Spiked	90				
2	WS2.5	3	Unspiked	90				
2	WS2.5	4	Unspiked	90				
	Moisture (Method 4)	1, 2, 3, 4	N/A	90				
	Velocity (Method 2)	Pitot tube	N/A	90				
	WS2.5	1	Spiked	90				
	WS2.5	2	Spiked	90				
3	WS2.5	3	Unspiked	90				
3	WS2.5	4	Unspiked	90				
	Moisture (Method 4)	1, 2, 3, 4	N/A	90				
	Velocity (Method 2)	Pitot tube	N/A	90				
	WS2.5	1	Spiked	90				
	WS2.5	2	Spiked	90				
4	WS2.5	3	Unspiked	90				
4	WS2.5	4	Unspiked	90				
	Moisture (Method 4)	1, 2, 3, 4	N/A	90				
	Velocity (Method 2)	Pitot tube	N/A	90				
	WS2.5	1	Spiked	90				
	WS2.5	2	Spiked	90				
5	WS2.5	3	Unspiked	90				
3	WS2.5	4	Unspiked	90				
	Moisture (Method 4)	1, 2, 3, 4	N/A	90				
	Velocity (Method 2)	Pitot tube	N/A	90				
	WS2.5	1	Spiked	90				
	WS2.5	2	Spiked	90				
6	WS2.5	3	Unspiked	90				
	WS2.5	4	Unspiked	90				
	Moisture (Method 4)	1, 2, 3, 4	N/A	90				
	Velocity (Method 2)	Pitot tube	N/A	90				

Table 3-2. Moisture Concentrations								
	Unspi	ked Trains		Spiked Trains				
Train	Saturation	Measured	Over-	Train	Saturation	Measured	Over-	
	%	%	Saturation		%	%	Saturation	
			%				%	
U1-1	16.6	19.7	3.1	S1-1	16.6	20.0	3.4	
U2-1	16.6	20.4	3.8	S2-1	16.6	18.1	1.5	
U1-2	15.9	18.6	2.7	S1-2	15.9	19.6	3.7	
U2-2	16.0	19.3	3.3	S2-2	15.9	18.8	2.9	
U1-3	15.9	19.1	3.2	S1-3	15.9	19.1	3.2	
U2-3	15.9	19.4	3.5	S2-3	15.9	19.6	3.7	
U1-4	16.0	20.3	4.3	S1-4	16.2	20.2	4.0	
U2-4	16.0	20.7	4.7	S2-4	16.2	20.6	4.4	
U1-5	12.8	18.0	5.2	S1-5	12.8	18.1	5.3	
U2-5	12.8	18.3	5.5	S2-5	12.8	18.0	5.2	
U1-6	16.9	20.5	3.6	S1-6	16.9	19.8	2.9	
U2-6	16.9	21.0	4.1	S2-6	16.9	20.0	3.1	

The PM_{2.5} cyclone cut sizes and the sampling train isokinetic rates are summarized in Table 3-3. The cut sizes remained within the 2.25 to 2.75 desired range for all of the runs. The isokinetic sampling rates ranged from 96.2 to 119.1%. All of the test runs were within the desired 80 to 120% range.

Table 3-3. PM _{2.5} Sampling Conditions								
,	Unspiked Train	IS	Spiked Trains					
Train	Cut Size,	Isokinetics	Train	Cut Size,	Isokinetics			
	Micrometers	%		Micrometers	%			
U1-1	2.69	104.5	S1-1	2.48	111.8			
U2-1	2.49	114.1	S2-1	2.60	117.2			
U1-2	2.65	117.2	S1-2	2.74	99.5			
U2-2	2.73	117.5	S2-2	2.69	106.6			
U1-3	2.65	96.6	S1-3	2.67	99.2			
U2-3	2.58	99.1	S2-3	2.70	102.1			
U1-4	2.58	96.2	S1-4	2.56	100.6			
U2-4	2.48	99.9	S2-4	2.58	104.0			
U1-5	2.48	107.1	S1-5	2.64	105.1			
U2-5	2.45	108.5	S2-5	2.39	119.1			
U1-6	2.49	99.6	S1-6	2.56	102.0			
U2-6	2.43	101.9	S2-6	2.50	108.4			

The results of the six quad train test runs are summarized in Table 3-4. More than one-half of the material captured was present on the filters. The quantities captured in the precutter nozzles were 10 to 15% of the total material. The $PM_{2.5}$ fraction of the total catch ranged from approximately 52 to 79% of the total.

	Table 3-4. Quad Train Sampling Data									
	Catch Weights, Milligrams						Volume	Concentrations		
		one and wa					Sampled	Concer		
Run	Total Nozzle	Cyclone Inlet and	Cyclone Outlet	Total Filter	Total, PM _{2.5}	Total Catch	DSCF	PM _{2.5} , gr/DSCF	Total PM, gr/DSCF	PM _{2.5} Fractio n %
	(>2.5)	Probe (>2.5)	(≤2.5)	(≤2.5)				gi/Doci	gi/Doci	
U1-1	5.0	23.7	2.3	31.8	34.1	62.8	36.148	0.0146	0.0268	54.5
U2-1	2.0	15.0	2.9	33.1	36.0	53.0	38.005	0.0146	0.0215	67.9
S1-1	8.4	17.5	1.3	73.9	75.2	101.1	38.310	0.0303	0.0407	74.4
S2-1	8.8	14.9	2.8	64.4	67.2	90.9	37.972	0.0273	0.0369	73.9
U1-2	6.1	11.2	2.4	16.4	18.8	36.1	25.752	0.0113	0.0216	52.1
U2-2	3.3	7.8	1.1	16.3	17.4	28.5	24.878	0.0108	0.0177	61.1
S1-2	6.7	11.5	2.1	47.6	49.7	67.9	24.580	0.0312	0.0426	73.2
S2-2	6.6	11.5	1.1	48.0	49.1	67.2	25.210	0.0301	0.0411	73.2
U1-3	3.1	9.9	1.0	20.9	21.9	34.9	29.107	0.0116	0.0185	62.8
U2-3	1.5	7.4	0.7	21.7	22.4	31.3	29.600	0.0117	0.0163	71.7
S1-3	4.4	9.6	0.9	37.1	38.0	52.0	28.858	0.0203	0.0278	73.0
S2-3	2.2	14.1	1.1	30.7	31.8	48.1	28.411	0.0173	0.0261	66.3
U1-4	2.3	7.6	0.7	22.3	23.0	32.9	26.207	0.0135	0.0194	69.9
U2-4	2.3	7.3	1.0	23.7	24.7	34.3	26.956	0.0141	0.0196	71.9
S1-4	0.6	7.0	0.6	26.9	27.5	35.1	26.403	0.0161	0.0205	78.5
S2-4	1.6	5.8	1.2	26.5	27.7	35.1	26.123	0.0164	0.0207	79.2
U1-5	2.9	9.6	0.7	14.7	15.4	27.9	27.509	0.0086	0.0157	54.8
U2-5	1.3	5.4	0.7	15.1	15.8	22.5	27.612	0.0088	0.0126	69.8
S1-5	8.9	10.8	0.9	55.0	55.9	75.6	26.052	0.0331	0.0448	73.9
S2-5	3.5	12.0	0.8	5.8	6.6	22.1	28.267	0.0036	0.0121	29.9
U1-6	2.7	7.3	1.5	29.5	31.0	41.0	31.604	0.0151	0.0200	75.5
U2-6	3.2	6.5	1.8	30.1	31.9	41.6	32.042	0.0154	0.0200	77.0
S1-6	2.1	6.7	1.2	37.4	38.6	47.4	31.239	0.0191	0.0234	81.6
S2-6	2.2	4.5	0.6	1.2	1.8	8.7	31.780	0.0009	0.0042	20.7

During Runs S2-5 and S2-6, the PM_{2.5} filters developed small cracks/tears that started at the edge and propagated approximately 1 centimeter into the filtering area. These cracks are shown in Figures 3-7 and 3-8. The photographs were taken after the filters were weighed and before the filters were processed for ion chromatography analyses.

The cracks/tears on the filters may have been due to a sharp edge in the sealing surface of the filter holder. This isolated issue is not related to any fundamental problem with the WS2.5 wet stack sampling train as indicated by the similarities in the greater than 2.5 material catch weights in the nozzle, probe, and cyclone inlet in the twenty-four sampling trains.

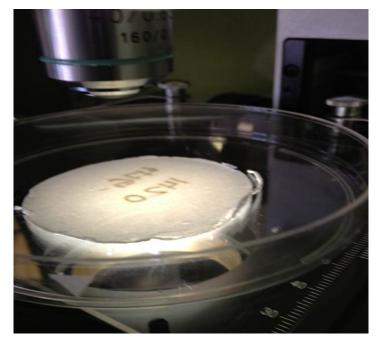


Figure 3-7. Crack in Filter S2-5

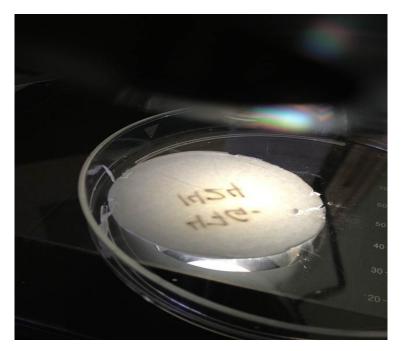


Figure 3-8. Crack in Filter S2-6

The total spike quantities were determined based on ion chromatography analyses of the sodium and chloride found in the water rinses of the nozzle, probe, and PM_{2.5} cyclone (inlet and cup), PM_{2.5} cyclone outlet, and filter. The native sodium and chloride levels were calculated as the average value of the total salt content in the two unspiked sampling trains in each run. The salt spike concentration was determined by subtracting the average sodium chloride level in the unspiked trains from the sodium and chloride levels in the two spiked sampling trains. This approach was needed because it was not possible to fully inject a pre-measured quantity of salt into the sampling train due to changes in the nebulizer performance as the level of saltwater in the reservoir decreased.

The performance of the nebulizer changed over the test series due to undetected build-up of salt deposits in portions of the nebulizer. The calculated spike quantities are listed in Table 3-5.

Table 3-5. Sodium Chloride Spike Quantities							
Run	Total Sodium and Chloride, gr/DSCF	Average of Total Sodium and Chloride, gr/DSCF	Sodium Chloride Spike Quantity, gr/DSCF	Average Sodium Chloride Spike Quantity, gr/DSCF			
U1-1	0.00320	0.00312	N/A	N/A			
U2-1	0.00305	0.00312	N/A	N/A			
S1-1	0.02048	N/A	0.0174	0.0182			
S2-1	0.02226	N/A	0.0191	0.0162			
U1-2	0.00186	0.00176	N/A	N/A			
U2-2	0.00165	0.00170	N/A	N/A			
S1-2	0.02766	N/A	0.0259	0.0229			
S2-2	0.02155	N/A	0.0198	0.0229			
U1-3	0.00191	0.00192	N/A	N/A			
U2-3	0.00193	0.00192	N/A	N/A			
S1-3	0.01257	N/A	0.0106	0.0083			
S2-3	0.00784	N/A	0.0059	0.0083			
U1-4	0.00318	0.00287	N/A	N/A			
U2-4	0.00255	0.00287	N/A	N/A			
S1-4	0.00502	N/A	0.0021	0.0023			
S2-4	0.00536	N/A	0.0025	0.0023			
U1-5	0.00292	0.00279	N/A	N/A			
U2-5	0.00267	0.00279	N/A	N/A			
S1-5	0.03040	N/A	0.0276	0.0163			
S2-5	0.00769	N/A	0.0049	0.0103			
U1-6	0.00392	0.00384	N/A	N/A			
U2-6	0.00376	0.00384	N/A	N/A			
S1-6	0.00717	N/A	0.0033	0.0003			
S2-6	0.00118	N/A	-0.0027	0.0003			

3.5 BIAS AND PRECISION CALCULATIONS

Bias—The bias of the WS2.5 wet stack test method was calculated using the following equations from Method 301. The first step in calculating the bias was to calculate the differences in the paired spiked sampling train test results in accordance with Method 301 Equation 301-13.

$$d_{i} = \left(\frac{S_{1i} + S_{2i}}{2}\right) - \left(\frac{M_{1i} + M_{2i}}{2}\right) - CS$$
 Equation 301-13

Where:

d_i = Bias during run i
 S_{1i} = First measured value of the ith spiked sample (total PM_{2.5})
 S_{2i} = Second measured value of the ith spiked sample (total PM_{2.5})
 M_{1i} = First measured value of the ith unspiked sample (total PM_{2.5})
 M_{2i} = Second measured value of the ith unspiked sample (total PM_{2.5})
 CS = Analyte spike value (sodium chloride PM_{2.5} spike quantity as calculated in Table 3-5)

The standard deviation of the differences in the means of the spiked sampling train tests was calculated in accordance with Method 301 Equation 301-2.

$$SD_{d} = \sqrt{\frac{\sum_{i}^{n} (d_{i} - d_{m})^{2}}{n - 1}}$$
Equation 301-2

Where:

 SD_d = The standard deviation of the differences, gr/DSCF d_i = The differences in the results of the i^{th} sample d_m = The mean of the paired sample differences n = Total number of paired samples (6)

The t-statistic for the differences was calculated from the means of the paired sample differences, the standard deviation of the differences, and the number of paired samples (6).

the standard deviation of the differences, and the number of paired samples
$$t = \frac{\left|d_{m}\right|}{\frac{SD_{d}}{\sqrt{n}}}$$
 Equation 301-3

Where:

t = t statistic $d_m = The mean of the paired sam$

d_m = The mean of the paired sample differences SD_d = The standard deviation of the differences, gr/DSCF

n = Total number of paired samples (6)

Two alternative approaches were used in these calculations due to the problems with the filters in Runs S2-5 and S2-6 discussed earlier in this report. In the Alternative 1 approach, only the data from the first four test runs were included. In the Alternative 2 approach, the data included in the calculations consisted of all of the data from runs 1 through 4 and the unspiked tests in runs 5 and 6. The two spiked train runs with the torn filters were excluded in the Alternative 2 approach. The results of the Alternative 1 and Alternative 2 calculations are summarized in Tables 3-6 and 3-7.

	Table 3-6. Alternative 1. Runs 1 Through 4						
di	dm	(di-dm) ²	S_D	$t_{ m stat}$	Degrees of Freedom		
-0.00403	-0.00209	3.77×10^{-6}					
-0.00325	-0.00209	1.35×10^{-6}					
-0.00113	-0.00209	9.22×10^{-7}	$\frac{10^{-7}}{100000000000000000000000000000000000$	-2.22	3		
0.000055	-0.00209	4.59 x 10 ⁻⁶	0.00188	-2.22)		
-0.00323		Excluded]				
0.00049		Excluded					

Table 3-7. Alternative 2. Runs 1 Through 6 (S2-5 and S2-6 Excluded)						
Di	Dm	(di-dm) ²	S_D	$t_{ m stat}$	Degrees of Freedom	
-0.00403	-0.00185	4.76×10^{-6}	0.00191 -2.37			
-0.00325	-0.00185	1.96 x 10 ⁻⁶				
-0.00113	-0.00185	5.20×10^{-7}		-2.37	5	
0.000055	-0.00185	3.63×10^{-6}	0.00191	-2.37	3	
-0.00323	-0.00185	1.91 x 10 ⁻⁶				
0.00049	-0.00185	5.46×10^{-6}				

The t-statistic was compared with the critical value of the t-statistic to determine if the bias is significant at the 95 percent confidence interval. The two-sided confidence level critical value is 2.571 for the five degrees of freedom applicable to a set of six runs. The results are not significant for either of the alternative approaches for evaluating the test data. Based on these results, the bias is not considered to be significant.

Precision—To evaluate the precision of the WS2.5 sampling system, the relative standard deviation was calculated in accordance with Equation 301-8.

$$\begin{split} RSD = & \left(\frac{SD_d}{S_M} \right) 100 & Equation 301-8 \\ RSD & = & Relative standard deviation, \% \\ SD_d & = & Standard deviation of the differences, gr/DSCF \\ S_M & = & Mean of the twelve spiked test runs, gr/DSCF \end{split}$$

The WS2.5 sampling system will meet the requirements of Method 301 Section 9.0 if the RSD is equal to or less than 20%. The results of the calculations in accordance with Equation 301-8 are summarized in Table 3-8.

Table 3-8. Precision Calculations				
Alternative S _M RSD				
1	0.0236	7.97		
2	0.0241	7.92		

The results of the calculations indicate that the precision of the method is within the 20% requirement of Method 301. The precision of the method is also indicated by the good precision observed for the sampling results of the six sets of two unspiked sampling trains. As indicated in Figure 3-9, the correlation coefficient for this set of data was greater than 0.98.

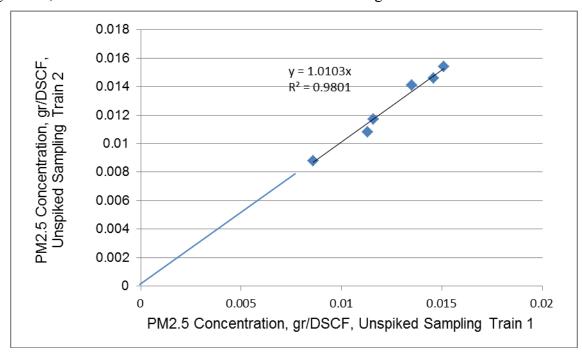


Figure 3-9. Correlation of the Unspiked Sampling Trains

The test results summarized in this report demonstrate that the WS2.5 method has met the bias and precision requirements of Method 301. API and NCASI recommend that EPA adopt the WS2.5 test method for measuring filterable PM_{2.5} emissions in wet stacks.

5. REFERENCES

- 1. U.S. EPA, Method 201A Method for Measurement of PM_{10} and $PM_{2.5}$ Emissions Promulgated December 21, 2010.
- 2. U.S. EPA, Method 202 Method for Measurement of Condensable Particulate Matter Promulgated December 21, 2010.
- 3. Richards, J. "Test Protocol: PCA PM₁₀/PM_{2.5} Emission Factor and Chemical Characterization Testing." Portland Cement Association Research Publication SP2081, July 1996.
- 4. Research Triangle Institute, Desert Research Institute, and Baldwin Environmental. "Quality Assurance Project Plat for Pre-field Laboratory Quality Assurance Evaluations of PM_{2.5} Dilution Monitoring Device." February 17, 2009.
- 5. Smith. W. B. and R.R Wilson, Jr. "Development and Laboratory Evaluation of a Five-Stage Cyclone System." Southern Research Institute report to the U.S. EPA. EPA-600/7-78-008, January 1978.

APPENDIX A TEST RESULTS - DETAILED

PARAMETER Sampling Location	NOMENCLATURE	U1-1	U1-2	U1-3
Date		10/02/0010	10/01/0010	
Run Time	Theta	10/23/2012	10/24/2012	10/24/2012
Nozzle Diameter	inches	117.64	81.96	93.17
Pitot Tube Coefficient	Ср	0.216	0.216	0.233
Meter Calibration Factor	Y	0.84 0.9762	0.84	0.84
Barometric Pressure, inches Hg	Bp - in Hg	30.20	0.9762	0.9762
Meter Box Pressure Differential	ΔH - in. H2O	0.35	29.80 0.36	29.80
Volume of Gas Sampled	Vm - cu. ft.	37.135	26.062	0.38
Dry Gas Meter Temperature	Tm - °F	74.9	60.0	30.418 77.0
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	36.148	25.752	29.107
Liquid Collected	ml	188.4	125.2	146.1
Volume of Water Vapor	Vwstd - cu. ft.	8.868	5.893	6.877
Moisture Content	%H ₂ 0	19.700	18.62	19.11
Saturation Moisture	%H ₂ 0	16.6	15.9	15.9
Dry Mole Fraction, In Cyclone	Mfd - C	0.803	0.814	0.809
Dry Mole Fraction	Mfd	0.834	0.841	0.841
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.83	26.95	26.90
Gas Molecular Weight, Wet	Ms	27,17	27.25	27.25
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	30.19	29.79	29.79
Stack Temperature	Ts - °F	134.0	131.9	131.8
Cyclone Temperature	Tc - °F	313.7	316.4	319.8
Average Velocity Head	Δp - in H ₂ O	0.177	0.147	0.158
Gas Velocity	vs - ft./sec.	25.74	23.53	24.35
Stack Area	As - sq. ft.	70.882	70.882	70.882
Volumetric Air Flow, Actual	Qaw - ACFM	109,479	100,052	103,558
Volumetric Air Flow, Standard	Qsd - DSCFM	81,874	74,709	77,385
Isokinetic Sampling Rate	%1	104.54	117.15	96.64
Total Filterable Particulate Catch	mg	62.8	36.1	34.9
Greater than 2.5 rinse	mg	28.7	17.3	13.0
Less than 2.5 rinse	mg	2.3	2.4	1.0
PM2.5 Catch (Filter)	mg	31.8	16.4	20.9

Sampling Locat	ion East Scrubber Stack				
		U1-1	U1-2	U1-3	Average
Total Filterable Particulate Matt	er Emissions				
Grains/DSCF	gr/DSCF	0.0268	0.0216	0.0185	0.0223
Pounds/Hour	lb/hr	18.82	13.85	12.27	14.98
Filterable PM _{2.5} Particulate Matt	er Emissions		, 0.00	12.21	14.50
Grains/DSCF	gr/DSCF	0.01456	0.01127	0.01161	0.01248
Pounds/Hour	lb/hr	10.22	7.21	7.70	8.38
Cut Sizes					
Gas viscosity, (micropoise)	μ	227.15	228.66	229.16	228.32
Gas sampling rate, ACFM	Qs	0.5556	0.5702	0.5728	0.5662
Renolds number, (dimensionless)	N _{re}	2213.22	2228.06	2219 45	2220.24

1.0859

2.69

2.36

1.0889

2.65

2.33

1.0894

2.65

2.33

1.0881

2.66

2.34

C

D₅₀ N_{re}<3162 - PM_{2.5}

D₅₀ N_{re}>3162 - PM_{2.5}

Cunningham correction factor

PM_{2.5} cut diameter, (microns)

PM_{2.5} cut diameter, (microns)

PARAMETER Sampling Location	NOMENCLATURE	U2-1	U2-2	U2-3
Date		10/22/2012	10/04/0010	10/01/0010
Run Time	Theta	10/23/2012 117.64	10/24/2012	10/24/2012
Nozzle Diameter	inches	0.212	81.96	93.17
Pitot Tube Coefficient	Ср	0.84	0.212	0.232
Meter Calibration Factor	Y	0.9833	0.84 0.9833	0.84
Barometric Pressure, inches Hg	Bp - in Hg	30.20	29.80	0.9833
Meter Box Pressure Differential	ΔH - in. H2O	0.32	0.31	29.80 0.31
Volume of Gas Sampled	Vm - cu. ft.	39.078	25.265	30.938
Dry Gas Meter Temperature	Tm - °F	79.3	65.6	80.9
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	38.005	24.878	29.600
Liquid Collected	ml	207.3	126.4	151.4
Volume of Water Vapor	Vwstd - cu. ft.	9.758	5.950	7.126
Moisture Content	%H ₂ 0	20.429	19.30	19.40
Saturation Moisture	%H ₂ 0	16.6	16.0	15.9
Dry Mole Fraction, In Cyclone	Mfd - C	0.796	0.807	0.806
Dry Mole Fraction	Mfd	0.834	0.840	0.841
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.75	26.88	26.87
Gas Molecular Weight, Wet	Ms	27.17	27.24	27.25
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	30.19	29.79	29.79
Stack Temperature	Ts - °F	134.0	132.0	131.8
Cyclone Temperature	Tc - °F	313.7	316.4	319.8
Average Velocity Head	Δp - in H ₂ O	0.177	0.147	0.158
Gas Velocity	vs - ft./sec.	25.74	23.53	24.35
Stack Area	As - sq. ft.	70.882	70.882	70.882
Volumetric Air Flow, Actual	Qaw - ACFM	109,479	100,071	103,558
Volumetric Air Flow, Standard	Qsd - DSCFM	81,874	74,667	77,385
Isokinetic Sampling Rate	%1	114.1	117.5	99.1
Total Filterable Particulate Catch	mg	53.0	28.5	31.3
Greater than 2.5 rinse	mg	17.0	11.1	8.9
Less than 2.5 rinse	mg	2.9	1.1	0.7
PM2.5 Catch (Filter)	mg	33.1	16.3	21.7

Sampling Locat	ion East Scrubber Stack				
		U2-1	U2-2	U2-3	Average
Total Filterable Particulate Matt	er Emissions				, wordgo
Grains/DSCF	gr/DSCF	0.0215	0.0177	0.0163	0.0185
Pounds/Hour	lb/hr	15.10	11.31	10.82	12.41
Filterable PM _{2.5} Particulate Matt	er Emissions	100		10.02	12.41
Grains/DSCF	gr/DSCF	0.0146	0.0108	0.0117	0.0124
Pounds/Hour	lb/hr	10.26	6.91	7.75	8.30
Cut Sizes					
Gas viscosity, (micropoise)	μ	226.61	228.16	228.94	227.90
Gas sampling rate, ACFM	Qs	0.5895	0.5554	0.5846	0.577
Renolds number, (dimensionless)	N _{re}	2346.84	2169.21	2264.70	2260.2
Cunningham correction factor	С	1.093	1.086	1.092	1.090
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2.5}	2.49	2.73	2.58	2.60
DM	4.0		2.70	2.00	2.00

2.24

2.29

2.31

2.38

D₅₀ N_{re}>3162 - PM_{2.5}

PM_{2.5} cut diameter, (microns)

Sampling Location Stack

PARAMETER	NOMENCLATURE	S1-1	S1-2	S1-3
Sampling Location Date				
Run Time	+()	10/23/2012	10/24/2012	10/24/2012
Nozzle Diameter	Theta	117.64	81.96	93.17
Pitot Tube Coefficient	inches	0.215	0.229	0.229
Meter Calibration Factor	Ср	0.84	0.84	0.84
Barometric Pressure, inches Hg	Y	0.9381	0.9381	0.9381
Meter Box Pressure Differential	Bp - in Hg	30.20	29.80	29.80
Volume of Gas Sampled	ΔH - in. H2O	0.295	0.240	0.273
Dry Gas Meter Temperature	Vm - cu. ft.	41.451	26.17	31.846
Volume of Gas Sampled, Dry	Tm - °F	81.3	65.6	84.8
Liquid Collected	Vmstd - cu. ft. ml	38.310	24.580	28.858
Volume of Water Vapor	Vwstd - cu. ft.	204	127.4	144.4
Moisture Content		9.602	5.997	6.797
	%H₂0	20.04	19.61	19.06
Saturation Moisture	%H ₂ 0	16.59	15.94	15.89
Dry Mole Fraction, In Cyclone	Mfd - C	0.800	0.804	0.809
Dry Mole Fraction, Final	Mfd	0.834	0.841	0.841
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.80	26.84	26.90
Gas Molecular Weight, Wet, Final	Ms	27.175	27.247	27.252
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	30.19	29.79	29.79
Stack Temperature	Ts - °F	133.9	131.9	131.8
Cyclone Temperature	Tc - °F	309.3		
Average Velocity Head	Δp - in H ₂ O		305.7	314.7
Gas Velocity	vs - ft./sec.	0.177	0.147	0.158
Stack Area	As - sq. ft.	25.74	23.53	24.35
Volumetric Air Flow, Actual	Qaw - ACFM	70.882	70.882	70.882
Volumetric Air Flow, Standard	Qsd - DSCFM	109,463	100,052	103,558
Isokinetic Sampling Rate	%I	81,909	74,709	77,385
Total Filterable Particulate Catch		111.78	99.48	99.19
Greater than 2.5 rinse	mg mg	101.1	67.9	52.0
Less than 2.5 rinse	mg mg	25.9	18.2	14.0
PM2.5 Catch (Filter)	mg	1.3	2.1	0.9
and the second second	9	73.9	47.6	37.1

Sampling	Location	Stack
Camping	Location	Stack

		S1-1	S1-2	S1-3	Average
Total Filterable Particulate Matte	er Emissions			0.0	Average
Grains/DSCF	gr/DSCF	0.0407	0.0426	0.0278	0.0371
Pounds/Hour	lb/hr	28.59	27.30	18.45	
Filterable PM _{2.5} Particulate Matte	er Emissions	20.00	27.00	10.45	24.78
Grains/DSCF	gr/DSCF	0.0303	0.0312	0.0203	0.0072
Pounds/Hour	lb/hr	21.27	19.98	13.48	0.0273 18.24
Cut Sizes					
Gas viscosity, (micropoise)	μ	225.78	225.16	227.88	226.27
Gas sampling rate, ACFM	Qs	0.5881	0.5433	0.5638	0.565
Renolds number, (dimensionless)	N _{re}	2366.54	2177.47	2211.97	2251.99
Cunningham correction factor	С	1.092	1.084	1.088	1.088
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2,5}	2.48	2.74	2.67	2.63
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}	2.24	2.39	2.35	2.33

OTM-036 Page 443 of 643 4/11/2016

PARAMETER	NOMENCLATURE	S2-1	S2-2	S2-3
Sampling Location				
Date Run Time	-	10/23/2012	10/24/2012	10/24/2012
Nozzle Diameter	Theta	117.64	81.96	93.17
Pitot Tube Coefficient	inches	0.209	0.224	0.224
Meter Calibration Factor	Ср	0.84	0.84	0.84
	Y	1.0252	1.0252	1.0252
Barometric Pressure, inches Hg Meter Box Pressure Differential	Bp - in Hg	30.20	29.80	29.80
	ΔH - in. H2O	0.25	0.23	0.24
Volume of Gas Sampled	Vm - cu. ft.	37.385	24.628	28.604
Dry Gas Meter Temperature	Tm - °F	78.3	67.0	83.1
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	37.972	25.210	28.411
Liquid Collected	ml	178.2	124.2	147.1
Volume of Water Vapor	Vwstd - cu. ft.	8.388	5.846	6.924
Moisture Content	%H ₂ 0	18.09	18.82	19.60
Saturation Moisture	%H ₂ 0	16.59	15.94	15.89
Dry Mole Fraction, In Cyclone	Mfd - C	0.819	0.812	0.804
Dry Mole Fraction, Final	Mfd	0.834	0.841	0.841
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	e Ms - C	27.01	26.93	26.84
Gas Molecular Weight, Wet	Ms	27.17	27.25	27.25
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	30.19	29.79	29.79
Stack Temperature	Ts - °F	133.9	131.9	131.8
Cyclone Temperature	Tc - °F	309.3	305.7	
Average Velocity Head	Δp - in H ₂ O	0.177	0.147	314.7
Gas Velocity	vs - ft./sec.			0.158
Stack Area	As - sq. ft.	25.74 70.882	23.53	24.35
Volumetric Air Flow, Actual	Qaw - ACFM	109,463	70.882	70.882
Volumetric Air Flow, Standard	Qsd - DSCFM	81,909	100,052 74,709	103,558
Isokinetic Sampling Rate	%1	117.2		77,385
Total Filterable Particulate Catch	mg	90.9	106.6	102.1
Greater than 2.5 rinse	mg	23.7	67.2	48.1
Less than 2.5 rinse	mg	23.7	18.1	16.3
PM2.5 Catch (Filter)	mg	64.4	1.1 48.0	1.1
A A STATE OF THE S		04.4	40.0	30.7

Total Fileschie Bod at a second		S2-1	S2-2	S2-3	Average
Total Filterable Particulate Mat Grains/DSCF	ter Emissions gr/DSCF	0.0369	0.0411	0.0261	0.0347
Pounds/Hour	lb/hr	25.94	26.34	17.33	23.20
Filterable PM _{2.5} Particulate Mat	ter Emissions				20.20
Grains/DSCF Pounds/Hour	gr/DSCF lb/hr	0.02731 19.17	0.03006 19.25	0.01727 11.46	0.02488 16.63
Cut Sizes					
Gas viscosity, (micropoise)	μ	227.22	225.74	227.48	226.82
Gas sampling rate, ACFM	Qs	0.5690	0.5518	0.5588	0.56
Renolds number, (dimensionless)	N _{re}	2293.52	2212.98	2191.17	2232.56
Cunningham correction factor	С	1.0883	1.0859	1.0869	1.0870
PM _{2,5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2.5}	2.60	2.69	2.70	2.66
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}	2.31	2.37	2.36	2.35

PARAMETER	NOMENOLATURE		100 5	
Sampling Location	NOMENCLATURE	U1-4	U1-5	U1-6
Date		10/04/0010	10/05/0010	
Run Time	Theta	10/24/2012 83.77	10/25/2012	10/25/2012
Nozzle Diameter	inches	0.233	82.70	98.27
Pitot Tube Coefficient	Ср	0.84	0.233	0.233
Meter Calibration Factor	Y	0.9762	0.84 0.9762	0.84
Barometric Pressure, inches Hg	Bp - in Hg	29.80	29.80	0.9762
Meter Box Pressure Differential	ΔH - in. H2O	0.38	0.4	29.80
Volume of Gas Sampled	Vm - cu. ft.	27.886	27.546	0.39 33.218
Dry Gas Meter Temperature	Tm - °F	86.8	54.6	80.1
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	26.207	27.509	31.604
Liquid Collected	ml	142	128.3	173.4
Volume of Water Vapor	Vwstd - cu. ft.	6.684	6.039	8.162
Moisture Content	%H ₂ 0	20.322	18.00	20.53
Saturation Moisture	%H ₂ 0	16.0	12.8	16.9
Dry Mole Fraction, In Cyclone	Mfd - C	0.797	0.820	
Dry Mole Fraction	Mfd	0.840	0.872	0.795
Carbon Dioxide	%CO ₂	1	1	0.831
Oxygen	%O ₂	21	21	
Carbon Monoxide	%CO	0	0	21
Nitrogen	%N ₂	78	78	0
Fuel Factor	Fo	-0.100		78
Gas Molecular Weight, Dry	Md	29.00	-0.100 29.00	-0.100
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.76	27.02	29.00
Gas Molecular Weight, Wet	Ms	27.236	27.595	26.74 27.141
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	29.79	29.79	
Stack Temperature	Ts - °F	132.1		29.79
Cyclone Temperature	Tc - °F		123.7	134.1
Average Velocity Head	Δp - in H ₂ O	318.9	318.3	318.7
Gas Velocity		0.160	0.135	0.161
Stack Area	vs - ft./sec.	24.54	22.24	24.70
Volumetric Air Flow, Actual	As - sq. ft. Qaw - ACFM	70.882	70.882	70.882
Volumetric Air Flow, Standard	Qsd - DSCFM	104,353	94,584	105,060
Isokinetic Sampling Rate	%I	77,805	74,318	77,260
Total Filterable Particulate Catch		96.2	107.1	99.6
Greater than 2.5 rinse	mg mg	32.9	27.9	41.0
Less than 2.5 rinse	mg	9.9	12.5	10
PM2.5 Catch (Filter)	mg	0.7 22.3	0.7	1.5
A STATE OF THE STA	9	22.3	14.7	29.5

Sampling Local	ion East Scrubber Stack				
		U1-4	U1-5	U1-6	Average
Total Filterable Particulate Matt	er Emissions				3
Grains/DSCF	gr/DSCF	0.0194	0.0157	0.0200	0.0183
Pounds/Hour	lb/hr	12.92	9.97	13.26	12.05
Filterable PM _{2.5} Particulate Matt	er Emissions			10.20	12.00
Grains/DSCF	gr/DSCF	0.01354	0.00864	0.01514	0.01244
Pounds/Hour	lb/hr	9.03	5.50	10.02	8.19
Cut Sizes					
Gas viscosity, (micropoise)	μ	228.03	229.61	227.82	228.49
Gas sampling rate, ACFM	Qs	0.5816	0.6005	0.5993	0.59
Renolds number, (dimensionless)	N _{re}	2256.21	2337.22	2325.64	2306.36
Cunningham correction factor	С	1.0915	1.0954	1.0948	1.0939
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2.5}	2.58	2.48	2.49	2.52
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}	2.29	2.23	2.23	2.25

PARAMETER	NOMENCLATURE	U2-4	U2-5	U2-6
Sampling Location Date		V 4 14 4 14 4 15		
Run Time	There	10/24/2012	10/24/2012	10/25/2012
Nozzle Diameter	Theta inches	83.77	82.70	98.27
Pitot Tube Coefficient		0.232	0.232	0.232
Meter Calibration Factor	Cp Y	0.84	0.84	0.84
Barometric Pressure, inches Hg	Bp - in Hg	0.9833	0.9833	0.9833
Meter Box Pressure Differential	ΔH - in. H2O	29.80	29.80	29.80
Volume of Gas Sampled	Vm - cu. ft.	0.33	0.33	0.33
Dry Gas Meter Temperature	Tm - °F	28.451	27.673	33.509
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	86.2 26.956	58.7	81.2
Liquid Collected	ml		27.612	32.042
Volume of Water Vapor	Vwstd - cu. ft.	149.8 7.051	131.6	180.6
Moisture Content	%H ₂ 0		6.194	8.501
Saturation Moisture	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	20.73	18.32	20.97
	%H ₂ 0	16.03	12.78	16,90
Dry Mole Fraction, In Cyclone	Mfd - C	0.793	0.817	0.790
Dry Mole Fraction	Mfd	0.840	0.872	0.831
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.72	26.98	26.69
Gas Molecular Weight, Wet	Ms	27.24	27.59	27.14
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	29.79	29.79	29.79
Stack Temperature	Ts - °F	132.1	123.7	134.1
Cyclone Temperature	Tc - °F	319.2		
Average Velocity Head	$\Delta p - in H_2O$		318.3	318.8
Gas Velocity		0.160	0.135	0.161
Stack Area	vs - ft./sec.	24.54	22.24	24.70
Volumetric Air Flow, Actual	As - sq. ft.	70.882	70.882	70.882
Volumetric Air Flow, Actual Volumetric Air Flow, Standard	Qaw - ACFM Qsd - DSCFM	104,353	94,584	105,060
Isokinetic Sampling Rate		77,805	74,318	77,260
Total Filterable Particulate Catch	%1	99.9	108.5	101.9
Greater than 2.5 rinse	mg	34.3	22.5	41.6
Less than 2.5 rinse	mg	9.6	6.7	9.7
PM2.5 Catch (Filter)	mg	1.0	0.7	1.8
inz.o oaten (i itter)	mg	23.7	15.1	30.1

Sampling Location	on East Scrubber Stack				
		U2-4	U2-5	U2-6	Average
Total Filterable Particulate Matter	Emissions				rivolugo
Grains/DSCF	gr/DSCF	0.0196	0.0126	0.0200	0.0174
Pounds/Hour	lb/hr	13.10	8.01	13.27	11.46
Filterable PM _{2.5} Particulate Matter	Emissions	10.10	0.01	15.27	11.40
Grains/DSCF	gr/DSCF	0.01414	0.00883	0.01536	0.01278
Pounds/Hour	lb/hr	9.43	5.63	10.17	8.41
Cut Sizes					
Gas viscosity, (micropoise)	- μ	227.81	229.37	227.52	228.23
Gas sampling rate, ACFM	Qs	0.6016	0.6051	0.6111	
Renolds number, (dimensionless)	N _{re}	2331.10	2354.53	2369.88	0.61 2351.84
Cunningham correction factor	С	1.0952	1.0965	1.0971	1.10
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2.5}	2.48	2.45	2.43	2.45
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}	2.23	2.22	2.20	2.21

5.5				
PARAMETER	NOMENCLATURE	S1-4	S1-5	S1-6
Sampling Location				
Date	20.00	10/24/2012	10/25/2012	10/25/2012
Run Time	Theta	83.77	82.70	98.27
Nozzle Diameter	inches	0.229	0.229	0.229
Pitot Tube Coefficient	Ср	0.84	0.84	0.84
Meter Calibration Factor	Y	0.9381	0.9381	0.9381
Barometric Pressure, inches Hg	Bp - in Hg	29.80	29.80	29.80
Meter Box Pressure Differential	ΔH - in. H2O	0.26	0.30	0.28
Volume of Gas Sampled	Vm - cu. ft.	29.554	27.476	34.571
Dry Gas Meter Temperature	Tm - °F	92.6	60.7	86.3
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	26.403	26.052	31.239
Liquid Collected	ml	142.2	122.4	163.5
Volume of Water Vapor	Vwstd - cu. ft.	6.693	5.761	7.696
Moisture Content	%H ₂ 0	20.224	18.11	19.77
Saturation Moisture	%H ₂ 0	16.2	12.8	16.9
Dry Mole Fraction, In Cyclone	Mfd - C	0.798	0.819	0.802
Dry Mole Fraction, Final	Mfd	0.838	0.872	0.831
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	
Fuel Factor	Fo	-0.100		78
Gas Molecular Weight, Dry	Md	29.00	-0.100	-0.100
Gas Molecular Weight, Wet, In Cyclo		26.78	29.00 27.01	29.00
Gas Molecular Weight, Wet	Ms	27.221	27.590	26.83 27.141
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	
Stack Pressure	Ps			-0.08
Stack Temperature	Ts - °F	29.79	29.79	29.79
Cyclone Temperature		132.4	123.8	134.1
	Tc - °F	314.4	312.8	315.2
Average Velocity Head	Δp - in H_2O	0.160	0.135	0.161
Gas Velocity	vs - ft./sec.	24.55	22.24	24.70
Stack Area	As - sq. ft.	70.882	70.882	70.882
Volumetric Air Flow, Actual	Qaw - ACFM	104,413	94,601	105,060
Volumetric Air Flow, Standard	Qsd - DSCFM	77,673	74,283	77,260
Isokinetic Sampling Rate	%I	100.56	105.09	101.97
Total Filterable Particulate Catch	mg	35.1	75.6	47.4
Greater than 2.5 rinse	mg	7.6	19.7	8.8
Less than 2.5 rinse	mg	0.6	0.9	1.2
PM2.5 Catch (Filter)	mg	26.9	55.0	37.4

Sampling Location	n East Scrubber Stack				
		S1-4	S1-5	S1-6	Average
Total Filterable Particulate Mat	ter Emissions			0.0	riverage
Grains/DSCF	gr/DSCF	0.0205	0.0448	0.0234	0.0296
Pounds/Hour	lb/hr	13.66	28.51	15.51	19.23
Filterable PM _{2.5} Particulate Mat	ter Emissions	, , , ,	20.01	10.01	19.23
Grains/DSCF	gr/DSCF	0.01607	0.03311	0.01907	0.02275
Pounds/Hour	lb/hr	10.70	21.08	12.63	14.80
Cut Sizes					
Gas viscosity, (micropoise)	μ	226.959	228.098	227.498	227.52
Gas sampling rate, ACFM	Qs	0.5819	0.5654	0.5842	0.5772
Renolds number, (dimensionless)	N _{re}	2281.98	2230.05	2287.41	2266.48
Cunningham correction factor	C	1.092	1.089	1.092	1.0906
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM _{2.5}	2.56	2.64	2.56	2.59
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}	2.28	2.33	2.28	2.30

PARAMETER Sampling Location	NOMENCLATURE	S2-4	S2-5	S2-6
Date		10/24/2012	10/25/2012	10/25/2012
Run Time	Theta	83.77	82.70	98.27
Nozzle Diameter	inches	0.224	0.224	0.224
Pitot Tube Coefficient	Ср	0.84	0.84	0.84
Meter Calibration Factor	Y	1.0252	1.0252	1.0252
Barometric Pressure, inches Hg	Bp - in Hg	29.80	29.80	29.80
Meter Box Pressure Differential	ΔH - in. H2O	0.24	0.29	0.27
Volume of Gas Sampled	Vm - cu. ft.	26.763	27.355	32.104
Dry Gas Meter Temperature	Tm - °F	92.7	62.1	85.0
Volume of Gas Sampled, Dry	Vmstd - cu. ft.	26.123	28.267	31.780
Liquid Collected	ml	143.7	131.8	168.5
Volume of Water Vapor	Vwstd - cu. ft.	6.764	6.204	7.931
Moisture Content	%H ₂ 0	20.567	18.00	19.97
Saturation Moisture	%H ₂ 0	16.2	12.8	16.9
Dry Mole Fraction, In Cyclone	Mfd - C	0.794	0.820	0.800
Dry Mole Fraction	Mfd	0.838	0.872	0.831
Carbon Dioxide	%CO ₂	1	1	1
Oxygen	%O ₂	21	21	21
Carbon Monoxide	%CO	0	0	0
Nitrogen	%N ₂	78	78	78
Fuel Factor	Fo	-0.100	-0.100	-0.100
Gas Molecular Weight, Dry	Md	29.00	29.00	29.00
Gas Molecular Weight, Wet, In Cyclone	Ms - C	26.74	27.02	26.80
Gas Molecular Weight, Wet, Final	Ms	27.22	27.59	27.14
Static Pressure	Pg - in. H ₂ O	-0.08	-0.08	-0.08
Stack Pressure	Ps	29.79	29.79	
Stack Temperature	Ts - °F	132.4	123.7	29.79
Cyclone Temperature	Tc - °F	314.4	313.6	134.1
Average Velocity Head	Δp - in H ₂ O	0.160	0.135	315.2
Gas Velocity	vs - ft./sec.			0.161
Stack Area	As - sq. ft.	24.55 70.882	22.24	24.70
Volumetric Air Flow, Actual	Qaw - ACFM		70.882	70.882
Volumetric Air Flow, Standard	Qsd - DSCFM	104,413 77,673	94,584 74,318	105,060
Isokinetic Sampling Rate	%1	103.98		77,260
Total Filterable Particulate Catch	mg	35.1	119.12	108.42
Greater than 2.5 rinse	mg	7.4	22.1 15.5	8.7
Less than 2.5 rinse	mg	1.2	0.8	6.9
PM2.5 Catch (Filter)	mg	26.5	5.8	0.6
The second of the first	3	20.0	0.0	1.2

Sampling Location	East Scrubber Stack
-------------------	---------------------

	- Lagr Columber Orack				
+		S2-4	S2-5	S2-6	Average
Total Filterable Particulate Matt	er Emissions				
Grains/DSCF	gr/DSCF	0.0207	0.0121	0.0042	0.0123
Pounds/Hour	lb/hr	13.80	7.69	2.80	8.10
Filterable PM _{2.5} Particulate Matt	er Emissions		7.00	2.00	0.10
Grains/DSCF	gr/DSCF	0.01636	0.00360	0.00087	0.00695
Pounds/Hour	lb/hr	10.89	2.30	0.58	4.59
Cut Sizes					
Gas viscosity, (micropoise)	μ	226.70	228.38	227.35	227.48
Gas sampling rate, ACFM	Qs	0.5782	0.6132	0.5958	0.5958
Renolds number, (dimensionless)	N _{re}	2266.90	2414.40	2332.61	2337.97
Cunningham correction factor	С	1.091	1.098	1.094	
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} <3162 - PM ₂₅	2.58	2.39	2.50	1.094
PM _{2.5} cut diameter, (microns)	D ₅₀ N _{re} >3162 - PM _{2.5}				2.49
2.0	50 Tre- 0 102 - 1 1012.5	2.29	2.18	2.24	2.24

APPENDIX B EXAMPLE CALCULATIONS

Example Calculations, Method 301 Validation Test Program Results Run 1, Alternative 1 Approach

Measured Sodium and Chloride Levels in Run 1 (Table 3-5)

U1-1 = 0.00320 gr/DSCF U2-1 = 0.00305 gr/DSCF S1-1 = 0.02048 gr/DSCF S2-1 = 0.02226 gr/DSCF

Average Unspiked Concentration = (0.00320+0.00305)/2 = 0.00312 gr/DSCF

Sodium and Chloride in Spike

d₁ = Bias during run 1 was calculated using Equation 301-13

$$d_{i} = \left(\frac{S_{1i} + S_{2i}}{2}\right) - \left(\frac{M_{1i} + M_{2i}}{2}\right) - CS$$
 Equation 301-13

Total PM25 (Table 3-4)

 S_{1i} = 0.0303 gr/DSCF, First measured value of the S1-1 spiked sample S_{2i} = 0.0273 gr/DSCF, Second measured value of the S2-1 spiked sample M_{1i} = 0.0146 gr/DSCF, First measured value of the U1-1 unspiked sample M_{2i} = 0.0146 gr/DSCF, Second measured value of the U2-1 unspiked sample

CS = 0.0182 gr/DSCF, spike value (sodium chloride PM_{2.5} spike quantity)

$$d_i = \left(\frac{0.0303 + 0.0273}{2}\right) - \left(\frac{0.0146 + 0.0146}{2}\right) - 0.0182$$

$$d_i = -0.00403$$

The standard deviation of the differences in the means of the spiked sampling train tests was calculated in accordance with Method 301 Equation 301-2.

$$SD_d = \sqrt{\frac{\sum_{i=1}^{n} (d_i - d_m)^2}{n-1}}$$
Equation 301-2

Where:

SD_d = The standard deviation of the differences, milligrams/DNm³
d_i = The differences in the results of the ith sample
d_m = The mean of the paired sample differences
n = Total number of paired samples (6)

$$\sum_{i=1}^{n} (d_i - d_m)^2 = (3.77e - 6) + (1.35e - 6) + (9.22e - 7) + (4.59e - 6) = 1.06e - 5$$

$$SD_d = \sqrt{\frac{1.06e - 5}{4 - 1}} = 0.00188$$

The t-statistic for the differences was calculated from the means of the paired sample differences, the standard deviation of the differences, and the number of paired samples (4).

$$t = \frac{\left|-0.00209\right|}{0.00188} = -2.22$$
 Equation 301-3

3 Degrees of Freedom

To evaluate the precision of the API/NCASI sampling system, the relative standard deviation was calculated in accordance with Equation 301-8.

$$RSD = \left(\frac{SD_d}{S_M}\right)100$$

Equation 301-8

$$S_{M} = 0.0236$$

$$RSD = \left(\frac{0.00188}{0.0236}\right)100 = 7.97$$

APPENDIX C

Method 1 - Air Control Techniques, P.C.

Date 10/23/2012

Client		
Job#	1756	
Plant Name		_
City, State		
Sampling Location E	ast Scrubber S	tack
No. of Ports Available		4
No. of Ports Used		1
Port Inside Diameter, Inches		4
Distance From Far Wall To Outside Of F	Port, Inches	120
Nipple Length And/Or Wall Thickness, In	6	
Depth Of Stack Or Duct, Inches	114	
Stack Or Duct Width (if rectangular), Inc	hes	
Equiv. Diameter = 2DW/(D+W), inches		
Stack/Duct Area, Square Feet		70.882
$(\pi R^2 \text{ or } L \times W)$		
	Upstream	Downstream
Distance to Flow Disturbances, feet	35	18
Diameters	3.7	1.9

	% of Duct	Distance From	Distance From
Point	Depth	Inside Wall	Outside of Port
1	4.4	5.016	11
2	14.6	16.644	22 5/8
3	29.6	33.744	39 6/8
4	70.4	80.256	86 2/8
5	85.4	97,356	103 3/8
6	95.6	108.984	115

0.0000 - 0.0625 - 0	0.5625 - 0.6875 - 5/8
0,0625 - 0,1875 - 1/8	0.6875 - 0.8125 - 3/4
0.1875 - 0.3125 - 1/4	0.8125 - 0.9375 - 7/8
0.3125 - 0.4375 - 3/8	0.9375 - 1.0000 - 1

0.4375 - 0.5625 - 1/2

	Diam	eters	
Velocity	Up	Down	Particulate
12	>7.00	>1.75	12
12	6	1.5	16
16	5	1.25	20
16	2	0.5	24 or 25

Note: If more than 8 and 2 diameters and duct is greater than 12" and less than 24", use 8 or 9 points.

	_			ion of Po					- 101		
	4	6	8	10	12	14	16	18	20	22	24
1	6.7	4.4	3.2	2.6	2.1	1.8	1.6	1.4	1.3	1.1	1.1
2	25.0	14.6	10.5	8.2	6.7	5.7	4.9	4.4	3.9	3.5	3.2
3	75.0	29.6	19.4	14.6	11.8	9.9	8.5	7.5	6.7	6.0	5.5
4	93.3	70.4	32.3	22.6	17.7	14.6	12.5	10.9	9.7	8.7	7.9
5		85.4	67.7	34.2	25.0	20.1	16.9	14.6	12.9	1106	10.5
6		95.6	80.6	65.8	35.6	26.9	22.0	18.8	16.5	14.6	13.2
7			89.5	77.4	64.4	36.6	28.3	23.6	20.4	18.0	16.
8			96.8	85.4	75.0	63.4	37.5	29.6	25.0	21.8	19.
9				91.8	82.3	73.1	62.5	38.2	30.6	26.2	23
10				97.4	88.2	79.9	71.7	61.8	38.8	31.5	27.
11					93.3	85.4	78.0	70.4	61.2	39.3	32.
12					97.9	90.1	83.1	76.4	69.4	60.7	39.
13						94.3	87.5	81.2	75	68.5	60.
14						98.2	91.5	85.4	79,6	73.8	67.
15							95.1	89.1	83.5	78.2	72.
16							98.4	92.5	87.1	82.0	77
17	/						4	95.6	90.3	85.4	80.
18								98.6	93.3	88.4	83.
19									96.1	91.3	86.
20									98.7	94.0	89.
21										96.5	92.
22										98.9	94.
23											96.
24											99.

	3	4	5	6	7	8	9	10	11	12
1	16.7	12.5	10.0	8.3	7.1	6.3	5.6	5.0	4.5	4.2
2	50	37.5	30.0	25	21.4	18.8	16.7	15.0	13.6	12.5
3	83.3	62.5	50.0	41.7	35.7	31.3	27.8	25.0	22.7	20.8
4		87.5	70.0	58.3	50	43.8	28.9	35.0	31.8	29.2
5			90.0	75	64.3	56.3	50	45.0	40.9	37.5
6				91.7	78.6	68.8	61,1	55.0	50	45.8
7					92.9	81.3	72.2	65.0	59.1	54.2
8						93.8	83.3	75.0	68.2	62.5
9							94.4	85.0	77.3	70.8
10								95.0	86.4	79.2
11									95.5	87.5
12										95.8

Method 4 - Air Control Techniques, P.C.

Date 10/23/12

Source Information			
Client			
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	TEH

Run Number	S1-1	S1-2	S1-3	
Filter Identification	476-1408	476-1406	476-1411	
Sampling Date		10/24/12	10/24/12	

Impinger 1				
Contents - 100ml H ₂ O				
Final Weight, grams	892.0	847.7	857.4	
Initial Weight, grams	735.0	703.8	736.6	
Condensed Water, grams	157.0	143.9	120.8	
Impinger 2				
Contents - 100ml H2O				
Final Weight, grams	731.0	667.6	670.4	
Initial Weight, grams	701.7	693.4	657.6	
Condensed Water, grams	29.3	-25.8	12.8	
Impinger 3				
Contents - Empty				
Final Weight, grams	614.5	618.8	612.0	
Initial Weight, grams	609.6	614.5	610.8	
Condensed Water, grams	4.9	4.3	1.2	
Silica Gel -				
Ollica Oci	051.1	856.5	866.1	
Final Weight, grams	8514	100012	00/	
	838.6	851.5	626.2	
Final Weight, grams			9.6	

 $\label{eq:local_problem} $$Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460)$$ $$Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms)$$ $$Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))$$$

ta Sheet
ın Data
M2.5 Run
8 P
PM10
yclone
o pau
combi

Vacuum

< 0.02 or 4%

2000

Req'd

AND DATA

Condition

Run ID

ttest leak check. Keep cyclone

ak check during port changes.

от				A STATE OF THE PARTY OF THE PAR			•					4 41.00
`M-(IDENTIFICATION		ON INFORMATION	MATION					PRELIMIN	PRELIMINARY CHECKS AND DI	KS AND D
)36	Plan	Plant Name City State		North Carolina	olina			Fi	ull Train Pre	test Leak Cl	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	Actual O.000
San	source I npling L Test Pe	Source Number mpling Location Test Personnel	Scrubber TTB, JMA	Stack	14.8	Date (9/23//2 Start /2/2 Stop /4/0		(Remc	ve cyclone upright pri	ior to recov	(Remove cyclone sampling head before posttest leal head upright prior to recovery.) Do not leak check head upright Tube Pretest Leak Check 4"	posttest lear the transfer the transfer the transfer the transfer the transfer transfer transfer to the transfer transfe
	Mete	Meterbox ID ∆ H @	2023 1505		Filter ID	Tare		Baror	Pitot Tube Posttest Barometric Pressure, In., Hg.	ibe Posttest ure, In.,Hg.	Pitot Tube Posttest Leak Check	Static Pres
	S A	Gamma, y	1860						AC	TUAL MOI	ACTUAL MOISTURE & GAS COMPO	AS COMP
Z Page 461	ozzle D Orsi	Nozzle Diameter Orsat/Fyrite	,215 Fyr					8	Water Recovered, grams CO ₂ % O ₂ %	ered, grams CO ₂ % O ₂ %	1.0	
of 643				S	ampling	Sampling Information	no					QA (
1	tico	Dwell Time,	Elapsed Time,	Meter Volume	ф (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	фН (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)
ار	-	-	0	335.4	113	25	134	295	65	.33	1	325
	-	9.59	9.35	338.49	11.	11	134	297	65	, 30	-	324
	-	686	19.17	342.42	11	79	134	303	65	52.	7	350
	-	683	24.82	345,54	18	29	134	307	65	22.	3	323
	-	683	38:39	248.44	81.	28	(33	309	65	.27	+	
	-	9.87	48:32	251.84	8	1886	134	313	15	12.	8	325
	-	9.87	42:85	555.14	.18	28	134	313	65	.27	9	322
	-	9.87	1:08:16	358.48	18	83	134	316	65	. 3	8	323
	5	683	1:18:09	30.216	81-	83	134	315	65	٤.	6	325
4/11	-0	9.87	1.28.01	365.6	81	48	134	214	65	.33	0/	323
/	-						-			1		

D₅₀S,

Run Cummulative

QA Checks

microns

28.72

20.041

Moisture, %

COMPOSITION

static Pressure, In. W.C.

27.18

Mw run

Md_run

PM₁₀ 10.84 10,58 68:01 10.39 10.86 16.99 16.01 11.04 11.09 11.1 (F) 320 228 22 23 223 225 3 ,245 in H20 33 .33 35 63 214 314 3/6

> 124 134

85

30

1137:53 1:47:46

68.6 9.87

8

373.05 369.21

18

CHECI. in. H20

Averages

Run

Total Run Time 1:57:3% 376.85

Total Volume, ACF 41.451

2.74

2,75 19.2

2.75 2,75

2.72

2.70 3.68 2.69

%

microns

2.48

Combined Cyclone PM10 & PM2.5 Run Data Sheet

Con	Combined Cyclone PM10 & PM2.5 Run Data Sl	e PM10 8	2 PM2.5	Run Data	Sheet						Run ID	2-15	
o	,									_	Condition		
ТМ-	IDENTIF	IDENTIFICATION INFORMATION	INFORI	MATION					PRELIMIN	IARY CHEC	PRELIMINARY CHECKS AND DATA	ITA	
036	Dinat Mand										Actual	Req'd	Vacuum
	City City	T					II.	ull Train Pre	test Leak Ch	Full Train Pretest Leak Check, ACFM	500.	< 0.02 or 4%	51
	State		North Carolina	olina			Partia	al Train Post	test Leak Cl	Partial Train Posttest Leak Check, ACFM	200'	20'	2
	- Mumbar			Date	11/24/17		(Remo	ove cyclone	sampling	nead before	posttest leak	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone
Sar	Sampling Location	Scrubber Stack	Stack	Start	00		head	I upright pr	ior to recov	ery.) Do not	leak check	head upright prior to recovery.) Do not leak check during port changes.	nanges.
		TTB, JMA		Stop	957			T total	totod odu	Jack Tuto Danton I total	V V	ען מ	
								Pitot Tu	upe Posttest	Pitot Tube Posttest Leak Check	1/2	2/2	
	Meterbox ID 702233 Δ H @ 1.595	1.595		Filter ID	Tare		Baror	Barometric Pressure, In.,Hg.	ure, In.,Hg.	39.8	Static Pres	Static Pressure, In. W.C.	1.08
		.938/						AC	THAI MOI	STURE & G	ACTIVAL MOISTURE & GAS COMPOSITION	SITION	
-	Nozzie IU	N'X					W	Water Recovered grams	ared grams			Moisture. %	
	Nozzle Diameter	5/2.						alci Necove	CO2 %	1		Md_run	
ge 46		1							02 %	21		Mw_run	
2 of													
643			S	ampling	Sampling Information	uc					QAC	QA Checks	
	Dwell	Elapsed	Meter	de	Meter	Stack	Cyclone	Impinger Exit Gas	НФ	Sample Train	Probe Temp.		S
Port	Point (Min.)	h:m:s	(ft³)	(In. H ₂ O)	Temp. (°F)	(°F)	Temp. (°F)	Temp., (°F)	(in. H ₂ O)	Vac. (in. Hg)	(4.)	PM ₁₀	PM _{2.5}
V			3381.8	15	55	131	562	4555	٤,	2	330	9.95	2.24
		11	385.178	15	17	130	562	15	.23	2	329	10.63	64.2
		6.23	387.993	115	29	131	295	53	123	2	328	10.87	2.59
		1.	390,828	71.	69	751	542	285	.23	3	125	10.95	29.2
			393,736	.15	99	152	662	19	. 23	x	327	11-01	2.65
		38	336.621	341.		133	3/5	63	12'	5	328	11.13	2.2
	1		399.312	61.	202	132	319	65	. 23	5	329	11:17	2.71
		7	402.08	15	72	881	319	65	.25	9	330	11.16	12.21
	1		405.055	. 17	72	133	319	(5)	.25	9	229		
1/11		,	407.97										
2016													
	,												
	Total Run Time	1:21:8					4						
	Total Volume, ACF	ıme, ACF					mil.	60	1240				
	4		Averages	-	4	-	100		F.		10	-	0.000
Run				in. H20	¥.	4	4 2	200 000	in H20		%		microns

Combined Cyclone PM10 & PM2.5 Run Data Sheet

PRELIMINARY CHECKS AND DATA PRELIMINARY CHECKS AND DATA PRELIMINARY CHECKS AND DATA PRELIMINARY CHECKS AND DATA Partial Train Prefets I task Check, ACPM Los Z C 0.02 or 4% J C C C C C C C C C C C C C C C C C C	Combin	ed Cyclo	ne PM10	& PM2.5	Combined Cyclone PM10 & PM2.5 Run Data Sheet	Sheet						Run ID Condition	5/-3	
Same North Carolina Sample Same Sa	OTM-	IDENTI	FICATION	V INFOR	MATION				11 15 15	PRELIMII	NARY CHE	CKS AND DA	4TA	
Size		Plant Name										Actual	Req'd	Vacuum
Courte Number Courte Numbe		City		Month One	or il			T ifrod	ull Train Pre	etest Leak C	hock, ACFM	200'	< 0.02 or 4%	50
The properties of the proper		State		North Car	Olina			Lain	al IIalli Pos	ollesi Leak C	HECK, ACLINI	100.	700	-
Pilot Tube Pretest Leak Check Y Y Y	Sour Samplir Test	ce Number og Location		Stack	Date Start Ston	12/01		(Remo	ove cyclone I upright pr	e sampling rior to reco	head before very.) Do no	posttest leak t leak check	ccheck. Keep during port ch B	cyclone anges.
Pitot Tube Positest Leak Check 7 4						1		1	Pitot T	Tube Pretest	Leak Check		4	
Action Control Contr	2	Olymphor	1		Eilfar ID	Tare			Pitot Tu	ube Posttest	Leak Check	1	2	
Cache Dameter State Countries Cache Dameter State	2	A H @	1.595		בוופו ב	מפ		Baror	metric Press	sure, In., Hg.	29.8	Static Pres	sure, In. W.C.	20:-
Ozsalf-yrite Free Dwell Elapsed Worker Sampling Information Dwell Elapsed Worker Sampling Information Dwell Elapsed Worker Specific Free Time,		Gamma,)	0.7						V	TIM MO	STIPE &	SAS COMPC	NOILION	
Dwell Elapsed Motor Motor Estate Motor Motor Estate Motor Motor Estate Motor Motor Estate Motor Motor Motor Estate Motor	Nozzk	NUZZIE IL						M	ater Recove	ered grams	144.4		Moisture. %	19.063
Dwell Elapsed Meter Sampling Information Sampling Informatio	14026	Orsat/Fyrite								CO ₂ %			Md_run	28.20
Devoit Elapsed Meter Apply Meter Stack Cyclone Full Gas (in, H ₂ O) Temp. (*F) Temp. (*	e 463						1			02 %	-		Mw_run	27.27
Dwell Elapsed Meter Meter Fig. Meter Fig. Meter Fig.	of 64		-		amplina	information.	200					040	hecks	
Time Flagsed Winder April Weter Stack Cyclone Fixt Gas Cyclone Fixt Gas Cyclone Fixt Gas Cyclone Cyclone Fixt Gas Cyclone	13		H	100	ampling	IIIOIIIIan			and plants			2	Rin Gimmilat	
1 10,473 10,473 11 16 74 134 50.2 65 .36 2 32.7 1 10,473 11:25 14 14.282 16 87 132 31/7 65 .25 3 32.3 32.3 1 10,473 31:77 424.013 .16 87 132 31/7 65 .27 3 32.7 1 10,473 31:77 424.013 .16 87 131 317 65 .27 5 32.2 4 32.7 1 10,473 31:77 .15 87 131 318 65 .27 6 32.7 1 10,473 31:77 .15 88 131 315 65 .27 6 32.5 1 15.31.0 44 .346 131 32.0 65 .27 8 32.5 1 15.31.0 44 .346 131 32.0 65 .27 8 32.5 1 15.31.0 44 .346 131 32.0 65 .27 8 32.5 1 10.31.2 141.346 13.31.0 44 .346 13.31.0				Volume (ft³)	4P (In. H ₂ O)	Meter Temp. (°F)	Temp.,		Exit Gas Temp., (°F)	4H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	micr PIM ₁₀	PM _{2.5}
1 10,473 10; 26 4/4,281, 16 8/2 132 314 65 .25 3 32.3 32.3 1 10,473 31/7 421,013 16 8/2 132 31/7 6/5 .25 3 32.5 4 32.4 1 10,473 31/7 421,013 1/6 8/2 132 31/7 6/5 .25 6 32.4 32.5 1 10,473 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,23 41/2,24 41/2,23 41/2,24 41/2,	-		-	11011	9/.	29	134	205	65	.36	2	324		
1 10,473 52,57 477.787 .16 82 132 317 65 .25 3 323 324 324 317 426.013 .16 87 132 317 65 .27 5 325 4 327 317 65 .27 5 325	1	10,43	92:01	414.282	116	18	138	314	65	.25	2	323		
1 10,43 31:17 421.013 16 84 132 317 65 .25 4 324 324 1 1 1 1 1 1 1 1 1	1	10.43	15:02	417.789	9/.	28	132	315	65	.25	3	323		
1 10.473 14.52 15.4 31.5 31.5 6.5 5.27 5.5 32		1 10,43		421.013	16	48	132	314	65	,25	4	324		
1 10.43 522 08 17.748 16 87 131 318 (5 .27 6 327 325 15 15 130 317 (5 .27 6 325 15 15 15 15 15 15 15		1 10,73		424.453	1/6	83	132	317	65	.27	7	325		
1 10.09 11.02.73 11.55 12.0 21.7 65 1.2.7 65 32.5 1.5.5	1	10.43		427.98		28	131	318	(5	.27	9	327		
1 10.09 172:37 436.03 .15 88 131 320 65 .27 7 325 1 123:70 441.946 90 131 320 65 .27 8 325 1 1:33:70 441.946 90 131 320 65 .27 8 325 Total Run Time I: 33:10 Averages 15775 84:8 131.8 in. H20 oF oF oF oF of auduit	1	10.09		431.547	.15	87	130	317	65	123	9	325		
1 jo. 43 li22:45 438:47 :/6 90 131 320 65 :27 8 325 1:33:10 Total Run Time I: 33:10 Total Volume, ACF 31:846 Averages 15775 84:8 131:8 441:44 8 316 103:2 10.91 Averages 15775 84:8 131:8 ** 10.93:2 10.91	1	10.09			.15	88	131	315	65	.27	2	325		
Total Nolume, ACF 31,846 Averages 15775 84.8 131.8 441.94 6 316 Total Nolume, ACF 121.846 131.8 441.94 6 316 Total Nolume, ACF 121.8	1	10.43		438.47	1	90	131	350	65		00	325		
Total Volume, ACF 31,846 Total Volume, ACF 31,846 Averages ,15775 84.8 13.8	4/11			441.946										
Total Volume, ACF 31,846 Averages 15775 84.8 13/8 *** In. H2O °F °F 440,17 in H2O % micro	/2016													
Total Volume, ACF 31,846 Averages 15775 84.8 13,8 441.946 8 316 10 10 3 . 2 10 91 in H20 % micro		-												
Averages 15775 84.8 13/8 441.946273 103.2 10.91 in H20 % micro	Tota	al Run Time	F. 33:10	110012				Spike						
in. H2O °F °F 44U,17 in H2O %		I Olai VO	idille, ACL	Averages	_	18.48	12/5	441.44		.273		103.2	16.01	2.65
	Run		_	,	-	40	J₀.	4	1	in H20		%	micr	suo

Method 4 - Air Control Techniques, P.C.

Date 10/22/12

Client			
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	4811

		C		
Run Number	U1-1	U1-2	U1-3	
Filter Identification	476-1397	476-1404	476-1409	
Sampling Date		10/23/12	10 24 12	

				6,7
mpinger 1				
Contents - 100ml H2O				
Final Weight, grams	874,3	832.1	816.0	
Initial Weight, grams	732.4	732.6	728.5	
Condensed Water, grams	141.9	99.5	87.5	
mpinger 2				
Contents - 100ml H2O				
Final Weight, grams	734.0	712.1	762.0	
Initial Weight, grams	102.5	695.1	712.1	
Condensed Water, grams	31.5	17.0	49.9	
Impinger 3				
Contents - Empty				
Contents Linkly				
Final Weight, grams	603.0	604.4	605.8	
	600.3	604.4	604.4	
Final Weight, grams	1			-4.5
Final Weight, grams Initial Weight, grams Condensed Water, grams	600.3	603.0	604.4	-4,5
Final Weight, grams Initial Weight, grams Condensed Water, grams Silica Gel -	600.3	603.0	604.4	-4.5
Final Weight, grams Initial Weight, grams Condensed Water, grams	2.7	603.0	1.4	-4.5
Final Weight, grams Initial Weight, grams Condensed Water, grams Silica Gel - Final Weight, grams	600,3 2.7 8783	603.0	604.4	-4.J

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Survey Print Pri				CITACIT	Call III	TO THE PARTY OF		900					Condition		
Partial Train Proetest Leak Check, ACFM COCO or 4% 5 5 5 5 5 5 5 5 5	EM-	11	DEN	FICATIO	IN INFO	KIMATION					PRELIMI	VARY CHE	CKS AND D	ATA	
Cource Number Content 036	Plant	ctyto Ctyto					, ,	- +	Full Train Pr	retest Leak C	heck, ACFN	00	Req'd < 0.02 or 4%	Vacuum 5	
Court Control Carlot C		Mountain	State			2	10/10		Lair	ilai Italii Po	Silesi Leak C	neck, ACFIN	33.5		7
Pitot Tube Pretest Leak Check MA N/A N/A	Sa	mpling Lo	cation		Stack	Star	513		hea	nove cyclor ad upright p	rior to recov	nead before	e posttest lea ot leak check	k check. Keel during port c	cyclone hanges.
Pilot Tube Positest Leak Check 11/4 10/4		Test Per	sonne		A	Stol	7			Pitot	Tube Pretest	Leak Check		N/A	
Contained Cont		Meter	DI xoq	60603		Filter ID	Tar			Pitot T	ube Posttest	Leak Check	N/M	N/A	
Nozate 1 1 1 1 1 1 1 1 1		S. C.	AH @	1997					Barc	ometric Pres	sure, In., Hg.		Static Pres	sure, In. W.C.	
Cozalf Fyrite Cozalf Coz		S S	zzle ID	777						AC	STUAL MO.	~	GAS COMP	NOITION	
Point Winn Figs Sec 3 Point	lozzle Dia	ameter	10 1	1				>	Nater Recov	rered, grams			as.	4	
Dwell Elapsed Mater Stand Inspired Time, T	age 46										02%			Mw_run	10
Dwell Elapsed Meter %Point Fine, Time, Time	of 64					Sampling	ı İnformati	no					QA (hecks	
1 年子 15	Port		Dwell Time,	Elapsed Time,	Meter Volume		Meter Temp. (°F)	Stack Temp.,		_	9H (in. H ₂ O)	Sample Train	_	Run Cummula mic	w
1 9.57 1.35 538.37 0.17 71 134 315 6.0 0.35 4 314 1 1 1 1 1 1 1 1 1	A	1	4.84	٥		-	69	134	330	9	0.340\$	3			67
1 1.57 17.13 1856 35 0.14 372 134 315 60 0.35 4 314 17 17.13 1856 35 0.14 374 134 313 60 0.35 5 314 17 17 17 17 17 17 17		<u></u>	9.8	4:35	833.37		7	3	313	19.	0.35	h	314		
1 1207 1 1207 1 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	7	Till A	836.35		7	7	315	જુ:	0.35	7	75		
9 8			121	180	200 A	0.10	77	12	3,2	9;	C.35	nu	20/2		
1		_	١.	48:33	S41.35	0.19	75	134	313	63	0.3%	3	313		
1 134 1:08:16 20-54 0:18 74 134 314 65 0:35 8 314 1		7		48:85	843.3	0.18	32	ङ	31	6eg	0.35	+	314		
1.84 18:01 856.34 0.18 74 134 58 0.354 7 313 10 313		,	200	1:08:10	5000		77	134	314	E C	0.36	000	314		
1	11		4	0.8	20,00		1	7	350	28	0.354	-	319		
19:87 147:44 18.3.01 0.18 79 134 313 46 0.35 11 313 15 15 15 15 15	4/11/2		まま	1.37.53	86.3 4		43	3 2	313	200	0.35	01	313		
Total Run Time 1:54: 38 846.336 Total Volume, ACF Averages In H2O °F °F °F °F %			18:6	生		-	#	声	313	46	0.35	1)	313		
Averages in H2O °F °F in H2O %	100	Total Rur To	n Time tal Volu	11:4:36 June, ACF	866.93	101									
in. H2O °F °F in H2O %						10									
	Run			-		in. H20		4	*/		in H20		%	mic	rons

Description Combined Cyclone PM10 & PM2.5 Run Data Sheet
--

Run ID U.J-3 Condition	PRELIMINARY CHECKS AND DATA	Check, ACFM Caco < 0.02 or 4% 6" Check, ACFM 6.000	posttest leak check. Keep c	t Leak Check 4" 5" t Leak Check 4" 6"	Static Pressure, In. W.C. 424	ISTURE & GAS COMPOSITION	- 6	QA Checks	Sample Train (°F) Run Cummulative D ₅₀ s, microns vac. (in. Ha)	33	2	333	5 321		8 33/		9 320					
	PKELIM	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	(Remove cyclone sampling head upright prior to reco	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	Barometric Pressure, In., Hg. 139	ACTUAL MOISTURE	Water Recovered, grams CO ₂ %		Stack Cyclone Exit Gas (in. H ₂ O)	320	201	37 320 60 00.38	37 AC	321 61 0.36	63		36 64					
Combined Cyclone PM10 & PM2.5 Run Data Sheet	Dient Manual Company	City State	Source Number EAST Date Date	Filter ID	100 1 C/C 100 1	13	Orsat/Fyrite FVR		Time, Volume 3P Meter h:m:s (ft³) (in. H₂O) Temp. (°F)	ht 210 4-188 0	0.08.08.0.16	31:17 63 63:18	41:42 95.87 0.16 77	152:08 991.31 0.16 78	1:43:33 913.88 0.15 79	112:37 118 34 0.15 BO	1 10:45 1:34:45 414:65 0.16 81	Š	Total Run Time	Total Volume, ACF	Averages	

Method 4 - Air Control Techniques, P.C.

Date 6/24/12

Client			
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	

Run Number		S1-5	S1-6	
Filter Identification	476-1415	476-1419	476-1424	
Sampling Date	10/24/12	10/25/12	10/25/12	

Impinger 1				
Impinger 1 Contents - 100ml H ₂ O				
Final Weight, grams	830.7	757.1	741.7	
Initial Weight, grams	710.7	682.9	676.6	
Condensed Water, grams	120.6	74.2	65.1	
Impinger 2				
Contents - 100ml H ₂ O				
Final Weight, grams	680.3	219.8	752.3	
Initial Weight, grams	676.4	686.3	678.5	
Condensed Water, grams	9.9	39.5	73.8	
Impinger 3				
Contents - Empty				
Final Weight, grams	613.3	619.9	627.6	
Initial Weight, grams	612.0	613.3	611,2	
Condensed Water, grams	1.3	3.6	16.4	
Silica Gel -				
Final Weight, grams	877.1	882.2	890.4	
Initial Weight, grams	866.1	877.1	082.2	
Adsorbed Water, grams	11.0	5.1	8.2	

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std)) Percent Moisture = 100 * Bws

Com	Combined Cyclone PM10 & PM2.5 Run Data Sheet	ne PM10 &	F.W.2.3	Kun Data	Sueer						Run ID Condition	6-15	
J _{TM}	IDENTI	IDENTIFICATION INFORMATION	NFORI	MATION					PRELIMI	NARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
026	Plant Name										Actual	Req'd	Vacuum
	City						-	-ull Train Pr	etest Leak C	Full Train Pretest Leak Check, ACFM	100.	< 0.02 or 4%	15
	State	<u></u>					Part	ial Train Pos	sttest Leak C	Partial Train Posttest Leak Check, ACFM		20.	10
S	Source Number	L		Date	10/24/17.		(Rem	ove cyclon	e sampling	head before	posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone
San	Sampling Location	Scrubber Stack	ack	Start	160		hea	d upright p	rior to reco	very.) Do no	t leak check	head upright prior to recovery.) Do not leak check during port changes.	anges.
	rest reisonnei I I D, JWA	AINIC 'GI I		dois	110			Pitot	Tuhe Prefect	Pitot Tube Pretect Leak Chack	4 5	8	
								Pitot T	ube Posttes	Pitot Tube Posttest Leak Check		e	
	Meterbox ID	702233		Filter ID	Tare		Raro	metric Pres	Rarometric Pressure In Ho	1000		Static Pressure In W.C.	9
	Gamma, v	:					5		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Compo Compo	20arc, III. 4. C.	300
	Nozzle ID	`	_					AC	STUAL MO	ISTURE & (ACTUAL MOISTURE & GAS COMPOSITION	NOILISC	į.
ž	Nozzle Diameter	2.				ľ	S	Vater Recov	Water Recovered, grams			Moisture, %	
–Pa	Orsat/Fyrite	T							CO2 %	1		Md_run	
									02 %	12		Mw_run	
				Sampling Info	Information	no					QA	QA Checks	
	Dwell Time,	Elapsed V	Meter	de de	Meter	Stack Temp.,		Impinger Exit Gas	H&	Sample Train	Probe Temp.	Run Cummulative microns	ve D ₅₀ s
Port	Point (Min.)		(tt ₃)	(III. n ₂ O)	remp. (r)	(°F)	_	Temp., (°F)	(III. H ₂ O)	Vac. (in. Hg)	E)	PM ₁₀	PM _{2.5}
J	1.21	\neg	444.8	91.	86	132	695	55	,26	1	321		
	1 9.31	9:18 4	148.12	91.	88	1251	305	99	. 26	2	322		
	1 931	18,37 45	45.437	.16	92	131	314	29	,26	3	322		
	1 9.31	27:55 4	454.692	91.	93	131	3/7	29	,26	7	322		
	1 9.31	37:14 4:	457.948	.16	93	13)	318	62	,26	4	322		
	1 9.31	46:32 46	261.172	. (6	34	131	250	63	.26)	322		
	1 9.31	55:59 4	414.476	.16	95	133	320	63	. 26	2	325		
	1 231	1:05:10 47.732	7.732	./6	35	135	321	63	92.	<i>∞</i>	322		
	1 231	1:14:284	HONLA	91.	96	136	025	69	, 26	6	322		
		1:23:47 474.354	74.354										
1/201													
T	Total Run Time	1:23:47					7. 0						
	Total Volt						571.91	15	6 3190				
		Ave	Averages										
Run		_		in. H20	4	L.	126	14.345	in H20		%	microns	suc

D₅₀S,

	IDENTI	IDENTIFICATION INFORMATION	N INFOR	MATION					PRELIM	INARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
σ.	Plant Name										Actual	Req'd	Vacuum
	City							Full Train Pr	etest Leak (Full Train Pretest Leak Check, ACFM	•	< 0.02 or 4%	15
	State		SALILA AND				Par	tial Train Pos	sttest Leak (Partial Train Posttest Leak Check, ACFM	100.	20'	1
Source	Source Number			Date	10/25/12		(Ren	nove cyclon	e sampling	head before	posttest leal	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone
Samplin	Sampling Location	Scrubber Stack	Stack	Start	250		hea	nd upright p	rior to reco	very.) Do no	t leak check	head upright prior to recovery.) Do not leak check during port changes.	anges.
Test	Test Personnel TTB, JMA	TTB, JMA		Stop	449						A	В	
								Pitot	Tube Pretes	Pitot Tube Pretest Leak Check	4	6	
								Pitot T	ube Posttes	Pitot Tube Posttest Leak Check	2	6	
Σ	Meterbox ID			Filter ID	Tare					- 1			
	DH (Q)	_					Barc	Barometric Pressure, In., Hg.	sure, In., Hg	29.8	Static Pres	Static Pressure, In. W.C.	20
	Gamma, y	.938/											
	Nozzle ID	00					April 1	AC	ACTUAL MOISTURE	~	GAS COMPOSITION	NOILIS	
Nozzk	Nozzle Diameter	1					1	Water Recovered, grams	ered, grams	10		Moisture, %	
0	Orsat/Fyrite	FYR							CO2 %	1		Md_run	
									02 %	12		Mw_run	
			S	amolina	Sampling Information	uo					040	OA Chacks	
-		i	Motor	Similar							200	ilicons	
Port Point	Time, nt (Min.)	Elapsed Time, h:m:s	Volume (ft³)	4P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	фН (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative microns PM ₁₀	ve D _{so} s, ons PM.,
-	2.07	0	478.7	80.	53	92/	562	55	y.		337		
-	8.29	7:04	479.225	111	55	120	301	24	٠.		337		
-	8.29	15:22	482.133	11.	58	911	918	24	ŝ	2	331		
	9.68	23:40	485.136	15	29	511	810	43	18.	3	336		
1	10.0	33,20	488.486	9).	19	123	028	45	62.	4	331		
+	968	1:03:20	43.5P	15	66	001	118	5	1.29	h	332		
1	10.0		88162	9/-	63	126	128	46	. 29	7	330		
-	0.01	53.20	495.255	9/	65	128	322	86	.20	h	168		
	89%		497.57	.15	99	25/	118	57	. 29	h	230		
-	2.68	1:13:01	500.867	115	69	621	318	58	. 29	9	331		
11/2		1:22:12	921.605)			
Total	Total Run Time 1:22,42	1:22:12					Spike.						
	Total Volu	Total Volume, ACF					arm.	(9)					
			Averages				201.87	,					
Run				0011	Lo		5.	4	The state of				

Run ID Condition

IDENTIFICATION INFORMATION		Date 19/25/1c Start 13/6 A Stop 152 4	Filter ID Tare
IDENTIFICATIO	Plant Name City State	Source Number Sampling Location Test Personnel TTB, JMA	Meterbox ID 22233 A H @ 1,575 Gamma, 7, 138/ Nozzle ID & Nozzle Diameter ,229

PRELIMINARY CHECKS AND DATA	KS AND I	DATA	
	Actual	Req'd	Vacuum
Full Train Pretest Leak Check, ACFM	100'	< 0.02 or 4%	15
Partial Train Posttest Leak Check, ACFM			11
(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during nort changes	posttest lea	ak check. Keep	cyclone
	A	B	
Pitot Tube Pretest Leak Check	12	8	
Pitot Tube Posttest Leak Check	1	L	
Barometric Pressure, In., Hg. 29.5	Static Pre	Static Pressure, In. W.C, 08	80'-
ACTUAL MOISTURE & GAS COMPOSITION	AS COMP	NOSITION	
Water Recovered, grams		Moisture, %	
CO ₂ % j		Md_run	
02 % 21		Mw run	
		1	

Dwell Elapsed Time, Time, Time, Time, Time, Time, Molume Wheter Applies (In. H ₂ O) Meter Temp, Tem		and the same	A 11 (2)		3	Sampling	Sampling Informati	ion			· /		QAC	QA Checks	(3)
585.0 .16 844 128 320 65 .28 1 511.514 .15 87 132 315 65 .28 3 511.517 .15 87 134 318 65 .28 3 512.517 .15 87 134 318 65 .28 6 522.617 .16 87 137 307 65 .28 8 531.3 .16 87 137 317 65 .28 9 531.3 .16 87 136 315 65 .28 7 531.3 .16 87 136 315 65 .28 7 512.82 .16 87 136 315 65 .28 10 512.82 .16 87 136 315 65 .28 10	Port		Dwell Time, (Min.)		Meter Volume (ft³)	4P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)		Impinger Exit Gas Temp., (°F)	%H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	S PM _{2.5}	S0S,
511,576 .17 85 132 315 65 .28 3 518,777 .15 87 134 318 65 .28 5 518,737 .15 87 137 307 65 .28 6 523,673 .16 87 137 307 65 .28 7 531.3 .16 87 137 317 65 .28 9 531.3 .16 87 136 315 65 .28 10 518,95 .16 87 136 315 (5 .28 10 518,95 .16 87 136 315 (5 .28 10	()	-	10.88	0	208.0	9/.	68	128	320	65	. 28		300		
51.577 1.5 8.7 134 3.18 65 1.28 51.59988 65 1.5898888 65 1.589888		~	11.22	10:53	511.576	17	85	132	315	65	12%	3	2/8/		
523.57 154 318 65 ,28 51. 528.65 523.37 :17 86 135 314 65 .28 7 15. 531.3 :16 87 137 317 65 .28 7 10 .28 85 531.3 :16 87 136 315 (57 .28 7 10 .28 85 11 .28 15. 515 (57 .28 10 .28 15. 515 15. 515 (57 .28 10 .28 15. 515 15.		-	88.01	30.22	515.977		28	134	3/8	65	,28	7	3/8		
523.67, 16 87 135 307 65 .28 7 527.372, .17 86 135 314 65 .28 8 531.3 .16 87 137 317 65 .28 9 535.82 .16 87 136 315 65 .28 10 578.95 .16 87 136 315 (5 .28 10 578.95 .16 87 136 315 (5 .28 10		-	10.54	32:59	519.908		87	134	318	65	\$2,	9	318		
531.3 1.17 86 135 314 65 .28 8 531.3 .16 87 131 317 65 .28 9 535.182 .16 87 136 315 65 .28 10 538.95 .16 87 136 315 65 .28 10 542.57 542.57 542.57 542.57		-	10.88	43:31	523,675		28	135	307	59	82'	7	3/8		
531.3 .16 87 137 317 65 .28 9 535.82 .16 87 136 315 65 .28 10 578.95 .16 87 136 315 (5 .28 10 542.57 156 315 (5 .28 10 542.57 156 87 156 315		-	11.27	54:24	527.392	117	28	135	314	65	.28	do	3/8		
535.822 .16 87 136 315 65 .28 10 538.95 .16 87 136 315 (5 .28 10 542.57 542.57 542.57 546. @ 320°		-	10,88	1,05:37	531.3	91'	87	137	317	65	.28	6	3/8/		
578.95, 16 87 136 315 (5 .28 10 542.57) SAL.57) Spike @350°		-	10.88	1:16;30	535.182		68	136	315	65	82.	01	3/8		
542.571 5p.ke @320°		_	10.88	1:27:23	538.95		87	136	315	(5	82.	10	317		
sp.ke.	-			1:38:16	542.57										
- Sp. ke															
Sp. Ke	1	otal Ru	ın Time	1:38:/6					1						
		F	otal Volu	ume, ACF					Spire		000				

microns

%

in H20

545.19

in. H20

Run

Averages

Method 4 - Air Control Techniques, P.C.

Date 10/24/12

Client			
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	- In the second

Run Number		U1-5	U1-6	
Filter Identification	476-1413	476-1417	476-1421	
Sampling Date	10/24/12	In/25/12	10/25/12	

Impinger 1				
Contents - 100ml H ₂ O				
Final Weight, grams	851.1	843.6	861.3	
Initial Weight, grams	726.4	727.0	710.7	
Condensed Water, grams	124.7	116.6	150.6	
Impinger 2				
Contents - 100ml H ₂ O				
Final Weight, grams	717.7	724.6	738.6	
Initial Weight, grams	707.3	717.7	724.6	
Condensed Water, grams	10.4	6.9	14.0	
Impinger 3				
Contents - Empty				
Final Weight, grams	607.1	607.7	6090	
Initial Weight, grams	605,8	607.1	607.7	
	12	n 1	12	
Condensed Water, grams	. >	0.6	10	
	12	0.6		
Condensed Water, grams Silica Gel - Final Weight, grams	898.8	903.0		
Silica Gel -	898.8 893.2		910.5	
Silica Gel - Final Weight, grams	898.8 893.2 5.6	903.0	910.5	

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std)) Percent Moisture = 100 * Bws

OHIO	Combined Cyclone PM10 & PM2.5 Run Data Sheet	PM10 8	2 PM2.5	Run Dat	a Sheet						Run ID Condition	4.m	
ОТМ	IDENTIFICATION INFORMATION	ATION	INFOR	MATION					PRELIMI	PRELIMINARY CHECKS AND		DATA	15
	Plant Name City State						Partik	-ull Train Pr al Train Pos	etest Leak (Actr Full Train Pretest Leak Check, ACFM OCXZ Partial Train Posttest Leak Check, ACFM 0,000	Actual 0.000	Req'd < 0.02 or 4%	Vacuum 15
Sampli Tes	Source Number EAST Sampling Location Scrubber Steps Scrubber Scrubber Scrubber Mest Personnel TTB, JMA Meterbox ID 404033	EAST Scrubber Stack TTB, JMA	Stack	Date Start Stop Filter ID	DATIBA POR POR Tare		head	d upright p Pitot T Pitot T	head upright prior to recover to Pretest Pitot Tube Pretest Pitot Tube Posttest Prometric Pressure In Ho	ight prior to recovery.) Do no pitot Tube Pretest Leak Check Pitot Tube Posttest Pitot Tube Pitot Pit	posttest lear check of leak check	Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. A B Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check Pitot Tube Posttest Leak Check A B Static Pressure In W.C. 74.8	hanges.
	Gamma, y 04	4/03								2			4 1
Nozz	Nozzle Diameter	143	I-8		200		8	A(Vater Recov	ACTUAL MOISTURE Water Recovered, grams	STURE &	GAS COMPOSITION Moisture	Moisture, %	
Page 4	Orsat/Fyrite	YR	}						CO ₂ %	22-		Md_run Mw_run	
73 0	Total Statement			Sampling	Sampling Information	no					OA	QA Checks	
	Dwell Time,	Elapsed Time,	Meter Volume	9P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas	9H (in. H ₂ O)	Sample Train	Probe Temp.	Run Cummulative micron PM ₁₀	inlative I microns
Port	Point (Min.)	S:m:s	93340	0.16	83	132	38	(0)	+	9	-		
-		4:18	370	0.16	200	13	39	3	0.38	3	33)		
F		rt	939.7)	0.16	6	(8)	319	(9)	0.38	3	321		
F	, 0		93.77	0.1%	98	131	318	57	0.38	2	331		
		37.14	93588	20.0	48	13	317	29	0.38	5	330		
_		~	138.47	0.16	88	13	30	15	0.38	ee e	330		
_	9,3) 55	55:51	40.15	0.16	88	(33	290	28	0.38	+	ह		
_			94531	0.16	8	西	319	28	0.38	∞	33)		
	9.3		148.21	91.0	4]	138	330	3	0.30	6	381		
4/1	3.	-	86.38										
/2016													
T	Total Run Time												
5	Total Volume, ACF	e. ACF		_									
			Averages										
Rin										Г	-	*	A 40 60 0 50 0

	IDENTIFICATION INFORMATION	ON INFOR	RMATION					PRELIM	INARY CH	PRELIMINARY CHECKS AND DATA	ATA	
M-036	Plant Name City State				1	100	Full Train Ph	retest Leak	Full Train Pretest Leak Check, ACFM 0.00	Actual 0.00	Req'd < 0.02 or 4%	Vacuum 5
Sampling	Source Number (245) Sampling Location Scrubber Test Bergard 1TP IMP	EAS) Scrubber Stack	Date	0830		(Rem hea	tove cyclor d upright p	stest Leak le sampling prior to recc	Remove cyclone sampling head before head upright prior to recovery.) Do no	e posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	yclone nges.
N N	Mobabou D 070-23	§	dolo T				Pitot Pitot T	Tube Pretes ube Posttes	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	× × × × × ×	1,19 A,16	
D O	AH @ 1904		riffer ID	lare		Barc	metric Pres	Barometric Pressure, In.,Hg. 3分名	39.8	Static Pre	Static Pressure, In. W.C.	-0.08
_	Nozzle ID 5-8						AC	CTUAL MC	ISTURE &	ACTUAL MOISTURE & GAS COMPOSITION	NOILISC	
Nozzie	Nozzle Diameter 0,355 Orsat/Fyrite Fyk					>	Vater Recov	Water Recovered, grams CO ₂ %	0 :0		Moisture, % Md_run	
								02 %	831		Mw_run	91
7 4 of			Sampling Information	Informati	on					OAC	OA Checks	
Port Point	Dwell Elapsed Time, Time,	Meter Volume	%P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas	%H (in. H ₂ O)	Sample Train	Probe T	Run Cummulative	(A)
-	707	9.66	0.08	44	13/0	330	Semp. (F)	4.0	Vac. (in. Hg)	32	PM ₁₀	PM _{2.5}
8		954.21	0.11	Ь	130	36	te	40	30	331		
m:	827 15:22		0.11	8	11%	318	88	0.4	3	321		
3			0.15	53	115	317	39	6.0	3	332		
0 1	0.00 33:00	46.5	0.6	PO-	50	319	5	70	7	333		
t e		969.11	0.16	285	360	330	77	0.7	00	777		
8		9761	51.0	[9]	33	317	43	6.4	7	321		
ь	10:61:1 89.6	94.00	0.15	49	134	36	43	0.4	00	33		
	Ch:82:1	NE 1646										
11 201												
	Total Run Time											
	Total Volume, ACF	TI.										
910	Γ	Averages			į							
Kun	1		In. H20	4	4			in H20		%	microns	u

Com	Combined Cyclone PM10 & PM2.5 Run Data Sheet	e PM10 8	PM2.5	Run Data	Sheet						Run ID Condition	9-171	
OIM	IDENTIFICATION INFORMATION	ICATION	INFOR	MATION					PRELIMII	IARY CHEC	PRELIMINARY CHECKS AND DATA	ITA	
1-036	Plant Name City						Parti	ull Train Pre al Train Pos	etest Leak C	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	Actual 0.000 0.000	Req'd < 0.02 or 4%	Vacuum 15
Sarr	Source Number Sampling Location	EAST Scrubber Stack	stack	Date	17 30 12		(Rem hea	ove cyclon d upright p	e sampling rior to recov	head before rery.) Do no	posttest leak t leak check o	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	cyclone anges.
	Test Personnel TTB, JMA	ITB, JMA		Stop	594			Pitot 7	Fube Pretest ube Posttest	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	A 4"	1. 1 W	
	Meterbox ID △	969033 1.904		Filter ID	Tare		Baro	metric Pres	Barometric Pressure, In., Hg. 39. 8	39.8	Static Pres	Static Pressure, In. W.C.	-0.08
	Gamma, y	0.4762						AC	ACTUAL MOISTURE	જ	GAS COMPOSITION	NOILION	
	Nozzle Diameter	0.33					>	Vater Recov	Water Recovered, grams CO ₂ %			Moisture, %	
9age 47	Olsani yilic								02%			Mw_run	
5016				Sampling	Sampling Information	uo					QAC	Checks	
13	Dwell Time,	Elapsed Time,	- e	AP (In H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas	фН (in. H ₂ O)	Sample Train	Probe Temp. (°F)	Run Cummulative micron	ulative D ₅₀ s, microns
Port	Point (Min.)	h:m:s	(#)	0110	<u>L</u> t	SE SE SE SE SE SE SE SE SE SE SE SE SE S	ar	Temp., (°F)	0.39	Vac. (in. Hg)	337	- m-10	2.5
5	3 11.33	53	983.44	7	18		300	8	0.39	2	336		
	0.88		967.13	91.0	97.0	135	319	25	200	5	355		
	500	12,31	000 1000 1000 1000 1000 1000 1000 1000	200	800	38.1	37	35	66.0	710	334		
	11.33	64:34	16.31	110	8	33	319	3	038	800	324		
		7	(9.60)	0.16	20	77	34	270	0.0	2	35 X		
	2000	1.77.03	109.33 109.33	200	38	38	38	64	0.39	=	334		
4/11/			1013-918										
2016													
	Total Run Time			L									
	Total Volume, ACF		occord.				_						
Run			Avelages	in. H2O	Ľ.	L	_		in H2O		%	mic	microns

Method 4 - Air Control Techniques, P.C.

Sampling Date 10/23)12

Date 10123/12

Client Plant Name				Job#	1756
City, State ampling Location	S	Scrubber Stac	k	Process Personnel	Pulp/Paper
ampling Information	n				
	Run Number	S2-1	S2-2	S2-3	
Filto	Run Number Identification		\$2-2 476-140 6 7		6.1412

10/2/12

887.5	828.0	839.5	
722.3	712,5	705.	
165.2	115.5	134.4	
771.0	773.3	738.0	
7663	771.0	735.1	
4.7	2.3	2.9	
592.5	593.0	594.2	
591.8	592.5	592.8	
0.7	0.5	1.4	
763.2	769.1	777.5	
755.6	763.2	769.1	
7.6	5.9	8.4	
170 2	10.1.2		
	771.0 7663 4.7 592.5 591.8 0.7 763.2 755.6	722.3 712.5 165.2 115.5 771.0 773.3 766.3 771.0 4.7 2.3 592.5 593.0 591.8 592.5 0.7 0.5 763.2 769.1 755.6 763.2	722.3 712.5 706. [165.2 115.5 134.4 771.0 773.3 738.0 766.3 771.0 735.1 4.7 2.3 2.9 592.5 593.0 594.2 591.8 592.5 592.8 0.7 0.5 1.4 763.2 769.1 777.5 755.6 763.2 769.1 7.6 5.9 8.4

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Percent Moisture = 100 * Bws

FORMATION		Date 10/23/12 Start 12.12 Stop 14/0	Filter ID Tare
IDENTIFICATION INFORMATION	Plant Name City State	Source Number E/57 Sampling Location Scrubber Stack Test Personnel TTB, JMA	Meterbox ID 802012 A H @ 1.533 Gamma, y 1.0362 Nozzle ID 8lw.k-7 Nozzle Diameter 0.309 Orsat/Fyrite Fyr

	1	5	
	Condition		
PRELIMINARY CHECKS AND DATA	CKS AND D	DATA	
	Actual	Req'd	Vacuum
Full Train Pretest Leak Check, ACFM 0.60	0.000	< 0.02 or 4%	15
Partial Train Posttest Leak Check, ACFM	1000	200	10
head upright prior to recovery.) Do not leak check during port changes. A B	ot leak check A	c during port ch B	langes.
Pitot Tube Pretest Leak Check	W/W	NA	
Pitot Tube Posttest Leak Check	W/A	N/A	
Barometric Pressure In Ha 130 3	7 Static Pre	Static Pressure. In. W.C0.08	-0.00

ACTUAL MOISTONE & GAS COMPOSITI	CINCOLLICO	
Water Recovered, grams /78, 2	Moisture, %	18.09
CO ₂ % 10	Md_run	28.7
02% 24.0	Mw_run	27.33

		T. T.			Sampling Informat	Informati	ion					QAC	QA Checks	
Port	Point	Dwell Time, (Min.)	Elapsed Time, h:m:s	Meter Volume (ft³)	фР (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	4Н (in. H₂O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative microns PM ₁₀	rulative D ₅₀ s, microns PM _{2,5}
	-	9.59	0	150.2	11.	25	134	562	09	.32	1	340	10.09	2.31
	-	9.59	9:35	153.65	.17	24	134	297	65	.28	1	3 70	10.35	2.41
	-	9.59	19:12	156.85	113	75	134	303	65	2'	1	340	10.72	2.56
	1	9.87	28.47	159.67	-18	26	134	307	65	2.	1	340	11.03	2.69
	_	9.87	38.39	162.4	.18	77	133	309	65	2.	1	340	11.07	2.7/
	1	9.87	9.87 48:32	165.42	.18	78	134	313	65	2.	2	340	11.00	2.68
	-	9.87	_	58:24 118.68	. 18	29	134	313	65	.2	7	340	11.26	2.79
		4.87	1:08:16	171.1	.18	79	134	3/6	65	.25	4	340	1211	2.77
	_	9.87	1:18:09	174.25	.18	8.0	134	315	65	.25	4	340	11.20	2.77
	_	9.87	1:28:01 177.3	177.3	18	/8	137	314	15	. 3	9	340	11.09	2.72
	_	9.87	11:37:53 180.77	180.77	.18	28	134	314	65	. 3	>	376	10:11	5.69
	1	9.41	1:47:46	THE STATE OF THE S	,18	83	134	3/6	65	.3	8	340	96.01	2.67
_	Fotal Ri	Total Run Time	1:57:38	187.59	N 184.21									
	_	otal Volu	Total Volume, ACF 37.385	37.385										
					-									

microns

119.8

. 2*SB* in H20

in. H20

Run

Averages

Run ID Condition

RMATION	Date 10/24/12 Start 835 Stop 957	Filter ID Tare
Plant Name City	Source Number Sampling Location Scrubber Stack Test Personnel TTB, JMA	Meterbox ID Sozoiz A H @ 1.522 Gamma, 7 1.0252 Nozzle ID 7 Nozzle Diameter Orsat/Fyrite

	* * *	Doold	
	Actual	Dhan	Vacuum
Full Train Pretest Leak Check, ACFM	100'	< 0.02 or 4%	15
Partial Train Posttest Leak Check, ACFM , 201	100.	20.	2
(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. ${\sf A}$	oosttest lea leak check A	ik check. Keep during port cha	cyclone anges.
Pitot Tube Pretest Leak Check	B	5	
Pitot Tube Posttest Leak Check	5	7	
8.62			
Barometric Pressure, In. Hg. 30.2	Static Pre	Static Pressure, In. W.C.	201

Moisture, %

ACTUAL MOISTURE & GAS COMPOSITION

Md_run Mw_run

Water Recovered, grams
CO₂ %
O₂ %

18	111				Sampling Informat	Informati	tion					QAC	QA Checks	
Port	Point	Dwell Time, (Min.)	Elapsed Time, h:m:s	Meter Volume (ft³)	9P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	4Н (in. H₂O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative microns PM ₁₀	ulative D ₅₀ s, microns
7	-	9.19	0	190.04	15	57	131	295	59	,28	,	335	10.38	03.2
V i		4:4	11:6	193.411	.15	90	/30	295	86	.23	1	336	10.78	2.58
	1	9.19	5	196,122	.15	19	131	562	86	2.	1	335	80-11	2.68
	1	9.19	27:35	198.668	51.	69	201	562	320	2'	2	336	11.23	274
	-	9.19	24:47	201.24	115	89	132	662	53	81.	2	305	11.39	2.81
	-	9.04	45:58	302.105	145	12	133	315	55	2.	8	33/	11.45	2.53
	1	8.88		55:00 206.26	41.	73	132	818	5%	.23	7	333	11:41	2.82
	-	9.19	9.19 1:07: A 208.96	208.965	.15	74	133	319	25	92.	4	333	11.35	2.89
	-	8.88	8.88 1:15:05 211.84	211.84	41'	75	133	319	28	32	9	335		
				215.028										
	Total Ru	un Time	Total Run Time 1:21:58					1						
	ř	otal Vol	Total Volume, ACF					Spike						
											•			

microns

%

. 233 in H20

820.512

in. H20

Run

Averages

Run ID Condition

MAIION	Date 10/24/12 Start 12/9 Stop 14/3	Filter ID Tare
Plant Name City	Source Number Sampling Location Scrubber Stack Test Personnel TTB, JMA	Meterbox ID Sozol C A H @ 1,522 Gamma, 7 1.0252 Nozzle ID S - 8 MnK Nozzle Diameter .224 Orsat/Fyrite

PRELIMINARY CHECKS AND DATA	KS AND D	ATA	
	Actual	Req'd	Vacuum
Full Train Pretest Leak Check, ACFM	400.	< 0.02 or 4%	19
Partial Train Posttest Leak Check, ACFM	2000	201	90
(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	osttest lea	k check. Keep	cyclone nanges.
	A	B	,
Pitot Tube Pretest Leak Check ☐	6	1	
Pitot Tube Posttest Leak Check	4	4	
Barometric Pressure, In., Hg. 29.8	Static Pre	Static Pressure, In. W.C.	1.00
ACTUAL MOISTURE & GAS COMPOSITION	4S COMP	OSITION	
Water Recovered, grams 142.1		Moisture, %	19.595
CO ₂ %		Md_run	28:30
02%		Mw run	22.23

33			THE STATE OF		Sampling Informat	Informati	tion					QAC	QA Checks	
Port	Point	Dwell Time, (Min.)	Elapsed Time, h:m:s	Meter Volume (ft³)	фР (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	∳Н (in. H₂O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative microns PM ₁₀ PM	D ₅₀ S,
V	1	54.01	0	219.1	.16.	29	134	305	59	,35	7	330		
	-	10.43	10:26	223,015	1/6	80	133	314	62	7'	2	331		
	1	10.43	10.43 20:51	226,097	91.	18	132	315	65	,25	7	330		
	1	10.43	10.43 21.17	22.622	97.	28	281	314	49	.25	4	330		
	1	10.43	10.43 41:42 232.39	68.282	9/-	18	1351	215	69	. 23	1	328		
	1	10.43	10.43 52:08 235.575	235.575	91.	18	131	3/8	83	.22	4	330		
	1	10.09	1:02:33	10,09 1:02:33 238.602	.15	85	130	317	64	22.	5	328		
	1	10.09	1:12:39	241.685	.15	88	131	315	59	22.	9	325		
	_	10,73	122:45	247.724	97.	83	121	028	19	.22	9	326		
			1:33:00	247.704										
	Total R	un Time	Total Run Time /: \$346					11		(min				
	_	otal Vol	Total Volume, ACF 28,604	28.604				28.Kc	@ 3150		3			
					1001		***	por			_	7	1 -	1

microns

. 2 40 in H20

41. py

83.1

Averages 15775

in. H20

Run

Method 4 - Air Control Techniques, P.C.

Date 10/23/12

Source Information			
Client Plant Name		Job#	ta 1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	TEH

			1410	
Run Number	U2-1	U2-2	U2-3	
Filter Identification	476-1403	476-1405	47G- 1910	
Sampling Date	10/23/12	10/24/12	10/24/12	

Impinger 1				
Contents - 100ml H ₂ O				
Final Weight, grams	883.7	814.7	807.4	
Initial Weight, grams	711.4	695.9	691.2	
Condensed Water, grams	172.3	118.8	116.2	
Impinger 2				10
Contents - 100ml H ₂ O				
Final Weight, grams	726.0	728.3	755.9	
Initial Weight, grams	701.5	726.0	728.3	
Condensed Water, grams	24.5	2.3	27.6	
Impinger 3				
Contents - Empty				
Final Weight, grams	605.6	605.B	606.5	
Initial Weight, grams	604.0	605.6	605.8	
Initial Weight, grams Condensed Water, grams	604.0	605.6	0.7	
Condensed Water, grams			0.7	
Condensed Water, grams	1.6		0.7	
Condensed Water, grams		0.2	915.0 908.1	
Condensed Water, grams Silica Gel - Final Weight, grams	1.6	908.1	0.7	
Condensed Water, grams Silica Gel - Final Weight, grams Initial Weight, grams	903.0 894.1	0.2 908.1 903.0	915.0	4.5%

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std)) Percent Moisture = 100 * Bws

Combined Cyclone PM10 & PM2.5 Run Data Shee	.5 Run Dat	a Sheet						Run ID Condition	U3-X1	
IDENTIFICATION INFORMATION	RMATION					PRELIMII	VARY CHE	PRELIMINARY CHECKS AND DATA	4TA	
Plant Name City State				P Parti	'ull Train Pre al Train Pos	etest Leak C	Actual Full Train Pretest Leak Check, ACFM 0.000 Partial Train Posttest Leak Check, ACFM 0.020	Actual 0.011	Req'd Va < 0.02 or 4% 5	Vacuum
Source Number EASI Sampling Location Scrubber Stack Test Personnel TTB, JMA	Start 3	10k3113		(Rem head	ove cyclone d upright pr	e sampling rior to recov	head before rery.) Do no	posttest leak t leak check	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	one is.
Meterbox ID 17743	I Cl. rellfer	<u> </u>			Pitot T	ube Pretest be Posttest	Pitot Tube Pretest Leak Check	7"H	3.1	
Δ H @ 1.651 Gamma, γ (2022)		5		Baro	Barometric Pressure, In., Hg. [30,2]	sure, In., Hg.	30.3	Static Pres	Static Pressure, In. W.C0.08	8
Nozzle ID 7 (App					AC	TUAL MO	STURE & C	ACTUAL MOISTURE & GAS COMPOSITION	NOILION	
Nozzle Diameter 0.212 Orsat/Fyrite FyR				\$	Water Recovered, grams CO ₂ %	ered, grams CO ₂ %	1 ×		Moisture, %	
19						02 %	34 31		Mw_run	
	Sampling Inform	Information	uo			1.0		OAC	QA Checks	
Dwell Elapsed Meter Time, Time, Volume Port Min h.m.s (#3)	4P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas	%H (in. H ₂ O)	Sample Train	Probe Temp. (°F)	Run Cummulative microns	D ₅₀ S,

				Section 1	Sampling	Sampling Informatic	On					OAC	QA Checks	
Port	T Point (I	Dwell Time, (Min.)	Elapsed Time, h:m:s	Meter Volume (ft³)	ф (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	9H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative I microns PM ₁₀ PM ₂₅	D ₅₀ S,
I	6	4.54	0	236.3	6.13	24	134	330	3	0 33 X	3	230	-	
B	6	9.99	9:35	779.5H	61.0	25	134	313	49	0.31	3	314		
A	6 1	9.99	A:12	782.69 O.17	41.0	38	134	315	19	0.33	7	314		
A	0	286	£1:88	36506	81.0	35	134	3/3	(01	0.33	7	314		
1	6 1	183	38:3 1	10.180	0.18	b£	五	33	19	0.37	8	3/3		
B	19.	48	76:8h	H2.31	61.0	bt	134	313	19	0.37	6	33		
7	6	188	P8:34	(29) B	0.18	£	135	31)	3	0.33	9	34		
H	0	48:9	11:80:1	A8.84	0.18	8	134	314	9	0.33	1	314		
A	6	18:6	1:8:09	30198	0.18	80	色	34	69	0.33	00	313		
H) 9	18	10:87:	34.84	D.18	18	137	312	25	0.32	6	313		
-	19.	184	13:33	308.49	0.18	83	134	શક	57	0.38	9	313		
V)16	1	184	21:4:1	32.F	0.18	83	161	313	57	0.33	10	313		
Tot	Total Run Time	Time	1.38	315,378	315.378	00								ı
	Tota	al Volu	Total Volume, ACF											
		1		Averages										
			•	2000							-	-		

microns

%

in H2O

in. H20

Plant Name Script Script Stop												Condition	6	
Source Number State Stat		IDENTIF	ICATION	V INFOR	RMATION					PRELIM	INARY CHE	CKS AND D	ATA	
State Source Number State Stat	Pls	ant Name							Guil Train D) deal tactor	MEDA Jood	Actual	Req'd	Vacuum
Source Number EVOT Start 834 835 834 835 834 835		State						Part	tial Train Po	sttest Leak (Check, ACFIN	000	V 0.02 UI 470	13
Meterbox ID IIG-74 A H @ I.G51 Gamma, 70.9825 Nozzle ID 7 H Meter Orsat/Fyrite FYR Point (Min.) 1 9.19	Source	Number	1993		Date	WAY		(Rem	nove cyclos	ne sampling	head before	posttest lea	k check. Keep	cyclone
Meterbox ID	Sampling Test P	Location	Scrubber TTB IMA	Stack	Star	835		hea	d upright	prior to reco	very.) Do n	ot leak check	during port cl	nanges.
Meterbox ID									Pitot	Tube Pretes	t Leak Check	3	W/W	
Canma, 70-823 Canma, 70-82	Me	_	40		Filter ID	Tare			Pitot	l ube Posttes	of g	2	/U/A	
Nozzle ID 7 140 Nozzle ID P 140 P 14			199			3		Baro	ometric Pre	ssure, In., Hg	18.00 18.00		Static Pressure, In. W.C.	89.00
Nozzie ID	9	y y	83											
Sampling Information CO2 % 31	- :		7 E						A	CTUAL MC	NSTURE &	GAS COMP	55113	
Dwell Elapsed Meter Stack Cyclone Exit Gas Time,	Nozzle	_	CV P					>	Nater Reco	vered, grams	-		Moisture, %	
Dwell Elapsed Meter Stack Cyclone Fatt Gas (in. H ₂ O) Vac. (in. H ₃ O)		_								02%	3)		Mw_run	
Dwell Elapsed Meter Stack Cyclone Impinger Stack Cyclone Exit Gas (in. H ₂ O) Volume (in. H ₂ O) Temp. (°F) T			7		Sampling	Informati	uo	100				OA	OA Checks	
Time, Time, Volume (m. H ₂ O) Temp. (FF) Temp, Temp. (FF) Temp. (F	L	Н	Elansed				Stack		Impinger				Run Cummulative	live Dess.
1 9.19 18:37 32.24 0.15 53 131 330 51 0.31 3 35 135 136 10.15 58 130 314 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 3 35 135 141 145 0.31 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 130 145 145 145 145 145 145 145 145 145 145		Time, (Min.)	Time, h:m:s	Volume (ft³)	(In. H ₂ O)	Meter Temp. (°F)	Temp.,				Sample Train Vac. (in. Hq)		mic PM ₁₀	PM
1 9.19 9:11 379.31 D.15 58 130 314 46 0.31 3 35 315 1 9.19 18:33 32.04 0.15 60 131 314 46 0.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 3 315 14 60.31 5 330 14 60.31 5 330 14 60.31 5	-	F.		36.00		53	131	330	19		3	313		
1 9.19 18:32 32.04 0.15 (Lo 131 314 446 0.31 3 315 14 46 0.31 3 315 14 46 0.31 3 315 14 46 0.31 3 315 14 46 0.31 3 315 14 15:35 30.51 0.15 (Lot 132 315 14 0.31 3 315 14 0.31 3 315 14 0.31 3 315 14 0.31 3 315 14 0.31 14 32.0 14 15:35 30.51 0.14 173 133 314 53 315 53 315 14 0.31 5 32.0 14 17 13:35 315 15 315 15 32.0 14 17 13:35 315 15 32.0 14 17 12:35 315 15 32.0 14 17 12:35 315 15 32.0 14 17 12:35 315 15 32.0 14 17 12:35 315 15 32.0 14 17 12:35 315 12:35 315 15 32.0 14 17 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35 315 12:35	-	19		31921	0.15	98	139	314	45	0.31	9	315		
9.19 34:35 34.9 0.15 6.1 13.2 31.3 144 6.3 3 3 3 3 3 3 3 4 4	1	6.	3	3204	0.15	B	131	34	24	(6.0	~	315		
1 9,19 32:424 33:44 0.15 64 133 315 44 0.31 3 313 1 9.04 45:28 330:51 0.14 73 135 318 47 0.31 4 320 1 8:28 55:28 33:33 0.14 73 133 319 50 0.31 5 330 1 9.19 1:03:54 35:56 0.14 77 133 314 53 0.31 5 330 1 8:28 55:28 33:33 0.14 77 133 314 53 0.31 5 330 1 8:28 55:28 33:33 0.14 77 133 314 53 0.31 6 330 1 131:56 311465 1 131:56 311465	_	19		34.91	0.62	(9)	133	313	44	0.3/	3	36		
9.04 45:56 30.51 0.145 6.8 133 318 47 0.31 4 320 45:56 33.73 0.14 73 133 319 50 0.31 5 33.7 45:56 33.73 0.14 73 133 319 5.0 0.31 5 33.0 45:56 33.73 0.14 77 133 314 5.2 0.31 5 33.0 45:56 31.465 45:56 31.46	_	119	1	307.69	0.15	64	133	315	hh	0.31	3	312		
8.55 55: to 3333 D.14 73 133 319 50 0.31 5 32/ 9.19 1: 03:54 35: 80 0.15 76 133 314 53 0.31 5 320 8.56 1:13:05 38.85 0.14 77 133 314 53 0.31 6 320 1 1:21:56 341466	_			1508	0.115	જી	133	318	計	0.31	5	320		
9.19 1.63:54 335.89 0.15 76 133 314 53 6.31 5 330 1 133:56 344 27 133 318 54 0.31 6 330 1 131:56 344 27 133 318 54 0.31 6 330 1 1 1 1 1 1 1 1 1	_			33.33	0.14	73	133	319	8	0.3	5	331		
i 896 1:13:05 38.85 0.14 77 133 318 54 0.31 6 330			_	82.89	0.15	76	133	313	53	(50	5	330		
	-		. 31	38.85	이.1	11	133	318	19	0.31	9	330		
Total Volume, ACF Averages	_			371.46E										
Total Volume, ACF Averages	_													
Total Volume, ACF Averages	-													
Total Volume, ACF Averages	Total F	Run Time												
Averages		Total Volun	ne, ACF											
	-		d	Averages										
in. H2O °F °F	Run				in. H20	J,	۰F			in H2O		%	mic	microns

											Condition	200	
	IDI	ENTIFIC	IDENTIFICATION INFORMATION	ORMATIC	NC				PRELIMI	NARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
	Plant Name City State	Vame City State					Par	Full Train Po	Full Train Pretest Leak Check, ACFM 0.0c	heck, ACFM heck, ACFM	0,000	Req'd < 0.02 or 4%	Vacuum /5"
Scamp	Source Number Sampling Location Test Personnel		Scrubber Stack	П	Start 1340 Store 1013		(Ren hea	nove cyclor ad upright p	ne sampling prior to recov	head before /ery.) Do no	posttest lea ot leak check	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	cyclone langes.
•				7	-			Pitot Pitot T	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	Leak Check Leak Check	N/M	Wh	
	Meterbox ID A H @		45	Filter ID	ID Tare		Bar	ometric Pres	Barometric Pressure, In., Hg.	89.8	Static Pres	Static Pressure, In. W.C.	800-
	Nozz	5	200					AC	CTUAL MOI	STURE & C	ACTUAL MOISTURE & GAS COMPOSITION	OSITION	
No	Nozzle Diameter	0	52.0 CE	2				Water Recov	Water Recovered, grams			Moisture, %	
- 1	Orsat/Fyrite	-yrite FV							02 %	3]		Md_run Mw_run	
				Sampli	Sampling Information	tion	1	3.11		1000	QA (QA Checks	
Port	D T	Dwell Ela Time, Ti (Min.) h::	Elapsed Meter Time, Volume h:m:s (ft²)	er _{4P} me (In. H ₂ O)	Meter (O) Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	9H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative microns	ive D ₅₀ s, ons PM,s
	1	-	4	2000	38	8	320	35	0,31	3	32,2		200
	-		36.10	0.16	38		321	8	0.31	3	333		
) ·	N.43 30.51		20.16	7-8	ये ह	35	53	0.3/	W _Z	32)		
1	1		-		3 6		3	a t	0.3	b	32)		
	7	10:49 52:08				131	321	58	6.31	5	33)		
	וו	10:09 1:03:33				3	ass.	25	0.31	5	321		
	2	=	-		8	131	318	8	0.3)	9	(%)		
+	×	C Ch.O	R	900	à	191	36	53	0.31	+	330		
+		i.	33. b 350.	2 9									
				+									
12	Total Run Time	Time											
	Tota	Total Volume, ACF	ACF										
		-	Averages	ges									

Method 4 - Air Control Techniques, P.C.

A 10	
Date	

Source Information			
Client	-		
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	

ing Information				
Run Number		S2-5	S2-6	
Filter Identification	476-1416	476-1420	476-	
Sampling Date	10/24/12	10/25/12	10/25/12	

Impinger 1				
Contents - 100ml H ₂ O				
Final Weight, grams	853.8	825.8	806.8	
Initial Weight, grams	720.6	715.3	703.5	
Condensed Water, grams	133.2	110.5	103.3	
Impinger 2				
Contents - 100ml H2O				
Final Weight, grams	741.7	750.4	804.7	
Initial Weight, grams	738.0	741.7	750.4	
Condensed Water, grams	3.7	8.7	54.3	
Impinger 3				
Contents - Empty			595.8	
Final Weight, grams	594.5	601.4	592.4	
Initial Weight, grams	594.2	593.7	1001.4	
Condensed Water, grams	0.3	7.7	3.4	
Silica Gel -				
Final Weight, grams	784.0	788.9	796.4	
Initial Weight, grams	777.5	784.0	788.9	
Adsorbed Water, grams	6.5	4.9	7.5	
Total Water, grams		131.8		

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std))

Combin	ed Cyclo	ne PM10	& PM2.5	Combined Cyclone PM10 & PM2.5 Run Data Sh	a Sheet						Run ID Condition	15-25	
TA	IDEN	FICATIO	IDENTIFICATION INFORMATION	MATION					PRELIMI	PRELIMINARY CHECKS AND	CKS AND D	DATA	
036	Plant Name City State						Parti	Full Train Pr ial Train Pos	etest Leak C	Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	Actual .00 2	Req'd < 0.02 or 4%	Vacuum / 5
Sourc Samplin Test	Source Number Sampling Location Scrubber 3 Test Personnel TTB, JMA	Scrubber Stack	Stack	Date Start Stop	21/201		(Rem hea	ove cyclon d upright p	e sampling	head before very.) Do no	posttest lea ot leak check A	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. ${\sf A}$	cyclone langes.
								Pitot	Tube Pretest	Pitot Tube Pretest Leak Check		25	
Š	Meterbox ID	5020/2		Filter ID	Tare		Baro	FILOU I	Barometric Pressure In Ho	C Pressure In Ho 75 9-		Static Pressure In W.C.	1
	Gamma, y	.0						, V	ACTIVAL MOISTUBE &	CTITOE 0	NOILISOURIOO SAO	MOLLION	
Nozzla	Nozzle Diameter	200	_				N	John Boom	OLONE INC	STONE	SAS COMP	ю.	
NOZZ	Orsat/Fyrite						>	vater Kecov	water recovered, grams CO ₂ %	1		Moisture, %	
nge 48									02 %	12		Mw_run	
5 0 5 6			S	Sampling Info	Information	no					OA	OA Checks	
3	Dwell Time.	Elapsed Time.	Meter	d.	Meter	Stack Temp.	Cyclone	Impinger Exit Gas	Hé	Sample Train	Probe Temp.	Run Cummulative	ive D _{S0} S,
Port Point	-	h:m:s	(ft³)	(In. H ₂ O)	Temp. (°F)	(°F)	Temp. (°F)	Temp., (°F)	(in. H ₂ O)	Vac. (in. Hg)	(°F)	PM ₁₀	PM _{2.5}
)	900	0 0	160500	01:	800	201	202	00	55.		573		
1	9.31	18.37	255.593	9/	20	13/	314	17	27	- 2	3/8		
	9.31	27.55	258.34	97.	26	101	3/7	29	12.	3	320		
1	9.31	37:14	261.182	97.	93	131	218	29	.23	7	320		
1	6.3/	26:34	24.042	97-	43	13/	120	23	.23	5	325		
1	9.31	53:51	266.93	97.	25	153	350	63	12.	9	320		
-	9.31	1:05:16	270,057	97'	98	135	321	63	.30	7	3/5		
-	4.3/	1:14:28	273.376	9/.	47	136	320	69	٤.	00	314		
4/11		1:23:47	1:23:47 276.663										
1/2016													
Total	Total Run Time	1:23:47					6.1						
	Total Vol	Total Volume, ACF					1915c	13 @ 340	140				
-			Averages				4						
Run		_		in. H20	Ļ.	ů.	21897	X	in H2O		%	microns	suo

D₅₀S,

Source Number Sampling Location Scrubber Stack Sampling Location Test Personnel A H @ 1.521 Gamma, 7 1.0252 Nozzle ID & Stop Orsat/Fvrite C A A Or	IDENTIFICATION INFORMATION	MATION
Stop Stop Filter ID	Plant Name City State	
Filter ID 1.522 1.0252 8 .224	Source Number Scrubber Stack ampling Location TTB, JMA	Date 10/25/12 Start \$20 Stop 449
	Meterbox ID So 20/2	Filter ID Tare

	Condition		
PRELIMINARY CHECKS AND DATA	CKS AND D	ATA	
	Actual	. Req'd	Vacuum
Full Train Pretest Leak Check, ACFM	400.	< 0.02 or 4%	15
Partial Train Posttest Leak Check, ACFM	100.	20'	9:
(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	posttest lea	k check. Keep during port cha	cyclone anges.
	٨	, a	,
Pitot Tube Pretest Leak Check	7	7	
Pitot Tube Posttest Leak Check	h	2	
Barometric Pressure. In Hg. 24. 8	Static Pres	Static Pressure, In. W.C 00	100.

Water Recovered, grams Moisture CO ₂ % Md_run	
2	Moisture, %
	Md_run
O ₂ %	Mw run

Dwell Time, C (7.67 C (7.67 C) 8.29 C C C C C C C C C C C C C C C C C C C	Elapsed Time.	Meter										
7.67	h:m:s	Volume (ft³)	4P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp., (°F)	Cyclone Temp. (°F)	Impinger Exit Gas Temp., (°F)	%H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp. (°F)	Run Cummulative C microns PM ₁₀ PM _{2.5}	D ₅₀ S,
1 8.29 1 8.29 1 9.68 1 10.0	0	279.2	80	53	721	562	55	15.	į	300		
1 9.68	7:07	281.546	11.	576	120	301	44	,3)	1	307		
	15:22	8.29 15:22 284.37	11:	57	1/6	3/6	44	.31	1	307		
	23:40	287.206	115	28	115	3/8	44	. 3	1	3/0		
	33:00	290.38	97:	90	123	320	45	82.	1	308		
	43.50	43:20 293.603	./6	62	126	128	45	12.	2	310		
1 10.0	53:60	53:20 296.942	91.	67	128	322	96	12.	n	308		
1 9.68	1:07:20	1:07:20 300.272	.15	16	130	311	5.6	62.	4	310		
89.6	13:01	1713:01 303.528	.15	72	121	318	09	52.	7	308		
4/1	:22:42	1:22:42 306.535										
1/201												
Total Run Time 1:77-57	1:17.57					4. 7						
Total Volume, ACF	ne, ACF					Sidos	PIKE 6700	94				
		Averages					2					
Run			in. H20	<u>۲</u>	i.	30	185.808	in H20		%	microns	
		,										

											Condition	1	
	IDE	IDENTIFICATION INFORMATION	ON INFOR	MATION					PRELIM	NARY CHE	PRELIMINARY CHECKS AND DATA	ATA	
	Plant Name City State	Name City State					Part	Full Train Pri	etest Leak (Full Train Pretest Leak Check, ACFM Partial Train Posttest Leak Check, ACFM	Actual	Req'd < 0.02 or 4%	Vacuum 15
Sam	Source Number Sampling Location Test Personnel	nber ation Scrubber Stack nnel TTB, JMA	er Stack AA	Start Stop	182/12	, , , , ,	(Rem hea	nove cyclon Id upright p	e sampling rior to reco	head before very.) Do no	posttest leal of leak check	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes. ${\bf A}$	cyclone anges.
	Meterbox ID	x ID 850 2017	[a	Filter ID	Tare			Pitot 7	Tube Pretes ube Posttes	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	2 2	4 4	
	ΔH @ Gamma, γ	MMa. 7 10257					Baro	Barometric Pressure, In., Hg. 29, 8	sure, In.,Hg	29.8	Static Pres	Static Pressure, In. W.C.	20.1
	Nozzle ID							AC	ACTUAL MOISTURE	STURE &	GAS COMPOSITION	NOILION	
Š.	Nozzle Diameter Orsat/Fyrite	yrite 1742					>	Water Recovered, grams CO ₂ % O ₂ %	ered, grams CO ₂ % O ₂ %	- 0		Moisture, % Md_run Mw_run	
				Sampling Inform	Informati	ation					040	OA Checks	
Port	Dv Tir Point (M	Dwell Elapsed Time, Time, (Min.) h;m:s	Meter Volume (ft³)	4P (In. H ₂ O)	Meter Temp. (°F)	Stack Temp.,	Cyclone Temp. (°F)	Impinger Exit Gas Temp (°F)	9H (in. H ₂ O)	Sample Train	Probe Temp.	Run Cummulative microns	re D ₅₀ S,
7	1 10.	10.8% O	309.5	9/"	83	128	320	65	.27	-	300		7.5
	1 11.	11.22 10,53		17	83	132	315	65	. 27	_	308		
1	10.	10.88 22,06	316.92	1/6	68	135	3/3	79	123		305		
1	10	10.54 32.59	1320:52/	15/	85	134	3/8	29	12.	-	307		
1	10.	10.88 43:31	324.02	91.	9.8	135	307	63	12.	7	310		
1	11.	11.22 54:24	322,489	1.	85	135	314	49#	62:	2	308		
1	10.	10.88 1:05:5	N	9/1	98	137	317	64	.27	Ŋ	3/0		
1	101	10, 88 1:16,30	334,527	9) +	9.8	135	3/8	65	123	2	308		
+	10.	10.88 1.27:23 338.068	3338.068	9/-	87	136	315	65	123	6	310		
1		1:38:16	341.604										
	+												
L _C	Total Run Time	ime				43.66	Pol Inc /						
	Total	Total Volume, ACF	ш					636					
9		Γ	Averages		10		2427						
unu		7		In. H20	4	4			in H2O		%	microns	ns

Method 4 - Air Control Techniques, P.C.

Date 10/24/12

Source Information			
Client			
Plant Name		Job#	1756
City, State		Process	Pulp/Paper
Sampling Location	Scrubber Stack	Personnel	TEH

Run Number		U2-5	U2-6	
Filter Identification	476-1414	476-1418	476-1422	
Sampling Date	10/24/12	10/25/12	10/25/12	

Impinger 1				
Contents - 100ml H ₂ O				
Final Weight, grams	934,Z	824.5	830.6	
Initial Weight, grams	697.7	700.2	662.4	
Condensed Water, grams	36.5	124.3	168.2	
Impinger 2				
Contents - 100ml H ₂ O				
Final Weight, grams	717.5	719.1	723.5	
Initial Weight, grams	713.5	717.5	719.1	
Condensed Water, grams[4.0	1.6	4.4	
mpinger 3				
Contents - Empty				
			Control of the Contro	
Final Weight, grams	607.0	607.5	607.5	
-	606.5	607.5 607.0	607.5	
Final Weight, grams				
Final Weight, grams Initial Weight, grams	606.5	607.0	607.3	
Final Weight, grams Initial Weight, grams Condensed Water, grams	0.5	607.0 0.5	0.2	
Final Weight, grams Initial Weight, grams Condensed Water, grams Silica Gel -	606.5	607.0	607.3	
Final Weight, grams Initial Weight, grams Condensed Water, grams Silica Gel - Final Weight, grams	006.5 0.5 923.8	0.5 0.5	0.2	

Vm(std) = Volume of gas sampled at standard conditions (dscf) = gamma*17.64*Vm*[Pbar+(D H/13.6)]/(Tm+460) Vwc(std) = volume of water vapor at standard conditions (scf) = 0.04715 * volume of water collected (gms) Bws = Mole fraction of water vapor = Vwc(std) / (Vm(std) + Vwc(std)) Percent Moisture = 100 * Bws

M-036 Page 490 of 643		or Stack										
		AA Stack								Actual	Regid	Vacuum
S Port		AA MA				Part	Full Train Po	retest Leak (Full Train Pretest Leak Check, ACFM CACM Partial Train Posttest Leak Check ACFM COM	00	< 0.02 or 4%	15
S Load		AA AAA	Date	E1/2C/01		(Rem	love cyclon	e sampling	head before	e posttest lea	(Remove cyclone sampling head before posttest leak check. Keep cyclone	cyclone
Pod			Start	0830		hea	d upright p	rior to reco	very.) Do n	ot leak check	head upright prior to recovery.) Do not leak check during port changes.	nanges.
Port							Pitot Pitot T	Tube Pretes ube Posttes	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	N.W.	W/W	
P Pod V			Filter ID	Tare		Baro	Barometric Pressure. In . Ho . 39 &	sure In Ha	290		Static Pressure In W.C.	20 00
Pond		Г							2	Orano I	Soule, III. VY.C.	000
Pod W							AC	ACTUAL MO	MOISTURE &	GAS COMPOSITION	OSITION	
Pour	Nozzle Diameter 0.333 Orsat/Fvrite FVP					Λ	Water Recovered, grams	rered, grams	-		Moisture, %	
Pond		7						02 %	3)		Mw_run	
Port		3	Sampling Information	Informati	uo					040	OA Chacke	
Pon	Dwell Flansed	Meter	2		Stack		Imminute			Can	Discuss	
A	Time, Point (Min.)		%P (In. H ₂ 0)	Meter Temp. (°F)	Temp.,	Cyclone Temp. (°F)	Exit Gas Temp., (°F)	9H (in. H ₂ O)	Sample Train	Probe Temp.	Kun Cummulative microns	ons D ₅₀ s,
	0 4:4 1	2	80.08	52	28	330	子のな	0.33	3	333	463.3	25
		405.75	0.11	24	130	NE.	14	0.33	3	33)		
		40847	0.11	55	116	318	ch	0.33	3	33,		
	368	41.1	9.15	56	115	317	43	0.33	3	333		
	0.0	414.01	0.16	58	183	319	hh	0.33	n	383		
		113.58	5.16	3	36	330	45	0.33	7	333		
	800	430.74	9	100	861	330	ch ch	0.33	2	322		
		36498	15	B	130	110	42	0.33	5	33)		
	89%	427-63	0,15	1)	138	318	40	0.33	9	33)		
	1:33:42	43636										
/11/201			4									
	Total Run Time											
	Total Volume, ACF											
,		Averages										
Run			in. H2O	40	L.			in H2O		%	microns	Suc

ğ	Combined Cyclone PM10 & PM2.5 Run Data Sheet	PM10	& PM2.	5 Run Da	ta Sheet	_	- [Run ID Condition	9-En	
	DENTIFIC	AIION	NI CA	MATION					PRELIM	INARY CHE	PRELIMINARY CHECKS AND DATA	DATA	
0.	Plant Name City State						Part	Full Train P tial Train Po	retest Leak (Full Train Pretest Leak Check, ACFM OCOS Partial Train Posttest Leak Check, ACFM 0.000	Actual Actual	Req'd < 0.02 or 4%	Vacuum 15
pling est I	Source Number E. Sampling Location Scr. Test Personnel TTE	EAST Scrubber S TTB, JMA	Stack	Date Start Stop	10/35/12 1 1346 1524		(Ren hea	nove cyclor ad upright p	ne sampling prior to reco	thead befor every.) Do n	e posttest le	(Remove cyclone sampling head before posttest leak check. Keep cyclone head upright prior to recovery.) Do not leak check during port changes.	yclone nges.
M	Motorhov ID IX	2						Pitot Pitot 7	Tube Pretes Tube Posttes	Pitot Tube Pretest Leak Check Pitot Tube Posttest Leak Check	X X X	N/A	
	AH @ I-(G)	र जिल्ह		LINE ID	age		Barc	ometric Pres	Barometric Pressure, In., Hg.	29.6	Static Pre	Static Pressure, In. W.C.	-0.08
		2				T		A	CTUAL MO	ISTURE &	ACTUAL MOISTURE & GAS COMPOSITION	OSITION	
Zzle	Nozzle Diameter O.333 Orsat/Fyrite FYR	% ≪					>	Nater Reco	Water Recovered, grams CO ₂ %	(0		Moisture, %	
									02 %		_	Mw_run	
			3	Sampling	Sampling Information	on					OA	Checks	
		Elapsed		a.		Stack	_	Impinger				Run Cummulative	
Point	Time, (Min.)		Volume (ft³)	(In. H ₂ O)	Meter Temp. (°F)	Temp., (°F)	Cyclone Temp. (°F)	-	9H (in. H ₂ O)	Sample Train Vac. (in. Hg)	Probe Temp.		IS PM.
-	0 880	4	431.320	910	79	BB	330	65	0.33	3	337		67
4			- 0	61.0	88	7	320	55	0.33	e	33%		
6				0.16	78		319	53	0,33	4	335		
5			\sim		00	13	319	છ	0.33	2	335		
8	3			9	89		313	88	0.33	9	334		
9 1					200		319	3	0.33	171	334		
+0			10	0	0		706	3,	0.20	oc	324		
Da	300	34	07:16	92	c c	0	210	607	0.33		333		
1	1,36	8	4/4 6/4	9	Ø	8	210	3	000	7	201		
	3		9										
tal F	Total Run Time												
	Total Volume, ACF	ACF											
		A	Averages										
1				in. H20	\$	40			in H2O		%	microns	s

APPENDIX D CALIBRATION DATA

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

Meter Console Information	ormation
Console Model Number	522
Console Serial Number	702233
DGM Model Number	RW 110
DGM Serial Number	1014753

	Calibrat	Calibration Conditions	
Date	Time	12/27/11	
Barometric Pressure	sure	29.60	in Hg
Theoretical Critical Vacuum ¹	cal Vacuum¹	13.97	in Hg
Calibration Technician	nician	DLS	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
ž.	17.647	oR/in Hg

'For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

The Critical Orifice Coefficient, K', must be entered in English units, (ft³4.0 K¹12)/(in.Hg*min).

Dun Time			Metering Console					Critical Orifice		
all lille	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
Elapsed	OH.	IIIIII	Litter	TO THE PARTY OF TH	1 1/1		S	17.0	(1-1)	
(e)	(Pm)	(Vm/)	(Vmt)	(frm)	(smt)			/wmb/	1000	
min	in H ₂ O	cubic feet	cubic feet	i,	J.		see above2	jr.	jı.	in Hg
17.0	0.25	351.760	357.391	69	69	FO 40	0.2387	29	29	23
12.5	0.58	357.670	363.723	69	69	FO 48	0.3483	19	67	22
8.5	1.05	363.860	369.286	69	89	FO 55	0.4592	19	67	20
7.0	1.65	369.500	375.244	69	89	FO 63	0.5907	29	29	18
5.5	3.15	375.530	381.665	69	69	FO 73	0.8085	29	67	16

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	ΑV	AH @
Dry Gas Meter	Meter	Critical Orifice	Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vmosidi)	(Qmisto)	(Vcr _(std))	(Q _{cr(std)})	W	(AY)	(Qnystdycom)	(AH@)	(AAH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
5.564	0.327	5 232	0.308	0.9404	0.002	0.308	1.469	-0.126
5.986	0.479	5.614	0.449	0.9379	0.000	0.449	1.603	0.008
5.372	0.632	5.033	0.592	0.9369	-0.001	0.592	1.674	0.078
5.695	0.814	5.332	0.762	0.9362	-0.002	0.762	1.594	-0.001
6.105	1.110	5.734	1.042	0.9391	0.001	1.042	1.637	0.041
				0.9381	Y Average		1.595	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Operator DLS

12/27/2011

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 3-POINT ENGLISH UNITS

Meter Console Information	ormation		Calibrati	Calibration Conditions	
Console Model Number	522	Date	Time	11/06/12	
Console Serial Number	702233	Barometric Pressure	sure	29.8	in Hg
JGM Model Number	RW 110	Theoretical Critical Vacuum	cal Vacuum [†]	14.1	in Hg
DGM Serial Number	1014753	Calibration Technician	inician	DLS	

	Factors/Conversions	8
Std Temp	528	æ
Std Press	29.92	in Hg
ř.	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3+o}R^{1/2})/(in.Hg*mir

					Calibration Data					
Run Time			Metering Console					Critical Orifice		
Flanced	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
(Θ)	(P_)	(~ N	(V _{me})	(t _m)	(t _{ree})		K.	(turnb)	(tamb)	
min	in H ₂ O	cubic feet	cubic feet	4	¥.		see above2	ئ	JL.	in Hg
8.0	1.65	96.900	73,399	73	75	FO 48	0.5907	89	99	19.00
8.0	1.65	73.399	79.922	75	75	FO 48	0.5907	89	89	19.00
8.0	1.65	79.922	86.425	75	75	FO 48	0.5907	89	89	19.00

						Der Cae Motor		
	Standard	Standardized Data				DIY DAS MOTO		
				Calibrati	Calibration Factor	Flowrate	AP.	AH @
Dry Gas Meter	Meter	Critical Orifice	rifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Verised)	(Qmisid)	(Vor _(std))	(Q _{cr(S(d)})	W	(AY)	(Om/std/(corr))	(AH@)	(DHVV)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
6.426	0.803	6.129	0.766	0.954	0.000	0.766	1.571	0.002
6.438	0.805	6.129	0.766	0.952	-0.002	0.766	1.568	-0.001
6.418	0.802	6.129	0.766	0.955	0.001	0.766	1.568	-0.001
Pretest Gamma	0.9381	% Deviation	1.6	0.953	Y Average		1,569	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

	-
	1
	4
1	
5	

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

Meter Console Information	rmation
Console Model Number	522
Console Serial Number	909033
DGM Model Number	RW 110
DGM Serial Number	961167

Date	Time	05/25/12	
Barometric Pressure	ssure	30.00	in Hg
Theoretical Critical Vacuum	ical Vacuum ¹	14.16	in Hg
Calibration Technician	hnician	DLS	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
Ř.	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft³⁺⁰R^{1/2})/(in.Hg*min).

Pun Timo			Metering Console					Critical Orifice		
Flancod	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
(e)	(d)	(N-1)	(Ve)	(t _m)	(f.m)		¥	(Lemb)	(t _{amb})	
min	in H ₂ O	cubic feet	cubic feet	4	d _o		see above2	40	ų.	in Hg
17.5	0.35	312,399	317.974	20	71	FO 40	0.2387	29	29	24
12.0	0.715	318.200	323.788	71	17	FO 48	0.3483	29	29	22
9.0	1.20	323.900	329.432	71	71	FO 55	0.4592	19	29	21
7.0	1.95	329.739	335.282	71	11	FO 63	0.5907	29	29	19
5.5	3.55	335.900	341.842	71	7.1	FO 73	0.8085	29	67	11

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	ΗV	OH CO
Dry Gas Meter	s Meter	Critical	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(V _{m(std)})	(Q _{m(std)})	(Vor _(std3))	(Q _{cr(Std)})	w	(47)	(Qmjsht)(com))	(AH@)	(AAH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
5.568	0.318	5.459	0.312	0.9803	0.004	0.312	2.024	0.120
5.581	0.465	5.462	0.455	0.9787	0.002	0.455	1.944	0.040
5.532	0.615	5.401	0.600	0.9763	0.000	0.600	1.881	-0.023
5.553	0.793	5.404	0.772	0.9731	-0.003	0.772	1.854	-0.050
5.976	1.087	5.811	1.057	0.9724	-0.004	1.057	1.816	-0.088
				0 9762	Y Average		1.904	AH@ Average

Vote: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

DLS

5/25/2012

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Meter Console Information	ormation		Calibrati	Calibration Conditions	
Console Model Number	522	Date	Time	11/07/12	13:30
Console Serial Number	909033	Barometric Pressure	ıre	30.00	in Hg
DGM Model Number	RW 110	Theoretical Critical Vacuum	Il Vacuum ¹	14.2	in Hg
DGM Serial Number	961167	Calibration Technician	ician	DBG	

	Factors/Conversions	
Std Temp	528	%
Std Press	29.92	in Hg
تد	17.647	oR/in Hg

'For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,4}°R¹²/lin.Hg*min)

					Callul ation Data					
Dun Timo			Metering Console					Critical Orifice		
Diagonal India	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
nashan	(P.)	(N-)	(>~)	(L.)	(t _m)		¥	(t _{emb})	(tamb)	
(c)	in H ₂ O	cubic feet	cubic feet	4	d _o		see above2	4.	4	in Hg
20.0	0.35	743.800	750.072	09	19	FO40	0.2387	62	64	23.00
20.0	0.35	750.072	756.377	19	62	FO40	0.2387	64	64	22.00
20.0	0.35	756.377	762.726	83	65	F040	0.2387	63	63	22.00

	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	NO.	ΔH @
Dry Gas Meter	Meter	Critical Orifice	rifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Version)	(Qmistal)	(VCr _(sed))	(O _{cr(840)})	ω	(AY)	(Q _{m(std)(corr)})	(AH@)	(DANA)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
6.385	0.319	6.263	0.313	0.9809	0.003	0.313	2.047	0.005
6.406	0.320	6.257	0.313	0.9766	-0.001	0.313	2.047	0.005
6.420	0.321	6.263	0.313	0.975	-0.002	0.313	2.034	-0.009
Pretest Gamma	0.9762	% Deviation	0.1	0.978	Y Average		2.043	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Signature: TEH

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 5-POINT ENGLISH UNITS

Meter Console Information	rmation
Console Model Number	522
Console Serial Number	802012
DGM Model Number	RW 110
DGM Serial Number	964447

Date	Time	06/08/12	
Barometric Pressure	re	29.90	n Hg
Theoretical Critical Vacuum ¹	l Vacuum ¹	14.11	in Hg
Calibration Technician	clan	DLS	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
Ž,	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,0}R¹³)/(in.Hg*min).

Pun Time			Metering Console					Critical Orifice		
	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
riapsed	1 0/	W.V.	()	(1)	(f.m.)		×	(lamb)	(temb)	
(0)	(rm)	(ALL)	(mily	4	40		see above2	4.	¥ _o	in Hg
min	III H ₂ O	Cabic reet	CUDIC IEEL							
17.5	0.25	182.600	187.934	77	11	FO 40	0.2387	72	72	23
420	0.55	188 140	193 946	77	78	FO 48	0.3483	72	72	22
15.0	0.00	25.00	2000			100		-	1	00
11.0	0.99	194.050	200.507	78	78	FO 55	0.4592	7.7	7)	07
7.5	1.65	201.800	207.542	78	78	FO 63	0.5907	72	72	18
5.5	3.10	207.720	213.452	78	78	FO 73	0.8085	72	72	17

				Kesuits				
	Standard	Standardized Data				Dry Gas Meter		
				Calibratic	Calibration Factor	Flowrate	ΗV	OH @
Dry Gas M	s Meter	Critical	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vesister)	(Q _{m(std)})	(Vor _(std))	(Q _{cristdi})	(x)	(AY)	(Qm(std)(com))	(AH@)	(AAH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
5.244	0.300	5.415	0.309	1.0326	0.007	0.309	1.417	-0.105
5.707	0.439	5.870	0.452	1.0284	0.003	0.452	1,495	-0.027
6.348	0.577	6.548	0.595	1.0315	900.0	0.595	1.550	0.028
5.654	0.754	5.743	0.766	1.0157	-0.009	0.766	1.566	0.044
5.665	1.030	5.764	1.048	1.0176	-0.008	1.048	1.582	090.0
				4 0050	V. B. Lenning		1 522	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Signature: DLS

Date: 6/8/12

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES 3-POINT ENGLISH UNITS

Meter Console Informatio	rmation		Calibrati	Calibration Conditions	
Console Model Number	522	Date	ime	10/26/12	
Console Serial Number	802012	Barometric Pressure		29.90	in Hg
DGM Model Number	RW 110	Theoretical Critical Vacuum	1cuum1	14.1	in Hg
DGM Serial Number	964447	Calibration Technician		DR	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
K,	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3,0}R^{1/2})/(in.Hg*min).

					Calibration Data					
Run Time			Metering Console					Critical Orifice		
Elapsed	DGM Orifice	Volume	Volume	Outlet Temp Initial	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual Vacuum
(0)	(P,,)	(V _m)	(V _m ()	(t _m)	(f _{ent})		ĸ	(temb)	(tamb)	
min	in H ₂ O	cubic feet	cubic feet	j,	롸		see above2	ų.	ų.	in Hg
10.0	1.60	346,711	354.428	89	70	F063	0.5907	70	71	20.00
10.0	1.60	354.428	362.204	70	72	F063	0.5907	71	72	20.00
10.0	1.60	362.204	370.061	72	73	F063	0.5907	73	73	20.00

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibration	Calibration Factor	Flowrate	W	AH @
Dry Gas Meter	Meter	Critical Orifice	rifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vrejekti)	(Q _{m(seb)})	(Vcr _(sko))	(Qoriseo)	W	(AY)	(Qmistd/cont)	(AH@)	(AAH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
7.728	0.773	7.668	0.767	0.9923	0.006	0.767	1.540	0.002
7.757	0.776	7,661	0.766	0.9876	0.001	0.766	1.537	-0.001
7.816	0.782	7.650	0.765	0.9788	-0.007	0.765	1.537	-0.001
Pretest Gamma	1.0252	% Deviation	3.8	0.9862	Y Average		1.538	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

lature above big is smerer was calibrated in accordance must oblig in meniods, or structure of properties.

APEX INSTRUMENTS METHOD 5 PRE-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

5-POINT ENGLISH UNITS

06/01/12 29.60 13.97

			Calibr	Calibration Con
Meter Console Information	mation			
Console Model Number	522	Date	Time	+
Console Serial Number	11077	Barometric Pressure	ressure	+
DGM Model Number	RW 110	Theoretical Co	Theoretical Critical Vacuum ¹	+
Podmil Nimbo	964447	Calibration Technician	echnician	

	Factors/Conversions	
Std Temp	528	å
Std Press	29.92	in Hg
ž	17.647	oR/in Hg

in Hg in Hg

DLS

-	
9	
~	
×	
#	
10	
=	
3	
ō	
~	
10	
0,	
E	
=	
5	
- 73	
œ	
-	
- CES	
ü	
1	
T	
75	
~	
700	
77	
=	
eoretical Critical Vacuum sho	
20	
Ö	
ő	
É	
F	
reater than the The	
0	
-	
•	
-	
m	
_	

-	
- 0	٠.
*	
2	
- 2	۲.
-	0
	2
- 5	9
7	
- 3	
-	
0	
c	
	۲.
-	
1.5	
4	
-	
-	
-	Ε.
- 2	,
- 0	•
£	
U	•
cuitm should be 1 to 2 in Ha great	
E	
	í
	•
- 7	5
1 2	•
2	
-	-
7	
9	
- 2	1
ŧ	3
è	r
9	2
1 5	i.
	1
è	ó
	ě
1 3	5
1 2	ñ
1 6	Ď
1 4	
	è
	3
1	i di
1	
4	4
d to	5
lid ban	2
alld been	מווח
bild bear	Adila
and bilance	Nama I
and bilance	ol valla t
Formally ton	ים אמוות ו
Tene vestid ton	DI VAIIO
West letted add affined food biles and	ים אמוות ו
Personal ton	ו מו אמות ו

lical	
5	
Theoretical	
the	min
than	.Ho.
rum should be 1 to 2 in. Hg greater than the Theoretical Crit	The Cation Oction Conficient IV must be entered in Findish units. (#3.0R12)/(in.Ho*min
in.	nits
1 to 2	ofish i
1 pe	Fo
should	infered in
/acuum	o od tou
ual V	
Act	1
the	Monio
For valid test results, the Actual Vacuur	God Con
est	Š
valid	Pulition
For	ZThe

			Metaring Consola					Critical Orifice		
Kun mme	DGM Orifice	Volume	Volume	Outlet Temp	Outlet Temp	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
Elapsed	ΔH	Initial	Fillal	manua	-				1 4	
(0)	(P,,)	(V _m)	(Vmt)	(fm)	(t _{mt})		K	(gmb)	(Jamb)	
min	O.H.u	cubic feet	cubic feet	4	40		see above2	u.	<u>_</u>	in Hg
17.5	0.265	984.520	990.031	74	74	FO 40	0.2387	73	73	23
17.0	0.59	990.160	998.013	73	73	FO 48	0.3483	73	73	22
10.0	1.05	998.200	1004.320	74	75	FO 55	0.4592	73	73	20
7.0	1.75	1004.520	1010.038	75	75	FO 63	0.5907	73	73	19
5.5	325	1010.260	1016.187	75	75	FO 73	0.8085	73	73	16

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibrati	Calibration Factor	Flowrate	ΔF	Ø H∇
Dry Ga	Dry Gas Meter	Critical	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vminds)	(Qmisstq)	(VCr _(seld))	(Qcr(std))	W	(AY)	(Qm(sta)(com))	(AH@)	(DHVV)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
5.394	0.308	5,356	0.306	0.9928	0.010	0.306	1.560	-0.091
7.707	0.453	7.592	0.447	0.9850	0.002	0.447	1.637	-0.014
5.997	0.600	5.887	0.589	0.9818	-0.002	0.589	1.675	0.025
5.411	0.773	5.301	0.757	0.9798	-0.004	0.757	1.692	0.041
5.834	1.061	5.701	1.037	0.9773	-0.006	1.037	1.689	0.039
				0.9833	Y Average		1.651	AH@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02

in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3 certify that the above Dry Gas Meterwas calibra

APEX INSTRUMENTS METHOD 5 POST-TEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

3-POINT ENGLISH UNITS

Open cloud and and	action and		Calibrati	Calibration Conditions			Factors/Conversion
Meter Collsole Illiolination	Hillanon						
Console Model Number	522	Date	Time	11/07/12	0060	Std Temp	528
Console Serial Number	11077	Barometric Pressure	ure	29.40	in Hg	Std Press	29.92
Model Minds	RW 110	Theoretical Critical Vacuum	al Vacuum [†]	13.9	in Hg	ž,	17.647
DOM Wodel Namber							
DGM Sorial Number	964447	Calibration Technician	ician	TEH			

	200000000000000000000000000000000000000	
Std Temp	528	å
Std Press	29.92	in Hg
3	17.647	oR/in Hg

For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (柏^{3,40}R¹²)/(in.Hg*min).

Metering Console Critical Orifice Volume Final Initial Final Coullet Temp Final Final Final Final (t _{cm}) Outlet Temp Final Fina						Calibration Data					
DGM Orifice Volume Volume Outlet Temp Outlet Temp Serial Coefficient Amb Temp	Bien Time			Metering Console					Critical Orifice		
(P _m) (V _{ml}) <th< th=""><th>Flancod</th><th>DGM Orifice</th><th>Volume</th><th>Volume</th><th>Outlet Temp Initial</th><th>Outlet Temp Final</th><th>Serial</th><th>Coefficient</th><th>Amb Temp Initial</th><th>Amb Temp Final</th><th>Actual</th></th<>	Flancod	DGM Orifice	Volume	Volume	Outlet Temp Initial	Outlet Temp Final	Serial	Coefficient	Amb Temp Initial	Amb Temp Final	Actual
in H ₂ O cubic feet or cubic feet or cubic feet or cubic feet or cubic feet or cubic feet or cubic feet or cubic feet or cubic feet feet FO40 0.2378 69 69 0.26 474.072 479.444 66 67 FO40 0.2378 69 69	(0)	(d)	2	(N)	([-1])	(1,)		¥	(t _{emb})	(t _{emb.})	
0.26 468.702 474.072 65 66 FO40 0.2378 69 69 0.26 474.072 479.444 66 67 FO40 0.2378 69 69	min	O-H ui	cubic feet	cubic feet	4	±°		see above2	\mathbf{J}_{0}	4	in Hg
0.26 474.072 479.444 66 67 FO40 0.2378 69 69	17.0	0.26	468.702	474.072	65	99	FO40	0.2378	69	69	24.50
	17.0	0.26	474.072	479.444	99	29	F040	0.2378	69	69	24.50

24.50

69

69

0.2378

FO40

89

29

484.826

479.444

0.26

17.0

				Results				
	Standard	Standardized Data				Dry Gas Meter		
				Calibration	Calibration Factor	Flowrate	AF.	OH (0)
Dry Gas Meter	Weter	Critical Orifice	rifice	Value	Variation	Std & Corr	0.75 SCFM	Variation
(Vmission)	(Omesian)).	(VCr _(std))	(Q _{cr(std)})	W	(AY)	(Om(std)(com))	(AH@)	(AAH@)
cubic feet	cfm	cubic feet	cfm			cfm	in H2O	
5.305	0.312	5.167	0.304	0.974	-0.001	0.304	1.566	0.003
5.297	0.312	5.167	0.304	0.976	0.000	0.304	1.563	0.000
5.297	0.312	5.167	0.304	926.0	0.001	0.304	1.560	-0.003
Pretest Gamma	0.9833	% Deviation	0.8	0.9750	Y Average		1.563	AH@ Average

Note: Acceptable tolerance of average Calibration Factor (Y) to pre-test calibration Y is +- 5 percent.

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3

Signature: TEH

Date: 11/7/12

Precutter Nozzle Calibration and Inspection Air Control Techniques, P.C.

Nozzle	Nozzle		Measurements			Maximum	Condition	Date
Set ID	ID	Average	1	2	3	Variance	Condition	Inspected
1	1	0.123	0.123	0.122	0.123	0.001	New	7/30/12
1	2	0.133	0.133	0.133	0.133	0.000	New	7/30/12
1	3	0.153	0.153	0.153	0.153	0.000	New	7/30/12
i	4	0.171	0.171	0.171	0.170	0.001	New	7/30/12
i	5	0.185	0.185	0.185	0.185	0.000	New	7/30/12
1	6	0.201	0.201	0.200	0.201	0.001	New	7/30/12
1	7	0.216	0.217	0.216	0.215	0.002	New	7/30/12
1	8	0.233	0.234	0.233	0.232	0.002	New	7/30/12
1	9	0.251	0.252	0.252	0.250	0.002	New	7/30/12
	10	0.273	0.273	0.272	0.273	0.001	New	7/30/12
	11	0.295	0.294	0.296	0.296	0.002	New	7/30/12
1	12	0.320	0.320	0.320	0.320	0.000	New	7/30/12
	12	0.020						
X	1	0.122	0.122	0.122	0.121	0.001	New	7/30/12
X	2	0.132	0.132	0.132	0.132	0.000	New	7/30/12
X	3	0.153	0.153	0.152	0.153	0.001	New	7/30/12
X	*4	0.170	0.171	0.170	0.170	0.001	New	7/30/12
X	5	0.184	0.185	0.184	0.184	0.001	New	7/30/12
X	6	0.200	0.200	0.200	0.200	0.000	New	7/30/12
X	7	0.215	0.215	0.215	0.216	0.001	New	7/30/12
X	8	0.232	0.232	0.232	0.232	0.000	New	7/30/12
X	9	0.250	0.250	0.249	0.250	0.001	New	7/30/12
X	10	0.271	0.271	0.270	0.271	0.001	New	7/30/12
X	11	0.297	0.298	0.296	0.296	0.002	New	7/30/12
X	12	0.320	0.320	0.319	0.320	0.001	New	7/30/12

ву: **ВМИТО**

Date: 4/30/12

Precutter Nozzle Calibration and Inspection Air Control Techniques, P.C.

Nozzle	Nozzle		Measurements			Maximum	Condition	Date
Set ID	ID	Average	1	2	3	Variance	Condition	Inspected
PM	1	0.123	0.122	0.123	0.124	0.002	New	10/18/12
2.5	2	0.133	0.134	0.133	0.133	0.001	New	10/18/12
BOX	3	0.153	0.153	0.153	0.154	0.001	New	10/18/12
AOD	4	0.173	0.173	0.174	0.172	0.002	New	10/18/12
PM	5	0.185	0.185	0.185	0.186	0.001	New	10/18/12
2.5	6	0.200	0.199	0.200	0.201	0.002	New	10/18/12
BOX	7	0.212	0.211	0.211	0.213	0.002	New	10/18/12
AOD	8	0.229	0.228	0.229	0.229	0.001	New	10/18/12
PM	9	0.249	0.248	0.249	0.250	0.002	New	10/18/12
2.5	10	0.268	0.268	0.268	0.267	0.001	New	10/18/12
BOX	11	0.293	0.292	0.294	0.293	0.002	New	10/18/12
AOD	12	0.317	0.317	0.318	0.317	0.001	New	10/18/12
AOD	12	0.017	0.01.					10/18/12
Ziplock	1	0.122	0.122	0.121	0.122	0.001	New	10/18/12
Bag	2	0.121	0.120	0.121	0.121		New	10/18/12
Ziplock	3	0.153	0.153	0.153	0.154		New	10/18/12
Bag	4	0.171	0.171	0.171	0.170		New	10/18/12
Ziplock	5	0.185	0.185	0.185	0.185	0.000	New	10/18/12
Bag	6	0.201	0.200	0.201	0.201		New	10/18/12
Ziplock	7	0.212	0.211	0.213	0.212	0.002	New	10/18/12
Bag	8	0.231	0.232	0.231	0.231	0.001	New	10/18/12
Ziplock	9	0.247	0.246	0.248	0.246	0.002	New	10/18/12
Bag	10	0.271	0.270	0.272	0.271	0.002	New	10/18/12
Ziplock	11	0.294	0.295	0.293	0.294	0.002	New	10/18/12
Bag	12	0.318	0.318	0.316	0.319	0.003	New	10/18/12
Dag	12							10/18/12
PM2.5	1	0.122	0.122	0.122	0.121	0.001	New	10/18/12
Nozzle	2	0.134	0.134	0.132	0.135	0.003	New	10/18/12
BOX	3	0.147	0.140	0.148	0.154	0.014	Ruff	10/18/12
Blank	4	0.171	0.170	0.171	0.171	0.001	New	10/18/12
PM2.5		0.185	0.185	0.185	0.184	0.001	New	10/18/12
Nozzle	6	0.200	0.199	0.200	0.200	0.001	New	10/18/12
BOX	7	0.209	0.207	0.208	0.211	0.004	OK	10/18/12
Blank	8	0.224	0.221	0.224	0.226	0.005	Ruff	10/18/12
PM2.5		0.251	0.251	0.251	0.250	0.001	New	10/18/12
Nozzle	_	0.262	0.260	0.262	0.263	0.003	Ruff	10/18/12
BOX	11	0.296	0.295	0.296	0.297	0.002	New	10/18/12
Blank	12	0.319	0.320	0.318	0.318	0.002	New	10/18/12

By: Tall Head

Date: 10/18/12

APPENDIX E

ANALYTICAL DATA

RESOLUTION ANALYTICS

TOTAL and PM2.5 FILTERABLE PARTICULATE MATTER

RESOLUTION ANALYTICS, INC.

Specialists in Air Emissions Analysis

ANALYTICAL REPORT

CLIENT:

AIR CONTROL TECHNIQUES, INC.

PROJECT:

1390-1756

ANALYTICAL SERVICES PROVIDED:

- PM 2.5 FILTERABLE PARTICULATE (EPA METHOD 201A)
- TOTAL SOLIDS (EPA METHOD 160-1/2)

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Date of Review:

November 15, 2012

J. Bruce Nemet

Quality Assurance Officer

www.resolutionanalytics.com 2733 Lee Avenue • Sanford, NC 27332 • Phone: 919-774-5557 • Fax: 919-776-6785

JPC Form No. 37449A

Analysis Request / Chain of Custody

RESOLUTION ANALYTICS, INC. 1 Specialists in Air Emission Analysis

2733 Lee Avenue, Sanford, NC 27330 Phone (919) 774-5557 • Fax (919) 776-6785 • Email resolute@interpath.com

idard) ne:

		Turnaround Tin			(3A) (3A)	Analyses	analytes:	☐ HF (EPA 13B)	analytes:		☐ Phenol (EPA TO-8)	analytes: Ammonia (CTM-0)	□ NO _x (EPA 7A/7D)	☐ Filt Particulate (EP)
1000 (010) one	Fax Number (919) 460-7897					Train/Run Component	0.1 N NaOH (Imp 5-6)	(25003)	Suspended addiscolved solids (3Sers)	Water Rings, Robe actonewater Rings, \$2.5 acetone quater Rings	STATES + Petri	4	6	-
	1182-0	John Richards		131	130-170	Train/Run Component	0.1 N H2SO4 (Imp 4)		3:15pm 10:25-12 Lus Water	be actionewater Rine,	n n	7 7	1.	* 4
		Cor	200		130-	Train/Run Component	0.1 N H2S04 (Imp 1-3)	Banks	ws water	Ene Lader Rings, And		4	1	6
	Reporting Address: 1 Please attach a separate sheet of paper if billing address is different than reporting address.	Company Air Control Techniques, P.	Street Address East Durham Rd	City, State, Zip	Cary, NC 27513	Sample ID / Run #	EXAMPLE: SCRUBBER INLET: I	watera Aretone	Date	SI-1 Filter, Nozzle acetonen	S2-1 1,	WI-1 " "	113-2 11 " "	\$

analytes:	☐ Phenol (EPA TO-8)	□ SO _X (EPA 6/8) analytes:	☐ Ammonia (CTM-027)	□ NO _X (EPA 7A/7D)	☐ Filt Particulate (EPA 5)	☐ Conden Part (EPA 202)	□ EPA 29	metals:	metals:	☐ Ontario-Hydro (Hg)	□ EPA 101A (hg)	X Other See B #2	TOTAL SERVICE
01													

WHITE: Report Copy

Date

PINK: Lab Copy

CANARY: Client Copy

Comments

OTM-036

Page 505 of 643

Chain of Custody:

Project:		STATE OF
	1756	

RESOLUTION ANALYTICS, INC.

Specialists in Air Emission Analysis

Sample ID / Run #	Train/Run Component	Train/Run Component	Train/Run Component
52-2 Fitter, a Hoo Rinse,	Probe Acetone 7	1254 aceloneal Had Riose	GJars + 1 Petri
友1-2	15		b
u2-2	" #1	"Gravimetric on	11
51-3	11	all samples"	n
52-3	11 #2	Icon all 420	O
41-3	li .	samples w/ gravineto	ic "
นฉ-3	1)	results above Img.	1)
51-4	1)	d	1)
52-4	71		"\
W-4	າາ		1)
นลฯ	יו		1)
S S1-5	1		1)
9 -5	10		11
W-5	n		n
U2-5	1)		1)
51-6	<i>y</i> y		11
52-6	"		,)
W-4	n		• • • • • • • • • • • • • • • • • • • •
W-4 W2-4	n		1,

Chain of Custody:		-///			
Relinguished by (Signature)	Date 10/31/12	Received by (Signalure)	Date /0/31/1:	Comments	
Relinguished by (Signature)	Date	Received by (Signature)	Date	Comments	

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756 Method: EPA M5

Report Summary

	ACETONE ≤2.5μg RINSE
SAMPLE ID	PARTICULATE
U1-1	1.4 mg
	0.9 mg
U2-1	1.0 mg
S1-1	
S2-1	1.4 mg
U1-2	1.8 mg
U2-2	0.7 mg
S1-2	1.5 mg
S2-2	0.8 mg
U1-3	0.7 mg
U2-3	0.0 mg
S1-3	0.3 mg
S2-3	0.8 mg
U1-4	0.7 mg
U2-4	1.0 mg
S1-4	0.1 mg
S2-4	0.5 mg
U1-5	0.3 mg
U2-5	0.7 mg
S1-5	0.9 mg
S2-5	0.5 mg
U1-6	0.8 mg
U2-6	1.4 mg
S1-6	0.5 mg
S2-6	0.5 mg

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

Analyst: JSC
Analysis: EPA M5
Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 Acetone ≤2.5µg Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: Method: E	Air Contro	ol Tec	hniqu	es					F	RFA #:	1756	
Run Number				U1-1 ≤2.5µg Acetone				U2-1 ≤2.5µg Acetone			S1-1 ≤2.5µg Acetone	
Filter Container#	Date	In	<u>t</u>		_	Date	-		Date	-		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		•		#N/A #N/A	#			#N/A #			#N/A #N/A	#N/A
Front ¼ Rinse Container # -	Date	In	<u>t</u>	760		Date	-	2631	Date		444	
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JS JS (50	CF	3,1868 3,1864 3,1848 0,0016	(11/12/12 11/12/12 50	F ml)	3,3214 3,3213 3,3202 0,0011	11/12/12 11/12/12 50	F ml)	3.6060 3.6062 3.6048 0.0012	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.6 0.2 1.4				#N/A 1.1 0.2 0.9			#N/A 1.2 0.2 1.0	
FILTERABLE PARTICULA	ATE, mg.			1.4				0.9			1.0	

Legend:

F = Final Weight

Client: Method: E	Air Contro EPA M5	ol T	echn	ique	es					RF	A #:	1756
Run Number					S2-1 ≤2.5µg Acetone			s	U1-2 :2.5µg Acetone			U2-2 ≤2.5µg Acetone
Filter Container #	Date	1	Init			_	Date	-		Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		=	#N/A #N/A ##			#N/A #N/A
Front ½ Rinse Container #	Date	+	Init		2566	_	Date	-	2473	Date	-	1536
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 60	F ml)	3.4847 3.4842 3.4826 0.0016	(11/12/12 11/12/12 70	F ml)_	3.6007 3.6005 3.5985 0.0020	11/12/12 11/12/12 50	F ml)	3.6465 3.6462 3.6453 0.0009
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.6 0.2 1.4				#N/A 2.0 0.2 1.8			#N/A 0.9 0.2 0.7
FILTERABLE PARTICULA	ATE, mg.				1.4				1.8			0.7

Legend:

F = Final Weight

Client: Method:	Air Contro EPA M5	ol Tech	nique	es				RFA #.	1756
Run Number				S1-2 ≤2.5µg Acetone		≤2	S2-2 2.5µg Acetone		U1-3 ≤2.5µg Acetone
Filter Container #	Date	Init	ş		Date	_		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		•		#N/A ##	#	=	#N/A #N/A ##		#N/A #N/A #N/A
Front ¼ Rinse Container ‡	t Date	Init	_	1378	Date		2533	Date	1667
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JS0 JS0 (50		3.4271 3.4268 3.4251 0.0017	11/12/12 11/12/12 (30	F m() _	3.5827 3.5823 3.5814 0.0009	11/12/12 11/12/12 F 30 m	3.5545 3.5543 3.5535 0.0008
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.7 0.2 1.5			#N/A 0.9 0.1 0.8		#N/A 0.8 0.1 0.7
FILTERABLE PARTICUL	ATE, mg.			1.5			0.8		0.7

Legend:

F = Final Weight

Client: A Method: El		ol Ted	chniq	ues						RF	A #:	1756
Run Number				\$	U2-3 2.5µg Acetone			52	S1-3 5µg Acetone			S2-3 ≤2.5µg Acetone
Filter Container #	Date	1 1	lnit	-		_	Date	-	—.	Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		Ξ	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container #	Date	1	Init	-	1392	-	Date	-	2339	Date		2289
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J	ISC ISC I 40 I	enl) _	3.5064 3.5059 3.5058 0.0001	1	11/12/12 11/12/12 30	F ml)	3,4446 3,4443 3,4439 0,0004	11/12/12 11/12/12 40	F ml)	3.4701 3.4697 3.4688 0.0009
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.1 0.1 0.0	**			#N/A 0.4 0.1 0.3			#N/A 0.9 0.1 0.8
FILTERABLE PARTICULA **Negative results adjusted					0.0				0.3			0.8

Legend:

F = Final Weight

Client: Method: I	Air Contro EPA M5	ol T	echn	ique	es					RFA	#;	1756
Run Number					U1-4 ≤2.5µg Acetone			≤2	U2-4 2.5µg Acetone			S1-4 ≤2.5µg Acetone
Filter Container #	Date	+	Init			_	Date	_		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		•			#N/A #N/A #	#		=	#N/A #N/A ##			#N/A #N/A
Front ½ Rinse Container ‡	t Date	1	Init		1231	_	Date	-	1387	Date		1585
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 30	F ml)	3.6241 3.6236 3.6228 0.0008	(11/12/12 11/12/12 40	F ml) _	3.6051 3.6047 3.6036 0.0011	11/12/12 11/12/12 40	F	3.5883 3.5881 3.5879 0.0002
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg Net Rinse Catch, mg.	le .				#N/A 0.8 0.1 0.7				#N/A 1.1 0.1 1.0			#N/A 0.2 0.1 0.1
FILTERABLE PARTICUL	ATE, mg.				0.7				1.0			0.1

Legend:

F = Final Weight

Client: Method:	Air Contro EPA M5	ol Tec	hniq	ues							RFA	A #:	1756
Run Number				≤2	S2-4 2.5µg Acetone			≤2	U1-5 2.5µg Acetone				U2-5 ≤2.5µg Acetone
Filter Container #	Date	II	nit	-		_	Date	-	_	_	Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		=	#N/A #N/A #	#			#N/A #N/A #N/A
Front ¼ Rinse Container	# Date	1	nit	-	2574	-	Date	-	548	_	Date	-	2539
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J.	SC SC F 40 n	nl)	3.5135 3.5130 3.5124 0.0006	(11/12/12 11/12/12 50	F ml) _	3.6354 3.6350 3.6345 0.0005	(11/12/12 11/12/12 40	F ml	3.3895 3.3890 3.3882 0.0008
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg Net Rinse Catch, mg.					#N/A 0.6 0.1 0.5				#N/A 0.5 0.2 0.3				#N/A 0.8 0.1 0.7
FILTERABLE PARTICUL	ATE, mg.				0.5				0.3				0.7

Legend:

F = Final Weight

Client: A Method: E	Air Contro	ol To	echn	ique	es						RFA	A #:	1756
Run Number					S1-5 ≤2.5µg Acetone			\$	S2-5 2.5µg Acetone				U1-6 ≤2.5µg Acetone
Filter Container #	Date	+	Init			_	Date	5		_	Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A #	##		=	#N/A #N/A #	#			#N/A #N/A #N/A
Front ½ Rinse Container #	Date	+	Init		1355	-	Date	-	1181	-	Date	-	2618
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 30	F ml)	3.6512 3.6508 3.6498 0.0010	(11/12/12 11/12/12 30	F ml) _	3.4338 3.4333 3.4327 0.0006	(11/12/12 11/12/12 40	F ml,	3.6139 3.6136 3.6127 0.0009
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.0 0.1 0.9				#N/A 0.6 0.1 0.5				#N/A 0.9 0.1 0.8
FILTERABLE PARTICULA	ATE, mg.				0.9				0.5				0.8

Legend:

F = Final Weight

Client: Method: I	Air Contro EPA M5	ol Te	chn	ique	s				RFA	#:	1756
Run Number					U2-6 ≤2.5µg Acetone		≤2	S1-6 2.5µg Acetone			S2-6 ≤2.5µg Acetone
Filter Container #	Date	+	Init			Date			Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A ##		=	#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	1	Init		2517	Date	-	1023	Date		234
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12		ISC ISC 40	F ml)	3.5534 3.5531 3.5516 0.0015	11/12/12 11/12/12 30	F ml) _	3.7235 3.7232 3.7226 0.0006	11/12/12 11/12/12 40	F ml)	3.4721 3.4716 3.4710 0.0006
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	1				#N/A 1.5 0.1 1.4			#N/A 0.6 0.1 0.5			#N/A 0.6 0.1 0.5
FILTERABLE PARTICUL	ATE, mg.				1.4			0.5			0.5

Legend:

F = Final Weight

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756 Method: EPA M5

Report Summary

	H₂O ≤2.5μg RINSE
SAMPLE ID	PARTICULATE
U1-1	0.9 mg
U2-1	2.0 mg
S1-1	0.3 mg
S2-1	1.4 mg
52 1	
U1-2	0.6 mg
U2-2	0.4 mg
S1-2	0.6 mg
S2-2	0.3 mg
U1-3	0.3 mg
U2-3	0.7 mg
S1-3	0.6 mg
S2-3	0.3 mg
U1-4	0.0 mg
U2-4	0.0 mg
S1-4	0.5 mg
S2-4	0.7 mg
U1-5	0.4 mg
U2-5	0.0 mg
S1-5	0.0 mg
S2-5	0.3 mg
U1-6	0.7 mg
U2-6	0.4 mg
S1-6	0.7 mg
S2-6	0.1 mg

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

> Analyst: JSC Analysis: EPA M5

Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 DI H2O ≤2.5µg Rinses, DI H2O Blank

Summary of Sample Prep:

The DI H_2O rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The DI H_2O rinses were evaporated in an oven at 105° C, then desiccated for 24 hours, after which time they were weighted daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The DI H2O blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: A. Method: EF		ol Te	echn	ique	5					F	RFA #:	1756	
Run Number					U1-1 ≤2.5µg H₂O				U2-1 ≤2.5µg H₂O			S1-1 ≤2.5µg H ₂ O	
Filter Container #	Date	+	Init			_	Date	-		Date	_		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	#			#N/A #N/A #			#N/A #N/A	#N/A
Front ¼ Rinse Container #	Date	1	Init		230	_	Date	-	2042	Date	-	1256	
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	i	JSC JSC 50	F ml)	3.4443 3.4438 3.4428 0.0010	(11/8/12 11/8/12 60	F ml)	3.2687 3.2682 3.2660 0.0022	11/8/12 11/8/12 70	F ml)	3.5838 3.5837 3.5832 0.0005	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.0 0.1 0.9				#N/A 2.2 0.2 2.0			#N/A 0.5 0.2 0.3	
FILTERABLE PARTICULA	TE, mg.				0.9				2.0			0.3	

Legend:

F = Final Weight

Client: Method: I	Air Contro EPA M5	ol Techi	niques						RI	FA #:	1756
Run Number				S2-1 ≤2.5µg H₂O				U1-2 ≤2.5μg H₂O			U2-2 ≤2.5µg H₂O
Filter Container #	Date	Init	_		_	Date	-		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A #N/A #	##		=	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container # -	Date	Init	-	3121	-	Date	3,6	1404	Date	_	4147
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	JSC JSC (60	F ml)	3.8813 3.8811 3.8795 0.0016	C	11/8/12 11/8/12 70	F ml) _	3.5088 3.5083 3.5075 0.0008	11/8/12 11/8/12 60	F ml)	3.5732 3.5729 3.5723 0.0006
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.6 0.2 1.4				#N/A 0.8 0.2 0.6			#N/A 0.6 0.2 0.4
FILTERABLE PARTICUL	ATE, mg.			1.4				0.6			0.4

Legend:

F = Final Weight

Client: Al Method: EF		ol T	echn	ique	s					RFA	A #:	1756
Run Number					S1-2 ≤2.5μg H₂O				S2-2 ≤2.5µg H₂O			U1-3 ≤2.5µg H₂O
Filter Container #	Date	+	Init			_	Date	-		Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		1	#N/A #N/A ##		ł	#N/A #N/A #N/
Front ¼ Rinse Container #	Date	+	Init	-	2147	_	Date	-	1293	Date	-	4143
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	(JSC JSC 50	F ml)	3.7102 3.7097 3.7090 0.0007	(11/8/12 11/8/12 60	F ml) _	3.9014 3.9009 3.9004 0.0005	11/8/12 11/8/12 70	F ml,	3.6470 3.6466 3.6461 0.0005
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.7 0.1 0.6				#N/A 0.5 0.2 0.3			#N/A 0.5 0.2 0.3
FILTERABLE PARTICULA	TE, mg.				0.6				0.3			0.3

Legend:

F = Final Weight

Client: Al Method: EF		ol To	echn	iques	5					RF	A #:	1756
Run Number					U2-3 ≤2.5µg H₂O				S1-3 ≤2.5µg H₂O			S2-3 ≤2.5µg H ₂ O
Filter Container #	Date	+	Init			_	Date	-	—	Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		Ξ	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container #	Date	+	Init	-	52	-	Date	-	2144	Date	-	1451
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	(JSC JSC 50	F ml)	3.7268 3.7263 3.7255 0.0008	-(11/8/12 11/8/12 60	F ml)	3.7699 3.7694 3.7686 0.0008	11/8/12 11/8/12 60	F ml)	3.5051 3.5046 3.5041 0.0005
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.8 0.1 0.7				#N/A 0.8 0.2 0.6			#N/A 0.5 0.2 0.3
FILTERABLE PARTICULA	TE, mg.				0.7				0.6			0.3

Legend:

F = Final Weight

Client: A Method: E	Air Contro PA M5	ol Tec	hniq	ues						RF	A #:	1756
Run Number					U1-4 ≤2.5μg H₂O				U2-4 ≤2.5µg H₂O			S1-4 ≤2.5µg H₂O
Filter Container #	Date	In	nit	-		-	Date	-		Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		=	#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container #	Date	In	nit	1,-	1191	-	Date		1623	Date		2174
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	JS	SC SC F	= ml)	3.8743 3.8738 3.8737 0.0001	(11/8/12 11/8/12 70	F ml) _	3.3725 3.3721 3.3720 0.0001	11/8/12 11/8/12 80	F ml)	3.7401 3.7397 3.7390 0.0007
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.1 0.2 0.0				#N/A 0.1 0.2 0.0 ***			#N/A 0.7 0.2 0.5
FILTERABLE PARTICULA					0.0				0.0			0.5

Legend: F

F = Final Weight

Client: Al Method: EF		ol Te	echn	ique	S						RF	A #:	1756
Run Number					S2-4 ≤2.5µg H₂O				U1-5 ≤2.5µg H₂O				U2-5 ≤2.5μg H₂O
Filter Container #	Date	+	Init			_	Date	=		-	Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		=	#N/A #N/A	##			#N/A #N/A #N/
Front 1/2 Rinse Container #	Date	1	Init	-	1409	_	Date		2359	_	Date	-	618
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	(JSC JSC 50	F ml)	3.4697 3.4693 3.4685 0.0008	(11/8/12 11/8/12 70	F ml) _	3.4310 3.4306 3.4300 0.0006	(11/8/12 11/8/12 70	F ml)	3.3646 3.3643 3.3643 0.0000
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.8 0.1 0.7				#N/A 0.6 0.2 0.4				#N/A 0.0 0.2 0.0 **
FILTERABLE PARTICULA **Negative results adjusted					0.7				0.4				0.0

Legend:

F = Final Weight

Client: Al Method: EF		ol T	echn	ique	s						RF	A #:	1756
Run Number					S1-5 ≤2.5µg H₂O				S2-5 ≤2.5µg H₂O				U1-6 ≤2.5µg H ₂ O
Filter Container #	Date	+	Init			_	Date			_	Date		
Baggie Tare Wt., g.		•			#N/A			-	#N/A				#N/A
Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #	#		_	#N/A #	#			#N/A #N/
Front ½ Rinse Container #	Date	+	Init		1366	_	Date		2145		Date	-	4043
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	(JSC JSC 60	F ml)	3.5299 3.5296 3.5296 0.0000	(11/8/12 11/8/12 60	F ml) _	3.4894 3.4893 3.4888 0.0005	(11/8/12 11/8/12 60	F ml)	3.7846 3.7844 3.7835 0.0009
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.0 0.2 0.0 *				#N/A 0.5 0.2 0.3				#N/A 0.9 0.2 0.7
FILTERABLE PARTICULAT					0.0				0.3				0.7

Legend: F

F = Final Weight

Client: Method: E	Air Contro	ol Tech	nique	s				RFA	A #: 17	756
Run Number				U2-6 ≤2.5µg H₂O			S1-6 ≤2.5µg H₂O		5	S2-6 ≤2.5µg H₂O
Filter Container #	Date	Init	-		Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A #N/A ##		Ē	#N/A ##		=	#N/A #N/A #N/A
Front ¼ Rinse Container #	Date	Init	_	2405	Date		1129	Date		1428
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/8/12	JS0 JS0 (50		3.4072 3.4071 3.4066 0.0005	11/9/12 11/8/12 40	F ml)	3.6303 3.6299 3.6291 0.0008	11/8/12 11/8/12 50	F ml)	3.4078 3.4076 3.4074 0.0002
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	l .			#N/A 0.5 0.1 0.4			#N/A 0.8 0.1 0.7			#N/A 0.2 0.1 0.1
FILTERABLE PARTICUL	ATE, mg.			0.4			0.7			0.1

Legend:

F = Final Weight

RESOLUTION ANALYTICS, INC.

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756 Method: EPA M5

Report Summary

	TOTAL FILTER
SAMPLE ID	PARTICULATE CATCH
22 v	21.0 mg
U1-1	31.8 mg
U2-1	33.1 mg
S1-1	73.9 mg
S2-1	64.4 mg
U1-2	16.4 mg
U2-2	16.3 mg
S1-2	47.6 mg
S2-2	48.0 mg
U1-3	20.9 mg
U2-3	21.7 mg
S1-3	37.1 mg
S2-3	30.7 mg
U1-4	22.3 mg
U2-4	23.7 mg
S1-4	26.9 mg
S2-4	26.5 mg
U1-5	14.7 mg
U2-5	15.1 mg
S1-5	55.0 mg
S2-5	5.8 mg
U1-6	29.5 mg
U2-6	30.1 mg
S1-6	37.4 mg
S2-6	1.2 mg

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

> Analyst: JSC Analysis: EPA M5

Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Dry Filters

Summary of Sample Prep:

The filters were transferred to petri dishes in a low humidity environment. The filters were baked 2 to 3 hours at 105° C, cooled in a desiccator and weighed.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Run Number			U1-1 Filter		U2-1 Filter		S1-1 Filter
Filter Container #	Date	Init		Date		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1431 0.0000 0.1113 0.0318	11/6/12	0.1512 0.0000 0.1181 0.0331	11/6/12	0.1914 0.0000 0.1175 0.0739

Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A ml) #l	W/A #N/A	(#N/A ml) #N/A #N/A	7 (#N/A ml)	#N/A #N/A	p.
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.			31.8 #N/A #N/A #N/A	#	33.* #N// #N//	1		73.9 #N/A #N/A #N/ A	#N/A
FILTERABLE PARTICULATE, mg.			31.8		33.	1		73.9	

Legend: F = Final Weight

					ALC:		U2-2
Run Number			S2-1 Filter		U1-2 Filter		Filter
Filter Container #	Date	Init	—	Date		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1811 0.0000 0.1167 0.0644	11/6/12	0.1338 0.0000 0.1174 0.0164	11/6/12	0.1332 0.0000 0.1169 0.0163

Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A ml) #N/A (### ml)#N/A (## ml) #N/A #N/A
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.		64.4 #N/A #N/A #N/A ##	16.4 #N/A #N/A #N/A ##	16.3 #N/A #N/A # N/ A ####
FILTERABLE PARTICULATE, mg.		64.4	16.4	16.3

Legend:

F = Final Weight

Method: E	7.71110						
Run Number			S1-2 Filter		S2-2 Filter		U1-3 Filter
Filter Container #	Date	Init	—	Date		Date	4
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1639 0.0000 0.1163 0.0476	11/6/12	0.1652 0.0000 0.1172 0.0480	11/6/12	0.1388 0.0000 0.1179 0.0209

Tare Wt., g. RINSE SAMPLE WT., g.	ĺ	#N/A ml) #N/A (### mi)	## ml)#N/A #N/A
Filter Catch, mg.		47.6	48.0	20.9
Rinse Catch, mg.		#N/A	#N/A	#N/A
Rinse Blank Residue, mg.		#N/A	#N/A	#N/A
Net Rinse Catch, mg.		#N/A ##	#N/A ##	#N/A ####
FILTERABLE PARTICULATE, mg.		47.6	48.0	20.9

Legend:

F = Final Weight

Run Number			U2-3 Filter		S1-3 Filter		S2-3 Filter
Filter Container #	Date	Init	—	Date	—	Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1375 0.0000 0.1158 0.0217	11/6/12	0.1547 0.0000 0.1176 0.0371	11/6/12	0.1471 0.0000 0.1164 0.0307

T 140	,	#N/A ml) #N/A (### ml) #N/A (## ml) #N/A
Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A	#N/A	#N/A
Filter Catch, mg.		21.7	37.1	30.7
Rinse Catch, mg.		#N/A	#N/A	#N/A
Rinse Blank Residue, mg.		#N/A	#N/A	#N/A
Net Rinse Catch, mg.		#N/A ##	#N/A ##	#N/A ####
FILTERABLE PARTICULATE, mg.		21.7	37.1	30.7

Legend: F = Final Weight

Method: E	PA NID						
Run Number			U1-4 Filter		U2-4 Filter		S1-4 Filter
Filter Container #	Date	Init		Date	—	Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1383 0.0000 0.1160 0.0223	11/6/12	0.1408 0.0000 0.1171 0.0237	11/6/12	0.1427 0.0000 0.1158 0.0269

Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A ml) #N/A (### ml) #N/A (## ml) #N/A #N/A
Filter Catch, mg.		22.3	23.7	26.9
Rinse Catch, mg.		#N/A	#N/A	#N/A
Rinse Blank Residue, mg.		#N/A	#N/A	#N/A
Net Rinse Catch, mg.		#N/A ##	#N/A ##	#N/A ####
FILTERABLE PARTICULATE, mg.		22.3	23.7	26.9

Legend: F = Final Weight

Method: E		l Technique				RFA #:	
Run Number			S2-4 Filter		U1-5 Filter		U2-5 Filter
Filter Container #	Date	Init		Date	—	Date	-
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1444 0.0000 0.1179 0.0265	11/6/12	0.1314 0.0000 0.1167 0.0147	11/6/12	0.1323 0.0000 0.1172 0.0151
Front ½ Rinse Container #	Date	1 Init		Date		Date	

Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A ml) #N/A (### ml)#N/A (#N/A	## mi) #N/A #N/A
Filter Catch, mg.		26.5	14.7	15.1
Rinse Catch, mg.		#N/A	#N/A	#N/A
Rinse Blank Residue, mg.		#N/A	#N/A	#N/A
Net Rinse Catch, mg.		#N/A ##	#N/A ##	#N/A ####
FILTERABLE PARTICULATE, mg.		26.5	14.7	15.1

Legend: F = Final Weight

Run Number			S1-5 Filter		S2-5 Filter		U1-6 Filter
Filter Container #	Date	Init	—	Date	—	Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1725 0.0000 0.1175 0.0550	11/6/12	0.1215 0.0000 0.1157 0.0058	11/6/12	0.1466 0.0000 0.1171 0.0295

Tare Wt., g. RINSE SAMPLE WT., g.	(#N/A ml) #N/A (### ml)	## ml) #N/A #N/A
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.		55.0 #N/A #N/A #N/A ##	5.8 #N/A #N/A #N/A ##	29.5 #N/A #N/A #N/A ####
FILTERABLE PARTICULATE, mg.		55.0	5.8	29.5

Legend: F = Final Weight

Method: E	, 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Run Number			U2-6 Filter		S1-6 Filter		S2-6 Filter
Filter Container #	Date	Init		Date		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.	11/6/12	JSC	0.1464 0.0000 0.1163 0.0301	11/6/12	0.1542 0.0000 0.1168 0.0374	11/6/12	0.1178 0.0000 0.1166 0.0012

Tare Wt., g. RINSE SAMPLE WT., g.	#N/A #N/A (### ml)	## ml) #N/A #N/A
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	30.1 #N/A #N/A #N/A ##	37.4 #N/A #N/A #N/A ##	1.2 #N/A #N/A #N/A ####
FILTERABLE PARTICULATE, mg.	30.1	37.4	1.2

Legend: F = Final Weight

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756 Method: EPA M5

Report Summary

	ACETONE NOZZLE RINSE
SAMPLE ID	PARTICULATE
Acetone Blank	0.7 mg (in 230 mls)
U1-1	0.4 mg
U2-1	0.1 mg
S1-1	0.6 mg
S2-1	2.0 mg
U1-2	2.9 mg
U2-2	1.5 mg
S1-2	1.5 mg
S2-2	0.2 mg
U1-3	1.0 mg
U2-3	0.5 mg
S1-3	1.3 mg
S2-3	1.1 mg
U1-4	0.7 mg
U2-4	1.0 mg
S1-4	0.3 mg
S2-4	1.1 mg
U1-5	1.7 mg
U2-5	0.1 mg
S1-5	1.0 mg
S2-5	0.1 mg
U1-6	1.4 mg
U2-6	1.2 mg
S1-6	1.5 mg
S2-6	1.2 mg

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

Analyst: JSC

Analysis: EPA M5

Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 Acetone Nozzle Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: Method: E	Air Contro	ol Tec	chni	que	s						R	FA #:	1756	
Run Number					U1-1 Nozzle Acetone				U2-1 Nozzle Acetone				S1-1 Nozzle Acetone	
Filter Container #	Date	Ir	nit		-	_	Date	_		_	Date	_		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	#			#N/A #N/A	#			#N/A #N/A	#N/A
Front ½ Rinse Container # -	Date	1	nit		2119	_	Date	-	1648	-	Date	-	1612	
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J	ISC ISC 50	F ml)	3.7915 3.7910 3.7904 0.0006	(11/12/12 11/12/12 40	F ml)	3.4728 3.4723 3.4721 0.0002	. (11/12/12 11/12/12 70	F ml)	3,4809 3,4804 3,4796 0,0008	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.6 0.2 0.4				#N/A 0.2 0.1 0.1				#N/A 0.8 0.2 0.6	
FILTERABLE PARTICUL	ATE, mg.				0.4				0.1				0.6	

Legend:

F = Final Weight

Client: Method:	Air Contro EPA M5	ol Tech	nique	es					RFA	#: 17	756	
Run Number				S2-1 Nozzle Acetone		U1-2 Nozzle Acetone					U2-2 Nozzle Acetone	
Filter Container #	Date	Init	4		_	Date	-	-	Date	-		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A #N/A ##	#		=	#N/A #N/A ##		F	#N/A #N/A #N/A	
Front ¼ Rinse Container i	‡ Date	Init	_	1344	_	Date	-		Date	-	1213	
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JSC JSC (60	F	3.5341 3.5336 3.5314 0.0022	(11/12/12 11/12/12 70	F ml)	3.8233 3.8229 3.8198 0.0031	11/12/12 11/12/12 60	F ml) _	3.7273 3.7270 3.7253 0.0017	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	.			#N/A 2.2 0.2 2.0				#N/A 3.1 0.2 2.9			#N/A 1.7 0.2 1.5	
FILTERABLE PARTICUL	ATE, mg.			2.0				2.9			1.5	

Legend:

F = Final Weight

Client: A		ol To	echn	ique	s						RFA	#:	1756
Run Number					S1-2 Nozzle Acetone			No	S2-2 zzle Acetone				U1-3 Nozzle Acetone
Filter Container #	Date	+	Init			_	Date	-		_	Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				4	#N/A #	##		=	#N/A #N/A #	#			#N/A #N/A #N/
Front ¼ Rinse Container #	Date	1	Init	-	63	-	Date	-	62	_	Date		1394
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 70	F ml)	3.6910 3.6906 3.6889 0.0017	(11/12/12 11/12/12 60	F ml)	3.4826 3.4824 3.4820 0.0004	(11/12/12 11/12/12 70	F ml	3.7230 3.7225 3.7213 0.0012
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.7 0.2 1.5				#N/A 0.4 0.2 0.2				#N/A 1.2 0.2 1.0
FILTERABLE PARTICULA	TE, mg.				1.5				0.2				1.0

Legend:

F = Final Weight

Client: A Method: Ef		ol Te	chn	ique	s				RFA	#: 1756	
Run Number					U2-3 Nozzle Acetone		No	S1-3 zzle Acetone		S2-3 Nozzie Acetor	10
Filter Container #	Date	+	Init			Date	-		Date	-	-
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A ##		=	#N/A #N/A ##		#N/A #N/	
Front ¼ Rinse Container #	Date	+	Init		255	Date	-	366	Date	1359	
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12		JSC JSC 50	F ml)	3.4197 3.4192 3.4185 0.0007	11/12/12 11/12/12 60	F ml)	3.3836 3.3831 3.3816 0.0015	11/12/12 11/12/12 40	3.73° F 3.73° ml) 3.730 0.00°	14 02
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.7 0.2 0.5			#N/A 1.5 0.2 1.3		0	I/A 1.2 0.1 1.1
FILTERABLE PARTICULA	TE, mg.				0.5			1.3		1	1.1

Legend:

F = Final Weight

Client: Method: E	Air Contro	ol Tech	nique	es					RFA	#:	1756
Run Number				U1-4 Nozzle Acetone			No	U2-4 ozzle Acetone)	S1-4 Nozzie Acetone
Filter Container #	Date	Init	_		_	Date	-		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		,		#N/A #N/A #	##		=	#N/A #N/A ##			#N/A #N/A #N/
Front ½ Rinse Container # -	Date	Init		1486	_	Date	-	2551	Date		2156
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JS0 JS0 (40	F	3.8415 3.8412 3.8404 0.0008	1	11/12/12 11/12/12 50	F ml) _	3.5701 3.5699 3.5687 0.0012	11/12/12 11/12/12 50	F ml)	3.7366 3.7362 3.7357 0.0005
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 0.8 0.1 0.7				#N/A 1.2 0.2 1.0			#N/A 0.5 0.2 0.3
FILTERABLE PARTICUL	ATE, mg.			0.7				1.0			0.3

Legend:

F = Final Weight

Notes & Comments:

4/11/2016

Client: A Method: E	Air Contro	l Techn	ique	s				RFA#	: 1756
Run Number				S2-4 Nozzle Acetone		No.	U1-5 zzle Acetone		U2-5 Nozzle Acetone
Filter Container #	Date	Init			Date	-		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A ##		_ =	#N/A #N/A ##		#N/A #N/A #N/
Front ¼ Rinse Container #	Date	Init		2401	Date	_ =	1010	Date	1259
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JSC JSC (40		3.3856 3.3851 3.3839 0.0012	11/12/12 11/12/12 40	F ml)	3.7172 3.7169 3.7151 0.0018	The state of the s	3.4429 = 3.4425 ml) 3.4423 0.0002
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.2 0.1 1.1			#N/A 1.8 0.1 1.7		#N/A 0.2 0.1 0.1
FILTERABLE PARTICUL	ATE, mg.			1.1			1.7		0.1

Legend:

F = Final Weight

Client: A Method: El		ol Techr	ique	s					RFA	#:	1756
Run Number				S1-5 Nozzle Acetone			No	S2-5 ezzle Acetone			U1-6 Nozzle Acetone
Filter Container #	Date	Init	_		_	Date	-		Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		1		#N/A ##	#		=	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container #	Date	Init	-	1340	_	Date	-	1017	Date	-	1478
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JSC JSC (40		3.6481 3.6482 3.6470 0.0011	(11/12/12 11/12/12 40	F ml) _	3.7292 3.7289 3.7287 0.0002	11/12/12 11/12/12 40	F mi	3.5974 3.5971 3.5956 0.0015
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.1 0.1 1.0				#N/A 0.2 0.1 0.1			#N/A 1.5 0.1 1.4
FILTERABLE PARTICULA	ATE, mg.			1.0				0.1			1.4

Legend:

F = Final Weight

Client: Method: E	Air Contro	ol Tec	hniqu	ies				RFA #:	1756
Run Number				U2-6 Nozzle Acetone		No	S1-6 ozzle Acetone		S2-6 Nozzle Acetone
Filter Container #	Date	In	it_		Date	_		Date	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A ##	#	=	#N/A #N/A ##		#N/A #N/A #N/
Front ¼ Rinse Container # -	t Date	- In	nit	113	Date		1399	Date	2162
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J	SC SC F SO m		11/12/1: 11/12/1: (50		3.5126 3.5124 3.5107 0.0017	11/12/12 11/12/12 F 40 m	3.7144 3.7143 3.7130 0.0013
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 1.4 0.2 1.2			#N/A 1.7 0.2 1.5		#N/A 1.3 0.1 1.2
FILTERABLE PARTICUL	ATE, mg.			1.2			1.5		1.2

Legend:

F = Final Weight

RESOLUTION ANALYTICS, INC.

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756 Method: EPA M5

Report Summary

	H ₂ O NOZZLE RINSE
SAMPLE ID	PARTICULATE
DI H ₂ O Blank	0.6
	0.6 mg (in 220 mls)
U1-1	4.6 mg
U2-1	1.9 mg
S1-1	7.8 mg
S2-1	6.8 mg
U1-2	2.2
U2-2	3.2 mg
S1-2	1.8 mg
S2-2	5.2 mg
	6.4 mg
U1-3	2.1 mg
U2-3	1.0 mg
S1-3	3.1 mg
S2-3	1.1 mg
	1.1 mg
U1-4	1.6 mg
U2-4	1.3 mg
S1-4	0.3 mg
S2-4	0.5 mg
U1-5	12
U2-5	1.2 mg
S1-5	1.2 mg
S2-5	7.9 mg
	3.4 mg
U1-6	1.3 mg
U2-6	2.0 mg
S1-6	0.6 mg
S2-6	1.0 mg

Client: Air Control Techniques

RFA #: 1756
Date Received: 10/31/12
Date Analyzed: 11/5/12

Analysis: JSC
Analysis: EPA M5
Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 DI H2O Nozzle Rinses, DI H2O Blank

Summary of Sample Prep:

The DI H_2O rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The DI H_2O rinses were evaporated in an oven at 105° C, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The DI H2O blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: Method:	Air Cont EPA M5	rol	Techi	niqu	es						RFA #:	1756	
Run Number					U1-1 Nozzle H₂O				U2-1 Nozzle H₂O			S1-1 Nozzle H ₂ O	
Filter Container #	Date	+	Init	_		_	Date	_		Date	_	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	#			#N/A #			#N/A #N/A	#N/A
Front ½ Rinse Container i	‡ Date	+	Init	_	1546	_	Date		1550	Date	-	2287	4
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 110	F ml)	3.4669 3.4665 3.4616 0.0049	(11/8/12 11/7/12 80	F ml)	3.5295 3.5291 3.5270 0.0021	11/8/12 11/7/12 100	F ml)	3,5322 3,5317 3,5236 0,0081	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 4.9 0.3 4.6				#N/A 2.1 0.2 1.9			#N/A 8.1 0.3 7.8	
FILTERABLE PARTICULA	ATE, mg.				4.6				1.9			7.8	

Legend:

F = Final Weight

Client: Method:	Air Conti EPA M5	rol '	Tech	nique	s					R	FA #:	1756
Run Number					S2-1 Nozzle H ₂ O				U1-2 Nozzle H₂O			U2-2 Nozzle H₂O
Filter Container #	Date	+	Init			-	Date	_		Date		
Baggie Tare Wt., g, Filter Tare Wt., g, FILTER SAMPLE WT., g.					#N/A #N/A	##			#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container #	Date	+	Init	_	58		Date		2437	Date		2483
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	r	JSC JSC 100	F ml)	3.5416 3.5412 3.5341 0.0071	(11/8/12 11/7/12 70	F ml) _	3.4413 3.4410 3.4376 0.0034	11/8/12 11/7/12 120	F ml)	3.6311 3.6307 3.6286 0.0021
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 7.1 0.3 6.8				#N/A 3.4 0.2 3.2			#N/A 2.1 0.3 1.8
FILTERABLE PARTICULA	TE, mg.				6.8				3.2			1.8

Legend:

F = Final Weight

Client: A Method: E		ol '	Techi	nique	s					Ri	FA #:	1756
Run Number					S1-2 Nozzle H₂O				S2-2 Nozzie H₂O			U1-3 Nozzle H₂O
Filter Container #	Date	+	Init			_	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##			#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container #	Date	+	Init	-	2366		Date	_	2788	Date		2308
Tare Wt., g. RINSE SAMPLE WT., g.	11/7/12 11/7/12	(JSC JSC 100	F ml)	3.5059 3.5055 3.5000 0.0055	(11/8/12 11/7/12 70	F ml) _	3.5835 3.5833 3.5767 0.0066	11/8/12 11/7/12 120	F ml)	3.4741 3.4740 3.4716 0.0024
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 5.5 0.3 5.2				#N/A 6.6 0.2 6.4			#N/A 2.4 0.3 2.1
FILTERABLE PARTICULAT	TE, mg.				5.2				6.4			2.1

Legend:

F = Final Weight

Client: A Method: E		ol Te	echn	iques						RE	A#:	1756
Run Number					U2-3 Nozzle H₂O				S1-3 Nozzle H₂O			S2-3 Nozzle H₂O
Filter Container #	Date	+	Init	-		_	Date			Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		Á		=	#N/A #N/A	##			#N/A #N/A ##			#N/A #N/A #N//
Front ¼ Rinse Container #	Date	+	Init	-	2478	_	Date	-	2305	Date	-	1567
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12		JSC JSC 90	F ml) _	3.5368 3.5363 3.5351 0.0012	(11/8/12 11/7/12 80	F ml) _	3.4844 3.4841 3.4808 0.0033	11/8/12 11/7/12 80	F ml)	3.6618 3.6616 3.6603 0.0013
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.2 0.2 1.0				#N/A 3.3 0.2 3.1			#N/A 1.3 0.2 1.1
FILTERABLE PARTICULAT	TE, mg.				1.0				3.1			1.1

Legend:

F = Final Weight

Client: A Method: 1	Air Contr EPA M5	ol T	echr	iques					RF	A#:	1756
Run Number					U1-4 Nozzle H₂O			U2-4 Nozzle H ₂ O			S1-4 Nozzle H₂O
Filter Container #	Date	+	Init	-	—.	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A ##		1	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container #	Date	+	Init	_	1633	Date	-	2419	Date	_	2804
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 90	F ml)	3.5794 3.5791 3.5773 0.0018	11/8/12 11/7/12 110	F ml) _	3.4920 3.4917 3.4901 0.0016	11/8/12 11/7/12 60	F ml)	3.8793 3.8790 3.8785 0.0005
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 1.8 0.2 1.6			#N/A 1.6 0.3 1.3			#N/A 0.5 0.2 0.3
FILTERABLE PARTICUL	ATE, mg.				1.6			1.3			0.3

Legend:

F = Final Weight

Client: A Method: El	ir Contr PA M5	ol 1	Techr	ique	s					RF	A #:	1756
Run Number					S2-4 Nozzle H ₂ O				U1-5 Nozzle H₂O			U2-5 Nozzle H₂O
Filter Container #	Date	1	Init			_	Date	_		Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		,			#N/A #N/A #	##		=	#N/A ##			#N/A #N/A
Front ½ Rinse Container #	Date	+	Init		1094	_	Date		1647	Date	-	2519
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 50	F F ml)	3.6606 3.6606 3.6600 0.0006	(11/8/12 11/7/12 80	F ml) _	3.5809 3.5808 3.5794 0.0014	11/8/12 11/7/12 60	F ml)	3.6042 3.6042 3.6028 0.0014
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 0.6 0.1 0.5				#N/A 1.4 0.2 1.2			#N/A 1.4 0.2 1.2
FILTERABLE PARTICULA	TE, mg.				0.5				1.2			1.2

Legend:

F = Final Weight

Client: A Method: El		ol 1	Techr	nique	s					RF	A#:	1756
Run Number					S1-5 Nozzle H ₂ O				S2-5 Nozzle H₂O			U1-6 Nozzle H₂O
Filter Container #	Date	1	Init	-		_	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A #	#		=	#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container #	Date	+	Init		481	_	Date		2058	Date		2825
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 90	F ml)	3.4705 3.4704 3.4623 0.0081	(11/8/12 11/7/12 80	F ml) _	3.6685 3.6682 3.6646 0.0036	11/8/12 11/7/12 70	F ml)	3.7768 3.7767 3.7752 0.0015
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 8.1 0.2 7.9				#N/A 3.6 0.2 3.4			#N/A 1.5 0.2 1.3
FILTERABLE PARTICULAT	TE, mg.				7.9				3.4			1.3

Legend:

F = Final Weight

Client: A Method: E		ol '	Techi	nique	s					RI	FA #:	1756
Run Number					U2-6 Nozzle H₂O				S1-6 Nozzle H₂O			S2-6 Nozzle H₂O
Filter Container #	Date	+	Init			_	Date	-		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		,			#N/A #N/A	##		=	#N/A #N/A ##			#N/A #N/A #N/
Front ½ Rinse Container # —	Date	+	Init	-	1422	_	Date	-	362	Date		645
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 90	F ml)	3.6810 3.6809 3.6787 0.0022	(11/8/12 11/7/12 100	F ml) _	3.6904 3.6905 3.6895 0.0009	11/8/12 11/7/12 100	F ml)	3.4845 3.4844 3.4831 0.0013
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 2.2 0.2 2.0				#N/A 0.9 0.3 0.6			#N/A 1.3 0.3 1.0
FILTERABLE PARTICULAT	TE, mg.				2.0				0.6			1.0

Legend:

F = Final Weight

RESOLUTION ANALYTICS, INC.

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756 Method: EPA M5

Report Summary

SAMPLE ID	ACETONE PROBE AND >2.5µg RINSE PARTICULATE
The state of the s	The state of the s
U1-1	9.1 mg
U2-1	5.7 mg
S1-1	5.1 mg
S2-1	5.7 mg
U1-2	5.7 mg
U2-2	3.7 mg
S1-2	3.8 mg
S2-2	7.2 mg
U1-3	4.5 mg
U2-3	4.2 mg
S1-3	3.7 mg
S2-3	11.3 mg
U1-4	3.5 mg
U2-4	3.3 mg
S1-4	2.2 mg
S2-4	2.7 mg
U1-5	4.4 mg
U2-5	1.9 mg
S1-5	2.1 mg
S2-5	3.3 mg
U1-6	3.8 mg
U2-6	4.4 mg
S1-6	2.6 mg
S2-6	2.5 mg

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

> Analyst: JSC Analysis: EPA M5 Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 Acetone Probe and >2.5µg Rinses, Acetone Blank

Summary of Sample Prep:

The acetone rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The acetone rinses were evaporated, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The acetone blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s):

0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: Method:	Air Contr EPA M5	ol T	echr	nique	es						RFA #:	1756	
Run Number				Pro	U1-1 be and >2.5µg Ac	eton	e	Pro	U2-1 obe and >2.5µg Aceton	e	Pro	S1-1 be and >2.5µg Ace	etone
Filter Container #	Date	+	Init			-	Date	_	—	Date	_		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	#			#N/A #			#N/A #N/A	#N/A
Front ½ Rinse Container # -		+	Init		1471	_	Date		498	Date	-	2113	
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12		JSC JSC 100	F ml)	3.5869 3.5866 3.5772 0.0094	(11/12/12 11/12/12 100	F F ml)	3.6456 3.6456 3.6396 0.0060	11/12/12 11/12/12 100	F ml)	3.7102 3.7097 3.7043 0.0054	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 9.4 0.3 9.1				#N/A 6.0 0.3 5.7			#N/A 5.4 0.3 5.1	
FILTERABLE PARTICULA	ATE, mg.				9.1				5.7			5.1	

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol Te	chni	ques					RI	FA #: 1	756
Run Number				S2-1 Probe and >2.5µg Ace	eton	е	Probe	U1-2 and >2.5µg Aceton	6	Probe a	U2-2 and >2.5µg Acetone
Filter Container #	Date	1	nit	-	_	Date	_		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				#N/A #N/A	##		Ξ	#N/A #N/A ##		=	#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	11	nit	1619	-	Date	-	1663	Date	-	509
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	JS	J. J.	3.6806 F 3.6801 3.6741 0.0060	ĺ	11/12/12 11/12/12 90	F ml) _	3.6092 3.6090 3.6030 0.0060	11/12/12 11/12/12 80	F ml)	3.6765 3.6762 3.6722 0.0040
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 6.0 0.3 5.7				#N/A 6.0 0.3 5.7			#N/A 4.0 0.3 3.7
FILTERABLE PARTICULA	TE, mg.			5.7				5.7			3.7

Legend:

F = Final Weight

Client: A Method: E	Air Contr EPA M5	ol 7	echi	niques						RI	FA #:	1756
Run Number				Probe	S1-2 and >2.5µg Ac	aton	e e	Probe	S2-2 and >2.5µg Aceton	е	Probe	U1-3 and >2.5µg Acetone
Filter Container #	Date	+	Init			-	Date			Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				Ξ	#N/A #N/A	##			#N/A #N/A ##		=	#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	1	Init	-	1649	_	Date	-	1601	Date	-	1489
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 120	F ml) _	3.5221 3.5218 3.5176 0.0042	(11/12/12 11/12/12 110	F ml) _	3.6622 3.6620 3.6545 0.0075	11/12/12 11/12/12 90	F ml) _	3.5483 3.5480 3.5432 0.0048
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 4.2 0.4 3.8				#N/A 7.5 0.3 7.2			#N/A 4.8 0.3 4.5
FILTERABLE PARTICULA	TE, mg.				3.8				7.2			4.5

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol Te	chn	iques						F	?FA #:	1756
Run Number				Probe a	U2-3 nd >2.5µg Ac	eton	10	Probe	S1-3 and >2.5µg Acete	one	Probe	S2-3 e and >2.5µg Acetone
Filter Container #	Date	1	Init	-			Date	_		Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		Ξ	#N/A #N/A ##	ŧ	9	#N/A #N/A #N/A
Front 1/4 Rinse Container :	# Date	+	Init		1676	-	Date	-	1441	Date	_,	2303
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J.		F ml)	3.7053 3.7050 3.7005 0.0045	(11/12/12 11/12/12 90	F F ml) _	3.5367 3.5367 3.5327 0.0040	11/12/12 11/12/12 100		3.5451 3.5448 3.5332 0.0116
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 4.5 0.3 4.2				#N/A 4.0 0.3 3.7			#N/A 11.6 0.3 11.3
FILTERABLE PARTICUL	ATE, mg.				4.2				3.7			11.3

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol Te	chni	iques					RI	FA #:	1756
Run Number				Probe ar	U1-4 nd >2.5µg Acetor	е	Probe	U2-4 and >2.5µg Aceton	e	Probe	S1-4 and >2.5µg Aceton
Filter Container #	Date	-	Init	-	 ,	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A ##		=	#N/A #N/A ##			#N/A #N/A #N/A
Front ¼ Rinse Container # -	Date	1	Init	_	2152	Date		1638	Date	-	654
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	J		F ml)	3.7532 3.7527 3.7490 0.0037	11/12/12 11/12/12 80	F ml)	3.6005 3.6008 3.5969 0.0036	11/12/12 11/12/12 70	F ml)_	3.7161 3.7159 3.7135 0.0024
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 3.7 0.2 3.5			#N/A 3.6 0.3 3.3			#N/A 2.4 0.2 2.2
FILTERABLE PARTICULA	TE, mg.				3.5			3.3			2.2

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol T	echr	niques						RI	FA #:	1756
Run Number				Probe a	S2-4 nd >2.5μg Ac	eton	6	Probe	U1-5 and >2.5µg Acetoi	ne	Prob	U2-5 e and >2.5µg Acetone
Filter Container #	Date	+	Init	_		-	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		-	#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	+	Init	-	1116	-	Date	-	2155	Date		637
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12	(JSC JSC 130	F ml)	3.3916 3.3914 3.3883 0.0031	ć	11/12/12 11/12/12 120	F ml) _	3.8702 3.8701 3.8653 0.0048	11/12/12 11/12/12 100	F ml)	3,7500 3,7499 3,7477 0,0022
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 3.1 0.4 2.7				#N/A 4.8 0.4 4.4			#N/A 2.2 0.3 1.9
FILTERABLE PARTICULA	ATE, mg.				2.7				4.4			1.9

Legend:

F = Final Weight

Client: A Method: E	Air Contr EPA M5	ol Te	echn	iques						RI	FA #:	1756
Run Number				Probe a	S1-5 and >2.5µg Ace	etone	e	Probe	S2-5 and >2.5µg Acetor	10	Probe	U1-6 and >2.5µg Acetone
Filter Container #	Date	+	Init	-			Date			Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		Ξ	#N/A #N/A ##		-	#N/A #N/A #N/A
Front ¼ Rinse Container #	Date	T	Init	_	1617	-	Date	-	414	Date		2637
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12		ISC ISC 70	F ml)	3.6853 3.6851 3.6828 0.0023	(11/12/12 11/12/12 110	F ml) _	3.7981 3.7978 3.7942 0.0036	11/12/12 11/12/12 70	F ml) _	3,5122 3,5120 3,5080 0,0040
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	A				#N/A 2.3 0.2 2.1				#N/A 3.6 0.3 3.3			#N/A 4.0 0.2 3.8
FILTERABLE PARTICULA	TE, mg.				2.1				3.3			3.8

Legend: F = Final Weight

Client: Method:	Air Contr EPA M5	ol T	echr	niques						RI	FA #:	1756
Run Number				Probe a	U2-6 and >2.5µg Ac	eton	0	Probe	S1-6 and >2.5µg Aceton	e	Prob	S2-6 e and >2.5µg Aceton
Filter Container #	Date	+	Init	-		-	Date		 .	Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		,		=	#N/A #N/A	##		=	#N/A #N/A ##			#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	+	Init	_	2464	_	Date		1527	Date	-;	1401
Tare Wt., g. RINSE SAMPLE WT., g.	11/12/12 11/12/12		JSC JSC 110	F ml)	3.6718 3.6716 3.6669 0.0047	(11/12/12 11/12/12 120	F ml) _	3.4494 3.4490 3.4460 0.0030	11/12/12 11/12/12 160	F ml)	3.4495 3.4490 3.4460 0.0030
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 4.7 0.3 4.4				#N/A 3.0 0.4 2.6			#N/A 3.0 0.5 2.5
FILTERABLE PARTICULA	NTE, mg.				4.4				2.6			2.5

Legend:

F = Final Weight

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756 Method: EPA M5

Report Summary

	H ₂ O PROBE AND >2.5μg RINSE
SAMPLE ID	PARTICULATE
U1-1	100
	14.6 mg
U2-1	9.3 mg
S1-1	12.4 mg
S2-1	9.2 mg
U1-2	5.5 mg
U2-2	4.1 mg
S1-2	7.7 mg
S2-2	4.3 mg
U1-3	5.4 mg
U2-3	3.2 mg
S1-3	5.9 mg
S2-3	2.8 mg
U1-4	4.1 mg
U2-4	4.0 mg
S1-4	4.8 mg
S2-4	3.1 mg
U1-5	5.2 mg
U2-5	3.5 mg
S1-5	8.7 mg
S2-5	8.7 mg
U1-6	3.5 mg
U2-6	2.1 mg
S1-6	4.1 mg
S2-6	2.2 mg

Client: Air Control Techniques

RFA#: 1756

Date Received: 10/31/12 Date Analyzed: 11/5/12

> Analyst: JSC Analysis: EPA M5

Analyte(s): Filterable PM

Analytical Narrative

Sample Matrix & Components:

Front 1/2 DI H2O Probe and >2.5µg Rinses, DI H2O Blank

Summary of Sample Prep:

The DI H_2O rinses were transferred to pre-tared teflon "baggies" in a low humidity environment. The DI H_2O rinses were evaporated in an oven at 105° C, then desiccated for 24 hours, after which time they were weighed daily every six hours until consecutive weights agreed within ± 0.5 mg.

All weights were recorded to the nearest 0.1 mg and include filterable particulate catch only. The DI H2O blank catch has been subtracted from sample rinse catches in proportion with their respective volumes.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA Method 5 analytical procedure were made. See data sheets for individual sample descriptions.

Client: Method:	Air Contr EPA M5	rol T	echi	nique	s						1.7	RFA	#: 1756	
Run Number				Pr	U1-1 obe and >2.5µg H	- VT 0 / P				U2-1 and >2.5µg H ₂ O		S1-1 Probe and >2.5µg H₂O		
Filter Container #	Date	+	Init			_	Date	_	_		Date	_	-	-
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.		,			#N/A #N/A	#			=	#N/A #			#N/A #N/A	- #N/A
Front ½ Rinse Container # -	Date	+	Init		1267	-	Date	4	-	772	Date	-	1694	
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12		JSC JSC 140	F ml)	3.9219 3.9217 3.9067 0.0150	(11/8/12 11/7/12 150	F ml)	_	3.4943 3.4941 3.4844 0.0097	11/8/12 11/7/12 180	F ml)	3,7712 3,7710 3,7581 0,0129	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 15.0 0.4 14.6					#N/A 9.7 0.4 9.3			#N/A 12.9 0.5 12.4	
FILTERABLE PARTICULA	ATE, mg.				14.6					9.3			12.4	

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol 1	Techi	nique	s					RE	FA #: 1	1756
Run Number				Pro	S2-1 obe and >2.5µg F	1 ₂O		Prob	U1-2 e and >2.5µg H₂O		Prob	U2-2 e and >2.5µg H₂O
Filter Container #	Date	1	Init	-		-	Date			Date		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A	##		Ξ	#N/A #N/A ##		=	#N/A #N/A #N//
Front ¼ Rinse Container # -	Date	+	Init		2157	_	Date	_ ; -	1534	Date	-	417
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	1	JSC JSC 160	F ml)	3.7231 3.7233 3.7135 0.0096	(11/8/12 11/7/12 90	F F ml) _	3.6239 3.6239 3.6182 0.0057	11/8/12 11/7/12 110	F ml) _	3.5227 3.5228 3.5183 0.0044
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 9.6 0.4 9.2				#N/A 5.7 0.2 5.5			#N/A 4.4 0.3 4.1
FILTERABLE PARTICULA	ATE, mg.				9.2				5.5			4.1

Legend: F = Final Weight

	Client: Air Control Techniques Method: EPA M5											RFA #: 1756			
Run Number				Prot	S1-2 ne and >2.5µg F	120		Prob	S2-2 e and >2.5µg H₂	,0		Prob	U1-3 e and >2.5µg H₂O		
Filter Container #	Date	-	Init	-		_	Date			_	Date	-			
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				-	#N/A #N/A	##		=	#N/A #N/A #	#		=	#N/A #N/A #N/		
Front ¼ Rinse Container # —	Date	-	Init	-	2645	-	Date	-	2154	_	Date	-	1379		
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 170	F ml) _	3.5346 3.5345 3.5263 0.0082	(11/8/12 11/7/12 180	F F ml) _	3.7191 3.7191 3.7143 0.0048	(:	11/8/12 11/7/12 170	F ml)_	3.5533 3.5535 3.5474 0.0059		
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 8.2 0.5 7.7				#N/A 4.8 0.5 4.3				#N/A 5.9 0.5 5.4		
FILTERABLE PARTICULA	TE, mg.				7.7				4.3				5.4		

Legend:

F = Final Weight

Client: Air Control Techniques Method: EPA M5											RFA #: 1756				
Run Number				Pro	U2-3 be and >2.5µg F	120		Prob	S1-3 e and >2.5µg H ₂ O		Prob	S2-3 e and >2.5µg H₂O			
Filter Container # —	Date	+	Init	_			Date			Date					
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		=	#N/A #N/A ##		5	#N/A #N/A #N/			
Front ½ Rinse Container # —	Date	+	Init		957	-	Date		704	Date	-	1235			
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	l	JSC JSC 110	F ml) _	3.5175 3.5176 3.5140 0.0035	(11/8/12 11/7/12 130	F F ml) _	3.7103 3.7103 3.7040 0.0063	11/8/12 11/7/12 150	F ml) _	3.3545 3.3547 3.3513 0.0032			
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 3.5 0.3 3.2				#N/A 6.3 0.4 5.9			#N/A 3.2 0.4 2.8			
FILTERABLE PARTICULA	TE, mg.				3.2				5.9			2.8			

Legend:

F = Final Weight

Client: Method:	Air Contr EPA M5	ol Teci	nniques					RF	A#: 1	756
Run Number			Pro	U1-4 be and >2.5µg H₂O		Prob	U2-4 e and >2.5µg H₂O		Probe	S1-4 and >2.5µg H₂O
Filter Container #	Date	Ini	_	—.	Date	_		Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.			:	#N/A #N/A ##		=	#N/A #N/A ##		Ξ	#N/A #N/A #N/A
Front ½ Rinse Container # -	Date	Init	_	1684	Date	_	1405	Date		2211
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	JS0 JS0 (120	F	3.6461 3.6460 3.6416 0.0044	11/8/12 11/7/12 100	F ml)	3.5345 3.5344 3.5301 0.0043	11/8/12 11/7/12 110	F ml)	3.5818 3.5816 3.5765 0.0051
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.				#N/A 4.4 0.3 4.1			#N/A 4.3 0.3 4.0			#N/A 5,1 0,3 4.8
FILTERABLE PARTICULA	TE, mg.			4.1			4.0			4.8

Legend: F = Final Weight

Client: Method:	Air Contr EPA M5	rol 7	echi	niques						RI	FA #:	1756
Run Number				Prob	S2-4 se and >2.5µg l	H ₂ O		Prob	U1-5 e and >2.5µg H₂O		Pro	U2-5 be and >2.5µg H₂O
Filter Container #	Date	+	Init	-		_	Date			Date	_	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		=	#N/A #N/A ##			#N/A #N/A #N/
Front ¼ Rinse Container # -	Date	+	Init	-	2377	-	Date	-	2559	Date		1089
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 150	F ml) _	3.3595 3.3594 3.3559 0.0035	(11/8/12 11/7/12 170	F F ml) _	3.5517 3.5517 3.5460 0.0057	11/8/12 11/7/12 150	F ml)_	3.4709 3.4707 3.4668 0.0039
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.	1				#N/A 3.5 0.4 3.1				#N/A 5.7 0.5 5.2			#N/A 3.9 0.4 3.5
FILTERABLE PARTICULA	TE, mg.				3.1				5.2			3.5

Legend:

F = Final Weight

Client: A Method: E		ol	Techi	niques	5					RFA #: 1756			
Run Number				Pro	S1-5 obe and >2.5µg F	120		Prob	S2-5 e and >2.5µg H₂O		Probe	U1-6 e and >2.5µg H₂O	
Filter Container #	Date	+	Init	_		-	Date	_		Date	_		
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.					#N/A #N/A	##		=	#N/A #N/A ##		Ξ	#N/A #N/A #N/	
Front ¼ Rinse Container # —	Date	-	Init		696		Date		2335	Date	-	1531	
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 170	F ml)	3.5385 3.5384 3.5292 0.0092	(11/8/12 11/7/12 170	F ml) _	3.3771 3.3768 3.3676 0.0092	11/8/12 11/7/12 110	F F ml)_	3.6765 3.6765 3.6727 0.0038	
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 9.2 0.5 8.7				#N/A 9.2 0.5 8.7			#N/A 3.8 0.3 3.5	
FILTERABLE PARTICULA	TE, mg.				8.7				8.7			3.5	

Legend:

F = Final Weight

Client: A Method: E		ol 1	Techi	niques						RI	A#: 1	756
Run Number				Prot	U2-6 e and >2.5µg F	120		Probi	S1-6 e and >2.5µg H₂O		Prob	S2-6 e and >2.5µg H₂O
Filter Container #	Date	4	Init	_		_	Date			Date	-	
Baggie Tare Wt., g. Filter Tare Wt., g. FILTER SAMPLE WT., g.				=	#N/A #N/A	##		=	#N/A #N/A ##		=	#N/A #N/A #N/
Front ¼ Rinse Container #	Date	+	Init		2427	-	Date		1221	Date		183
Tare Wt., g. RINSE SAMPLE WT., g.	11/8/12 11/7/12	(JSC JSC 100	F ml) _	3.3245 3.3240 3.3216 0.0024	(11/8/12 11/7/12 140	F ml) _	3.3836 3.3833 3.3788 0.0045	11/8/12 11/7/12 180	F F ml)_	3.6494 3.6494 3.6467 0.0027
Filter Catch, mg. Rinse Catch, mg. Rinse Blank Residue, mg. Net Rinse Catch, mg.					#N/A 2.4 0.3 2.1				#N/A 4.5 0.4 4.1			#N/A 2.7 0.5 2.2
FILTERABLE PARTICULA	TE, mg.				2.1				4.1			2.2

Legend:

F = Final Weight

Notes & Comments:

4/11/2016

REAGENT BLANK LABORATORY RESULTS

Client: A Method: E	Air Control T PA M5	echniq	ues		RFA #: 1756
Run Number				DI H2O Blank	
Sample ID/Contail	ner # Date	Init	_	2613	
Tare Wt., g. SAMPLE WT., g.	11/8/12 11/7/12	JSC JSC 220	F ml)	3.5415 3.5411 3.5405 0.0006	
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Upper Limit, mg	2613 3.5411 3.5405 0.6 220 1000.0 2.73E-06 /				

Notes & Comments:

REAGENT BLANK LABORATORY RESULTS

Client: A Method: E	Air Control T EPA M5	echniq	ues		RFA #: 1756
Run Number				Acetone Blank	
Sample ID/Contai	iner # Date	Init		1460	
Tare Wt., g. SAMPLE WT., g.	11/12/12 11/12/12 (JSC JSC 230	F ml)	3.5621 3.5619 3.5612 0.0007	
Blank Beaker # Final wt., mg. Tare wt., mg. Residue, mg. Volume, ml. Density, mg/ml Conc., mg/mg Upper Limit, mg	1460 3.5619 3.5612 0.7 230 785.0 3.88E-06 4 1.00E-05				

Notes & Comments:

Legend: F = Final Weight

石(びらなら / M5/17 Particulate Bench Sheet

Analyst: 72C		Mothod	RFA #: 145 to	Date Received: (0/3/1/2	03/12
Allen Joi: 100		Mediod	0	Date Analyzed: 1115	1115 (12
# 4018		Filter		Acetor	Acetone Rinse
	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volume
41-1		976-1400	0.1113		
42-1		- 1403	0.1181		
51-1		1901-	0.1175		
1-25		-1402	10.1167		
M-2		-1404	pt.11.0		
2-27		1405	0.1169		
51.2		-1408	0.1163		
2-25		-1407	0.1172		
2,2		-1409	0.1179		
42-3		-1400	0.1158		
51.3		11/11-	1211.0		
57-3		-1412	0.1164		
W1 - 4		-1413	0.1160		
n - 2n		1414	0.1171		
51. 4		-1415	0.1158		
52-4		-1416	PF11.0		
41.5		-1417	3.1167		
uz-5		-1418	2411.0		
51.05		-1419	0.1175		
52-5		-1420	0.1157		
41-6		12/11-	0-1171		
42-6		-1422	0.1163		
51.6		-1423	0.1168		
52.6		12/1-	0.1166		

No22UE Acetuves M5/17 Particulate Bench Sheet

RFA #: 1756

Date Received: 49/12 1/31/12

Analyst: JSC		Method: 5	5	Date Analyzed: 11/9/12	d: 11/9/12
# 41		Filter		Aceto	Acetone Rinse
	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volume
				2119	B
2-1				1048	40
				1612	70
7-7				1344	les
2-1				(1)	2
7-7				1213	09)
2-				63	200
7-7				73	ુ
11-3				1394	2
42-3				252	29
1.3				366	3
2-3				1359	40
١ - ل				1486	पृष्
2.4				2551	20
1-4				2156	25
7-4				2401	O) 485
1-5				(010)	40
2.5				(259	8
1.5				1340	
2.5				1017	40
١, ١				8671	40

230

1460

2162 1399

B 40 PROBE 20.2 ACETOMES

Sheet	
Bench	
Particulate	
M5/17	

Client: HC		RFA ;	RFA #: #4172	Date Received: 10/81/12	21/18/01:
Analyst: 15C		Method:	4	Date Analyzed: 11/9/12	21/6/17:
A COLO		Filter		Aceton	Acetone Rinse
# 1100	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volume
WI- J				1441	801
12-1				864	100
51-1				2113	00)
52-1				1619	(10
WI-2				1663	30
42-2				503	8
51.2				1649	(20
52-2				(40)	110
41-3				1489	90
uz-3				1676	90
51-3				1441	90
52-3				2303	100
W1-4				2152	20
42-4				1638	8
51. ط				434654	24
72-4				1116	130
41-5				2155	120
5-2n				637	00/
51.5				1617	20
52-5				<i>ħ1ħ</i>	(10
۲۰-۲				2637	25
42-6				2464	110
51-6				(527	(20
42.60				1001	160

\$ 2.5 A CETOMES

M5/17 Particulate Bench Sheet

Date Received: 16/3/ RFA #: 1356 Client: Act

Run #		Filter		Acetor	Acetone Rinse
	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volume
(1-1)				760	29
42-1				2631	50
51-1				<i></i>	20
52.1				2566	9
7-14				8th2	2
42-2				1536	50
51-2				8481	29
52.2				2533	30
UI-3				七991	30
42.3				1392	40
51-3				2339	8
52-3				2289	40
111-4				1231	38
42.4				1387	40
51-4				(585)	40
52-4				pt 52	94
41.5				248	29
42.5				1539	40
51.5				(355	30
52.5				181)	30
2-10				2618	40
uz. 6				4152	40
51.6				1023	38
52.6				224	UD UD

No 22LE $\#_2O'_5$ M5/17 Particulate Bench Sheet

Date Received: 10/3/1/12

Analyst: 350		Method:	2	Date Analyzed: 11 5	21/8/11:
# CE		Filter		Aceton	Acetone Rinse
	Baggie #	Filter #	Filter Tare		Rinse Volume
1-1				15%	0//
12-1				1550	8,0
51-1				4872	160
1-25				53858	001
2-14				2437	70
7-2n				2483	120
51-2				2366	100
2-25				88 tZ	25
41-3				2308	120
UZ-3				8th2	90
51-3				5082	80
52-3				1567	80
W1 - 4				1633	90
7-27				5419	011
10-15A				2804	09
7.75				1634	50
7-IN				1447	80
2-27				2519	60
51-5				181	90
52-5				2058	80
11-6				2825	20
12-6				1422	90
51-6				362	(00)
52.6				249	(00

祝み ナッセム Hzジ M5/17 Particulate Bench Sheet

Client: ACT		RFA#	RFA #: (156	Date Received: 10 (3)	1: 10(31/12
Analyst: 350		Method: 5	2	Date Analyzed: 11/5/12	1: 11/2/12
A sin A		Filter		Acetol	Acetone Rinse
# 1180	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volume
1-10				1267	140
1-27				7tt	150
51-1				p691	8
1-25				4512	160
2-12				1534	8
7-27				t/h	110
51-2				2645	170
52-2				2154	08
41-3				1379	2
42.3				957	1/0
51-3				tot	130
52-3				1235	52
アート				1689	02)
4-20				1405	100
51-4				2211	(10
52-4				££22	150
W1-5				2559	041
uz-5				1089	3
51-5				1636	3

3 3

1221 183

110

08

ム Ma. 2.5 Hっと 人 M5/17 Particulate Bench Sheet

Client: Acr		RFA#	RFA#: 1756	Date Received: 10/3/12	1: 10/31/12
Analyst: 3%		Method: 5	2	Date Analyzed: 11/6/17	11/6/17
A mild		Filter		Han Acetone Rinse	e-Rinse
# 1100	Baggie #	Filter #	Filter Tare	Baggie #	Rinse Volum
41-1				230	520
1-2n				72/07	3
51-1				12.56	72
-7				3121	60
W1-2				popi	30
7-27				九九	00)
51-42				2147	25
52-2				8621	00)
ス・ル				4143	
42.3				25	R
51.3				hh12	60
52-3				1451	60
١١١ - لا				1131	70
p-2n				1623	25
51-4				2174	80
7-75				1409	250
41.5				1359	20

32636

2452

4043

4/11/2016

70

M5/17 Particulate Bench Sheet

Rinse Volume Date Received: 10/31/12 Date Analyzed: 11/8/12 235 235 Ho Acetone-Rinse Baggie # 284 1562 2420 Method: (60.1, 160.7 Filter Tare 0-(235 0.1238 2011.0 RFA#: 1756 Filter # Filter 430-1005 479-1003 479-130d Baggie # 4:30 pm WS WHER 3:10 pm WS WATER 3:15 pm WS WATER Client: ACT Analyst: JSC Run # 0 24 12 21/200 2/52/0

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756

Method: EPA 160.1, 160.2

Report Summary

SAMPLE ID	TOTAL NON-FILTERABLE RESIDUE	TOTAL FILTERABLE RESIDUE
10/24/12 3:10pm WS Water	8.82 mg/L	4461 mg/L
10/24/12 4:30pm WS Water	2.13 mg/L	4296 mg/L
10/25/12 3:15pm WS Water	2.55 mg/L	4117 mg/L

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756
Date Received: 10/31/12
Date Analyzed: 11/8/12
Analyst: JSC

Analysis: EPA 160.1, 160.2

Analyte(s): Residue, Filterable And No

Analytical Narrative

Sample Matrix & Components:

Scrubber Effluent

Summary of Sample Prep:

All samples were volumed and filtered using a tared 47mm quartz filter. The filters were dried in an ov hour, cooled in a desiccator and weighed to constant weight. The waters were transferred to a tared we dried in an oven at 180° C, cooled in a desiccator, and weighed to constant weight. All weights were re 0.1 mg.

Summary of Instrumentation:

Denver model Pinnacle Series analytical balance

Analytical Detection Limit(s): 0.1 mg

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sam steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, toget justification and possible affect on results. Specify samples when applicable.)

No modifications to EPA 160.1 and 160.2 analytical procedures were made. See data sheets for individ descriptions.

PARTICULATE SAMPLING LABORATORY RESULTS

	Air Contro PA 160.1, 10		iques				RI	FA #:	1756
Run Number			10/24/12 3:10pm WS	Water	10/24/1	2 4:30pm WS Wa	ter	10/25/	12 3:15pm WS Water
Non-filterable Container # —	Date	Init	-	Date		-	Date		
Baggie Tare Wt., g. Filter Tare Wt., g. TSS SAMPLE WT., g.	11/12/12 11/12/12	JSC JSC	F 0.1255 0.0000 0.1238 0.0015	11/12/12	F	0.1242 0.1240 0.0000 0.1235 0.0005	11/12/12 11/12/12	F	0.1109 0.1108 0.0000 0.1102 0.0006
Filterable Container #	Date	Init	788	Date	_	2420	Date		1562
Tare Wt., g. TDS SAMPLE WT., g.	11/13/12 11/13/12	JSC JSC	F 4.3059 4.3056 3.5472 0.7584	11/13/12	F	4.3277 4.3279 3.3181 1.0096	11/13/12 11/13/12	F	4.4336 4.4337 3.4661 0.9675
olume of Sample Filtered,	ml		170	<u> </u>		235			235
Residue Non-filterable, mg	g/L		8.82			2.13			2.55
Residue Filterable, mg/L			4461			4296			4117

Legend: F = Final Weight

Notes & Comments:

OTM-036 Page 589 of 643 4/11/2016

APPENDIX F ANALYTICAL DATA RESOLUTION ANALYTICS ION CHROMATOGRAPHY – H₂O RINSES

CLIENT: AIR CONTROL TECHNIQUES, INC.

PROJECT: 1

1756

ANALYTICAL SERVICES PROVIDED:

 IC SCAN OF H2O SAMPLE COMPONENTS (ION CHROMATOGRAPHY)

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Date of Review:

November 20, 2012

J. Bruce Nemet

Quality Assurance Officer

www.resolutionanalytics.com 2733 Lee Avenue • Sanford, NC 27332 • Phone: 919-774-5557 • Fax: 919-776-6785

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756- Probe & > 2.5 µg H2O Rinses

Analysis: EPA Method 26/26A

Report Summary

		Analyte(s) (mg)
Sample ID	CI ₂	
U1-1	0.491	
U2-1	0.339	
S1-1	3.13	
S2-1	3.77	
U1-2	0.211	
U2-2	0.155	
S1-2	1.73	
S2-2	1.25	
U1-3	0.222	
U2-3	0.174	
S1-3	1.75	
S2-3	0.717	
U1-4	0.572	
U2-4	0.431	
S1-4	0.952	
S2-4	0.580	
U1-5	0.994	
U2-5	0.703	
S1-5	2.85	
S2-5	3.76	
U1-6	0.520	
U2-6	0.397	
S1-6	0.735	
S2-6	0.349	

^{*} EPA Audits are reported in mg/L CL-

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756- Probe & > 2.5 µg H2O Rinses

Date Received: 10/31/2012 Date Analyzed: 11/14/2012

Analyst: TCS

Analysis: EPA Method 26/26A

Analyte(s): Hydrogen Halides and Halogens

Analytical Narrative

Sample Matrix & Components:

H2O probe rinses

Summary of Sample Prep:

Samples were resuspended in 50 ml DI H2O and sonicated for 15 minutes prior to analysis by ion chromatography. See data for dilution factors used in analysis.

Summary of Instrumentation:

Dionex ICS-2100 ion chromatogragh IonPac AS20 4x250mm Eluent: 25mM KOH Suppressor current: 85 mA 25µl injection volume Flow rate: 1.25 mls/min

Temp: 30° C

Limits Of Quantification:

Limit of Detection Limit of Quantitation Analytical Uncertainty

0.003 mg/L Cl₂ 0.200 mg/L Cl₂ Cl₂ ± 0.4%

Summary Of QA Audit Sample Analysis:

See analytical data sheets for results of internal calibration verification standard results. All internal QC results within ±10 % limits.

Summary Sample Spike Analysis:

See Analytical data sheets for results of sample spike analyses. All spike results within 90% - 110% limits.

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

None

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756- Probe & > 2.5 µg H2O Rinses

Analysis: EPA Method 26/26A

Chlorine Analytical Data Sheet

Chloride Standard Ca	libration C	urve													
Standard Manufacturer:	AccuStandar	d				m ₂	: 2.38E	-04			R	2: 0	.9999995		
	211035184					m ₁	: 2.678	E-01				9			
Cr						b:	-1.74	E-02							% Deviation
	Ctende			A		0/							OF		
Conc.		rd Areas		Average		%							Cl		from
(mg/L)	Inj. 1	Inj. 2	П	Area	_	Diff.	1		-	_		-	(mg/L)	1	Actual
0.200	0.0410	0.0377	1 1	0.0394	1	4.19%	1		Ţ	Ţ		ų.	0.213		6.47%
4.00	1.0490	1.0471		1.0481		0.09%							3.98		-0.44%
20.0	5.4155	5.4074		5.4115		0.07%							20.0		0.03%
40.0	11.0753	10.9794		11.0274		0.43%							40.0		0.00%
Internal Calibration V	erification			-,											
Standard Manufacturer:	AccuSpec S110110006														
Lot ID.				Average		%	Expe		er				Actual Cl		%
	Inj. 1	Inj. 2		Area	_	Dev.	(m	g/L)	-	_		_	(mg/L)	1 1	Diff.
ICV Standard	2.0878	2.1110	1 1	2.0994	1	0.55%	8	.00	1	1		1	7.88	1 1	-1.44%
Field Samples												7			
													- Artista		
													SAMPLE		Cl2
SAMPLE	Inj. 1	Inj. 2		AVERAGE		%		JTION			CI		VOLUME		CATCH
ID	AREA	AREA	ND	AREA	_	Diff.	FAC	TOR	N	D	(mg/L)	_	(ml)	ND	(mg)
			1.1		1				1	1				1 1	
U1-1	2.6152	2.6330		2.6241		0.34%		1			9.822		50		0.491
U2-1	1.8014	1.7980		1.7997		0.09%		1			6.775		50		0.339
S1-1	8.5609	8.5873		8.5741		0.15%		2			62.697		50		3.13
S2-1	10.3346	10.4156		10.3751		0.39%		2			75.422		50		3.77
U1-2	1.1224	1.1020		1.1122		0.92%		1			4.221		50		0.211
U2-2	0.8158	0.8085		0.8122		0.45%		1			3.103		50		0.155
S1-2	9.4904	9.4963		9.4934		0.03%		1			34.604		50		1.73
S2-2	6.8047	6.7680		6.7864		0.27%		1			24.964		50		1.25
U1-3	1.1808	1.1561		1.1685		1.06%		1			4.431		50		0.222
U2-3	0.9109	0.9178		0.9144		0.38%		1			3.484		50		0.174
S1-3	9.5737	9.6369		9.6053		0.33%		1			35.000		50		1.75
S2-3	3.8516	3.8583		3.8550		0.09%		1			14.341		50		0.717
U1-4	3.0677	3.0606		3.0642		0.12%		1			11.442		50		0.572
U2-4	2.2909	2.3082		2.2996		0.38%		1			8.624		50		0.431
S1-4	5.1308	5.1625		5.1467		0.31%		1			19.046		50		0.952
S2-4	3.1095	3.1068		3.1082		0.04%		1			11.604		50		0.580
U1-5	5.3524	5.4009		5.3767		0.45%		1			19.880		50		0.994
U2-5	3.7623	3.7920		3.7772		0.39%		1			14.057		50		0.703
S1-5	7.7882	7.7425		7.7654		0.29%		2			56.937		50		2.85
S2-5	10.3101	10.3667		10.3384		0.27%		2			75.164		50		3.76
U1-6	2.7742	2.7839		2.7791		0.17%		1			10.393		50		0.520
	2.1215	2.1078		2.1147		0.32%		1			7.941		50		0.397
U2-6	2.12.10	m . 1 0 1 0													7.5 5.5
S1-6	3.9730	3.9319		3.9525		0.52%		1			14.698		50		0.735

Specialists in Air Emissions Analysis

Client: Air Control Techniques RFA #: 1756- Nozzle H2O Rinses Analysis: EPA Method 26/26A

Report Summary

		Analyte(s) (mg)	
Sample ID	Cl ₂	111111111111111111111111111111111111111	
U1-1	0.192		
U2-1	0.119		
S1-1	2.54		
S2-1	3.24		
U1-2	0.080		
U2-2	0.086		
S1-2	1.88		
S2-2	2.77		
U1-3	0.080		
U2-3	0.054		
S1-3	0.840		
S2-3	0.362		
U1-4	0.527		
U2-4	0.213		
S1-4	0.118		
S2-4	0.130		
U1-5	0.152		
U2-5	0.164		
S1-5	3.64		
S2-5	1.32		
U1-6	0.233		
U2-6	0.417		
S1-6	0.196		
S2-6	0.107		

^{*} EPA Audits are reported in mg/L CL-

Specialists in Air Emissions Analysis

Client: Air Control Techniques RFA #: 1756- Nozzle H2O Rinses

Date Received: 10/31/2012 Date Analyzed: 11/15/2012 Analyst: TCS

Analysis: EPA Method 26/26A

Analyte(s): Hydrogen Halides and Halogens

Analytical Narrative

Sample Matrix & Components:

H2O nozzle rinses

Summary of Sample Prep:

Samples were resuspended in 50 ml DI H2O and sonicated for 15 minutes prior to analysis by ion chromatography. See data for dilution factors used in analysis.

Summary of Instrumentation:

Dionex ICS-2100 ion chromatogragh IonPac AS20 4x250mm Eluent: 25mM KOH Suppressor current: 85 mA

25_{µl} injection volume Flow rate: 1.25 mls/min

Temp: 30° C

Limits Of Quantification:

Limit of Detection	Limit of Quantitation	Analytical Uncertainty
0.003 mg/L Cl ₂	0.200 mg/L Cl ₂	Cl ₂ ± 0.4%

Summary Of QA Audit Sample Analysis:

See analytical data sheets for results of internal calibration verification standard results. All internal QC results within ±10 % limits.

Summary Sample Spike Analysis:

See Analytical data sheets for results of sample spike analyses. All spike results within 90% - 110%

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

None

Specialists in Air Emissions Analysis

Client: Air Control Techniques RFA #: 1756- Nozzle H2O Rinses Analysis: EPA Method 26/26A

Chlorine Analytical Data Sheet

Chloride Standard Ca	alibration	Curve										
Standard Manufacturer: Lot ID:	AccuStanda 211035184	ard				2: 2.38E-04 1: 2.67E-01		F	₹²: (0.9999995		
					b	: -1.74E-02						
Cl												% Deviatio
Conc.	Stand	ard Areas		Average	%					CI		from
(mg/L)	Inj. 1	Inj. 2		Area	Diff.					(mg/L)		Actual
							T		T	(111312)		7 lotteren
0.200	0.0410	0.0377	7	0.0394	4.19%		2 2			0.213		6.47%
4.00	1.0490	1.0471		1.0481	0.09%					3.98		-0.44%
20.0	5.4155	5.4074		5.4115	0.07%					20.0		0.03%
40.0	11.0753	10.9794		11.0274	0.43%					40.0		0.00%
Internal Calibration V	erification											
Standard Manufacturer:												
Lot ID:	S11011000	8		A Charleston						Territoria		
	Inj. 1	Inj. 2		Average Area	% Dev.	Expected ((mg/L))			Actual Cl (mg/L)		% Diff.
ICV Standard	2.0448	2.0709	П	2.0570	0.639/		T		Т			2 222
	2,0440	2.0709		2.0579	0.63%	8.00				7.73		-3.36%
Field Samples												
										SAMPLE		Cl2
SAMPLE	Inj. 1	Inj. 2		AVERAGE	%	DILUTION	1	CI.		VOLUME		CATCH
ID	AREA	AREA	ND	AREA	Diff.	FACTOR	ND	(mg/L)		(ml)	ND	(mg)
			11				11		T			
U1-1	1.0119	1.0069		1.0094	0.25%	- 5		0.000				1.11
U2-1	0.6228	0.6180				1		3.838		50		0.192
S1-1				0.6204	0.39%	1		2.387		50		0.119
	6.8923	6.9128		6.9026	0.15%	2		50.762		50		2.54
S2-1	8.8794	8.8771		8.8783	0.01%	2		64.855		50		3.24
U1-2	0.4102	0.4040		0.4071	0.76%	1		1.590		50		0.080
U2-2	0.4455	0.4412		0.4434	0.48%	1		1.726		50		0.086
S1-2	10.3786	10.3595		10.3691	0.09%	1		37.690		50		1.88
S2-2	7.5454	7.5515		7.5485	0.04%	2		55.388		50		2.77
U1-3	0.4116	0.4088		0.4102	0.34%	1		1.602		50		0.080
U2-3	0.2712	0.2689		0.2701	0.43%	1		1.077		50		0.054
S1-3	4.5374	4.5145		4.5260	0.25%	1		16.790		50		0.840
S2-3	1.9170	1.9321		1.9246	0.39%	1		7.238		50		0.362
U1-4	2.8131	2.8296		2.8214	0.29%	1		10.549		50		0.527
U2-4	1.1198	1.1278		1.1238	0.36%	1		4.264		50		0.213
S1-4	0.6105	0.6116		0.6111	0.09%	1		2.352		50		0.118
S2-4	0.6742	0.6805		0.6774	0.47%	1		2.600		50		0.130
U1-5	0.7961	0.7984		0.7973	0.14%	1		3.048		50		0.152
U2-5	0.8606	0.8592		0.8599	0.08%	1		3.281		50		0.164
S1-5	10.0002	9.9969		9.9986	0.02%	2		72.773		50		3.64
S2-5	7.2057	7.1703		7.1880	0.25%	1		26.404		50		1.32
		4 0040		1.2307	0.04%	1		4.662		50		0.233
U1-6	1.2302	1.2312		1.2307	0.0470	1		1.002		00		
U1-6 U2-6	1.2302 2.2260	2.2213		2.2237	0.11%	1		8.344		50		0.417

Specialists in Air Emissions Analysis

Client: Air Control Techniques RFA #: 1756- ≤ 2.5 µm H2O Rinses

Analysis: EPA Method 26/26A

Report Summary

		Analyte(s) (mg)
Sample ID	CI ₂	
DI H ₂ O Blank	< 0.011	
114.4	0.000	
U1-1	0.026	
U2-1	0.019	
S1-1	0.219	
S2-1	0.486	
U1-2	0.031	
U2-2	0.025	
S1-2	0.126	
S2-2	0.120	
U1-3	0.017	
U2-3	0.023	
S1-3	0.129	
S2-3	0.191	
U1-4	0.042	
U2-4	0.030	
S1-4	0.070	
S2-4	0.046	
U1-5	0.030	
U2-5	0.030	
S1-5	0.084	
S2-5	0.051	
U1-6	0.028	
U2-6	0.034	
S1-6	0.026	
S2-6	0.058	

^{*} EPA Audits are reported in mg/L CL-

Specialists in Air Emissions Analysis

Client: Air Control Techniques RFA #: 1756- ≤ 2.5 µm H2O Rinses

Date Received: 10/31/2012 Date Analyzed: 11/13/2012 Analyst: TCS

Analysis: EPA Method 26/26A

Analyte(s): Hydrogen Halides and Halogens

Analytical Narrative

Sample Matrix & Components:

H2O rinses

Summary of Sample Prep:

Samples were resuspended in 50 ml DI H2O and sonicated for 15 minutes prior to analysis by ion chromatography. See data for dilution factors used in analysis.

Summary of Instrumentation:

Dionex ICS-2100 ion chromatogragh IonPac AS20 4x250mm Eluent: 25mM KOH

Suppressor current: 85 mA

25µl injection volume Flow rate: 1.25 mls/min

Temp: 30° C

Limits Of Quantification:

Limit of Detection	Limit of Quantitation	Analytical Uncertainty
0.003 mg/L Cl ₂	0.200 mg/L Cl ₂	Cl ₂ ± 0.4%

Summary Of QA Audit Sample Analysis:

See analytical data sheets for results of internal calibration verification standard results. All internal QC results within $\pm 10\%$ limits.

Summary Sample Spike Analysis:

See Analytical data sheets for results of sample spike analyses. All spike results within 90% - 110% limits

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

None

Specialists in Air Emissions Analysis

U1-3

U2-3

S1-3

S2-3

U1-4

U2-4

S1-4

S2-4

U1-5

U2-5

S1-5

S2-5

U1-6

U2-6

S1-6

OTM-036-6

0.0745

0.1046

0.6767

1,0076

0.2059

0.1425

0.3565

0.2290

0.1440

0.1397

0.4283

0.2537

0.1309

0.1610

0.1218

0.2946

0.0742

0.1063

0.6674

1.0061

0.2067

0.1426

0.3570

0.2282

0.1453

0.1403

0.4293

0.2545

0.1335

0.1630

0.1229

0.2924

0.0744

0.1055

0.6721

1.0069

0.2063

0.1426

0.3568

0.2286

0.1447

0.1400

0.4288

0.2541

0.1322

0.1620

0.1224

0.20%

0.81%

0.69%

0.07%

0.19%

0.04%

0.07%

0.17%

0.45%

0.21%

0.12%

0.16%

0.98%

0.62%

0.45%

0.2935Page 600%f 643

1

1

1

0.344

0.461

2.580

3,829

0.839

0.600

1.402

0.922

0.608

0.590

1.671

1.018

0.561

0.673

0.524

1.165

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

0.017

0.023

0.129

0.191

0.042

0.030

0.070

0.046

0.030

0.030

0.084

0.051

0.028

0.034

0.026

0.045\$1/2016

Client: Air Control Techniques RFA #: 1756- ≤ 2.5 µm H2O Rinses Analysis: EPA Method 26/26A

Chloride Standard C	alibration C	urve							200				
Standard Manufacturer: Lot ID:	AccuStandar 211035184	d				m,	2.38E-04 2.67E-01 -1.74E-02		F	2.	0.999995		
Cl' Conc. (mg/L)	Standa Inj. 1	rd Areas Inj. 2		Average Area		% Diff.	1,112.02				Ci' (mg/L)		% Deviatio from Actual
0.200 4.00 20.0 40.0	0.0410 1.0490 5.4155 11.0753	0.0377 1.0471 5.4074 10.9794	1 1	0.0394 1.0481 5.4115 11.0274	1	4.19% 0.09% 0.07% 0.43%	1			1	0.213 3.98 20.0 40.0	1	6.47% -0.44% 0.03% 0.00%
Internal Calibration	/erification												
Standard Manufacturer: Lot ID:	AccuSpec S110110006	Inj. 2		Average Area		% Dev.	Expected (mg/L)	cr			Actual CI (mg/L)		% Diff.
ICV Standard	2.0995	2.0930	1 1	2.0963	1	0,16%	8.00	1		1	7.87	1-1	-1.59%
Matrix Spike													
Sample I.D.	Inj. 1	lnj. 2		Average Area		% Dev.	Spike C (mg/L)		Sample C	r	Calc.Cl ⁻ (mg/L)		% Recovery
S2-6 Note:		5.5448 mls of the mls of a	above	5.5528 e sample w 40.			20,5 ith ride standar	d.	1.17	1	20.6	1 1	99.7%
Field Samples													
SAMPLE ID	Inj. 1 AREA	Inj. 2 AREA	ND	AVERAGE AREA		% Diff.	DILUTIO		Cl' (mg/L)		SAMPLE VOLUME (ml)	ND	CI ₂ CATCH (mg)
DI H2O Blank	0.0026	0.0022	<	0.0394	1	NA	1	<	0.213	T	50	<	0.011
U1-1 U2-1 S1-1 S2-1	0.1194 0.0874 1.1546 2.5888	0.1185 0.0854 1.1545 2.6024		0.1190 0.0864 1.1546 2.5956		0.38% 1.16% 0.00% 0.26%	1 1 1		0.511 0.389 4.379 9.717		50 50 50		0.026 0.019 0.219 0.486
U1-2 U2-2 S1-2 S2-2	0.1516 0.1159 0.6561 0.6253	0.1487 0.1143 0.6579 0.6248		0.1502 0.1151 0.6570 0.6251		0.97% 0.70% 0.14% 0.04%	1 1 1 1		0,628 0.497 2.524 2.405		50 50 50		0.031 0.025 0.126
W. W.	0.0200	0.0240		0.0201		0.0470			2.400		50		0.120

RESOLUTION ANALYTICS, INC. Specialists in High Performance Liquid Chromatography

REPORT SUMMARY ROUS

RFA#: 1756

SAMPLE ID	≤ 2.5 μm	Probe Rinse	Nozzle & > 2.5 μm
DI H2O BLANK	0.092 mg		
U1-1	0.038 mg	0.410 mg	0.228 mg
U2-1	0.069 mg	0.250 mg	0.135 mg
S1-1	0.177 mg	2.19 mg	1.79 mg
S2-1	0.345 mg	2.43 mg	2.19 mg
U1-2	0.051 mg	0.152 mg	0.123 mg
U2-2	0.070 mg	0.160 mg	0.099 mg
S1-2	0.167 mg	1.10 mg	1.16 mg
S2-2	0.092 mg	0.751 mg	1.92 mg
U1-3	0.043 mg	0.243 mg	0.106 mg
U2-3	0.084 mg	0.156 mg	0.091 mg
S1-3	0.144 mg	1.04 mg	0.543 mg
S2-3	0.289 mg	0.455 mg	0.261 mg
U1-4	0.093 mg	0.428 mg	0.376 mg
U2-4	0.098 mg	0.296 mg	0.221 mg
S1-4	0.130 mg	0.679 mg	0.113 mg
S2-4	0.097 mg	0.394 mg	0.114 mg
U1-5	0.086 mg	0.672 mg	0.196 mg
U2-5	0.070 mg	0.478 mg	0.137 mg
S1-5	0.101 mg	1.82 mg	2.33 mg
S2-5	0.089 mg	2.43 mg	0.779 mg
U1-6	0.056 mg	0.369 mg	0.242 mg
U2-6	0.060 mg	0.278 mg	0.287 mg
S1-6	0.058 mg	0.463 mg	0.135 mg
S2-6	0.117 mg	0.238 mg	0.103 mg
TM-036		Page 601 of 643	

Analytical Narrative RFA # 1756

Page 1 of 1

Client/Plant Name: Air Control Techniques

Date Rec'd in lab: 10/31/2012

Analyst: TCS

Date of Analysis: 11/16/2012

Analysis Method: Ion Chromatography

Analyte(s): Na

Sample Matrix & Components:

H20 rinse samples.

Summary of Sample Prep:

Samples were re-suspended in 50 ml of DI H2O and sonicated for 15 minutes prior to analysis by ion chromatography.

Summary of Instrumentation:

Shimadzu CDD-6A. Hamilton PRP-X200 250x4.1mm 20 µl Inj. Eluent: 5.7 mM HNO3

Flow Rate: 1.75 mls/min

Temp: 40°C

Limit(s) of Quantification: 1.20 ppm Na

Summary of QA Audit Sample Analysis:

Gain 0.2 µS/cm

See Analytical Data Sheets for results of internal QC audit results. (All internal QC results were within ±10% limits.)

Summary of Sample Spike Analysis:

See Analytical Data Sheets for results of sample spike analyses. (All spike results were within 90-110% recovery limits.)

Miscellaneous Comments Regarding Sample Analysis: (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

1. All samples were blank-corrected to account for background levels of sodium found in DI H2O.

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Lab QA Officer Signature	Date
Control of the contro	

Sodium Analytical Data Sheet

Client Name: File Pathway: Analyst:

Air Control Techniques C:\JOBS\ACT\1756\LESS THAN 2PT5.WB1 TCS

Job Num. File:

1756

Date:

Less Than 2pt5 11/13/2012

	oodidii o	tandard Cal	ibration cui	rve by Line	ar Regres	sion	%
Na Conc. (ppm)	Standa Inj. 1	ard Areas Inj. 2	Average Area	% Diff.		Calculated Std Conc. (ppm)	Deviation from Actual
1.25	82326	79160	80743	1.96%		1.20	-3.65%
5.00	321662	314363	318013	1.15%		4.94	-1.28%
20.0	1289664	1287450	1288557	0.09%		20.2	1.00%
40.0	2484038	2599314	2541676	2.27%		39.9	-0.23%
Standard Curve		Slope:	63582	Y-Int:	4170	LoQ (ppm):	1.20

		Field Sam	ples in:	DI H2O			
	Inj. 1 AREA	Inj. 2 AREA	AVERAGE AREA	% Diff.	DILUTION FACTOR	SAMPLE VOLUME (ml)	Na CATCH (mg)
DI H2O Blank	123389	118754	121072	1.91%	1	50	0.092
U1-1	170754	168523	169639	0.66%	1	50	0.038
U2-1	211511	205402	208457	1.47%	1	50	0.069
S1-1	330242	362538	346390	4.66%	1	50	0.177
S2-1	550929	568695	559812	1.59%	1	50	0.345
U1-2	184038	188248	186143	1.13%	1	50	0.051
U2-2	208508	212569	210539	0.96%	1	50	0.070
S1-2	326428	340424	333426	2.10%	1	50	0.167
S2-2	242288	234034	238161	1.73%	1	50	0.092
U1-3	175652	175925	175789	0.08%	1	50	0.043
U2-3	229711	225296	227504	0.97%	1	50	0.084
S1-3	310978	298554	304766	2.04%	1	50	0.144
S2-3	488551	487834	488193	0.07%	1	50	0.289
U1-4	235036	243173	239105	1.70%	1	50	0.093
U2-4	245956	246536	246246	0.12%	1	50	0.098
S1-4	283151	289788	286470	1.16%	1	50	0.130
S2-4	244510	245129	244820	0.13%	1	50	0.097
U1-5	225068	235874	230471	2.34%	1	50	0.086
U2-5	210579	210600	210590	0.00%	1	50	0.070
S1-5	246745	252470	249608	1.15%	1	50	0.101
S2-5	238541	229238	233890	1.99%	1	50	0.089
U1-6	191024	192810	191917	0.47%	1	50	0.056
U2-6	200439	195137	197788	1.34%	1	50	0.060
S1-6	192333	197442	194888	1.31%	1	50	0.058
S2-6	279710	259137	269424	3.82%	1	50	0.117

***** AUDIT REPORT	****						
	Inj. 1	Inj. 2	Average Area	% Dev.	Expected ppm Na	Calculated ppm Na	Percent Diff.
IN-HOUSE AUDIT	258218	250310	254264	1.56%	4.00	3.93	-1.66%

MATRIX SPIKE			Average	%	Expected	Calculated	0/2
Sample I.D.	Inj. 1	Inj. 2	Area	Dev.	ppm Na	ppm Na	Recovery
S2-6	694399	644739	669569	3.71%	10.0	9.34	93.4%
Note:	0.50	mls of the a	bove sample	e was spike	ed with		
OTM-036	0.50	mls of a	20.0	ppm sodiu	ım standard.		4/

Sodium Analytical Data Sheet

Client Name: Air Control Techniques Job Num. 1756
File Pathway: C:\JOBS\ACT\1756\NOZZLE RINSE.WB1 File: Nozzle Rinse
Analyst: TCS Date: 11/16/2012

Na Conc.	Standa	ard Areas	Average	%		Calculated Std Conc.	% Deviation from
(ppm)	lnj. 1	Inj. 2	Area	Diff.		(ppm)	Actual
1.25	82326	79160	80743	1.96%		1.20	-3.65%
5.00	321662	314363	318013	1.15%		4.94	-1.28%
20.0	1289664	1287450	1288557	0.09%		20.2	1.00%
40.0	2484038	2599314	2541676	2.27%		39.9	-0.23%
Standard Curve		Slope:	63582	Y-Int:	4170	LoQ (ppm):	1.20

Standard Curve		Slope:	63382	Y-Int	4170	LoQ (ppm):	1.20
		Field Samp	oles in:	DI H2O			
SAMPLE ID	Inj. 1 AREA	Inj. 2 AREA	AVERAGE AREA	% Diff.	DILUTION FACTOR	SAMPLE VOLUME (ml)	Na CATCH (mg)
	1	1			1		
U1-1	402197	418903	410550	2.03%	1	50	0.228
U2-1	289476	295398	292437	1.01%	i	50	0.135
S1-1	1208849	1187327	1198088	0.90%	2	50	1.79
S2-1	1459147	1452446	1455797	0.23%	2	50	2.19
U1-2	277674	278607	278141	0.17%	1	50	0.123
U2-2	240735	253491	247113	2.58%	1	50	0.099
S1-2	1605041	1575723	1590382	0.92%	1	50	1.16
S2-2	1291024	1271312	1281168	0.77%	2	50	1.92
U1-3	255094	256767	255931	0.33%	1	50	0.106
U2-3	240825	232794	236810	1.70%	1	50	0.091
S1-3	817816	804732	811274	0.81%	1	50	0.543
S2-3	463714	443294	453504	2.25%	1	50	0.261
U1-4	592272	606304	599288	1.17%	1	50	0.376
U2-4	398515	405544	402030	0.87%	1	50	0.221
S1-4	258265	272129	265197	2.61%	1	50	0.113
S2-4	269080	264253	266667	0.91%	1	50	0.114
U1-5	379571	362470	371021	2.30%	1	50	0.196
U2-5	309576	280204	294890	4.98%	1	50	0.137
S1-5	1501513	1586342	1543928	2.75%	2	50	2.33
S2-5	1119696	1102934	1111315	0.75%	1	50	0.779
U1-6	429669	428607	429138	0.12%	1	50	0.242
U2-6	478385	493982	486184	1.60%	1	50	0.287
S1-6	298996	286027	292512	2.22%	1	50	0.135
S2-6	256229	247083	251656	1.82%	1	50	0.103
**** AUDIT REPORT	****						
7 AND A CO. O. Sept. 7 A Sept. 1			Average	%	Expected	Calculated	Percent
	Inj. 1	Inj. 2	Area	Dev.	ppm Na	ppm Na	Diff.
IN-HOUSE AUDIT	264690	277021	270856	2.28%	4.00	4.19	4.86%

Sodium Analytical Data Sheet

Client Name:	Air Control Techniques C:\JOBS\ACT\1756\PROBE RINSE.WB1	Job Num.	1756
File Pathway:		File:	Probe Rinse
Analyst:	TCS	Date:	11/16/2012

Na Conc.	Standa	ard Areas	Average	%		Calculated Std Conc.	% Deviation from
(ppm)	Inj. 1	Inj. 2	Area	Diff.		(ppm)	Actual
1.25	82326	79160	80743	1.96%		1.20	-3.65%
5.00	321662	314363	318013	1.15%		4.94	-1.28%
20.0	1289664	1287450	1288557	0.09%		20.2	1.00%
40.0	2484038	2599314	2541676	2.27%		39.9	-0.23%
Standard Curve		Slope:	63582	Y-Int:	4170	LoQ (ppm):	1.20

		Field Samp	oles in:	DI H2O			
SAMPLE ID	Inj. 1 AREA	Inj. 2 AREA	AVERAGE AREA	% Diff.	DILUTION FACTOR	SAMPLE VOLUME (ml)	Na CATCH (mg)
	1				1	1	
U1-1	635732	649882	642807	1.10%	1	50	0.410
U2-1	440803	438390	439597	0.27%	1	50	0.250
S1-1	1456907	1458386	1457647	0.05%	2	50	2.19
S2-1	1590676	1621980	1606328	0.97%	2	50	2,43
U1-2	327962	302188	315075	4.09%	1	50	0.152
U2-2	322053	326039	324046	0.62%	1	50	0.160
S1-2	1524564	1507841	1516203	0.55%	1	50	1.10
S2-2	1079039	1073692	1076366	0.25%	1	50	0.751
U1-3	432165	428570	430368	0.42%	1	50	0.243
U2-3	313869	324610	319240	1.68%	1	50	0.156
S1-3	1454454	1444469	1449462	0.34%	1	50	1.04
S2-3	692765	707228	699997	1.03%	1	50	0.455
U1-4	668949	662707	665828	0.47%	1	50	0.428
U2-4	483618	511524	497571	2.80%	1	50	0.296
S1-4	980712	988400	984556	0.39%	1	50	0.679
S2-4	622058	623469	622764	0.11%	1	50	0.394
U1-5	988669	961467	975068	1.39%	1	50	0.672
U2-5	726589	731730	729160	0.35%	1	50	0.478
S1-5	1191704	1249003	1220354	2.35%	2 2	50	1.82
S2-5	1595293	1618303	1606798	0.72%	2	50	2.43
U1-6	587330	593443	590387	0.52%	1	50	0.369
U2-6	477372	472485	474929	0.51%	1	50	0.278
S1-6	704465	716363	710414	0.84%	1	50	0.463
S2-6	428205	419901	424053	0.98%	1	50	0.238
**** AUDIT REPORT	****						
	lnj. 1	Inj. 2	Average Area	% Dev.	Expected ppm Na	Calculated ppm Na	Percent Diff.
IN-HOUSE AUDIT	250310	264690	257500	2.79%	4.00	3.98	-0.39%

APPENDIX G ANALYTICAL DATA RESOLUTION ANALYTICS CHLORIDES ON FILTERS

CLIENT: AIR CONTROL TECHNIQUES, INC.

PROJECT: 1756

ANALYTICAL SERVICES PROVIDED:

 CL ON FILTERS (ION CHROMATOGRAPHY)

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Date of Review: November 29, 2012

Brue Plone

J. Bruce Nemet

Quality Assurance Officer

www.resolutionanalytics.com 2733 Lee Avenue • Sanford, NC 27332 • Phone: 919-774-5557 • Fax: 919-776-6785

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA#: 1756- Filters

Analysis: EPA Method 26/26A

Report Summary

		Analyte(s) (mg)
Sample ID	CI	
U1-1	2.06	
U2-1	2.43	
S1-1	23.8	
S2-1	24.8	
U1-2	0.824	
U2-2	0.670	
S1-2	20.9	
S2-2	16.5	
U1-3	1.01	
U2-3	1.03	
S1-3	9.34	
S2-3	6.61	
U1-4	1.05	
U2-4	0.940	
S1-4	3.11	
S2-4	3.57	
U1-5	1.45	
U2-5	1.49	
S1-5	23.9	
S2-5	3.30	
U1-6	2.64	
U2-6	2.59	
S1-6	6.91	
S2-6	0.898	

^{*} EPA Audits are reported in mg/L CL-

Specialists in Air Emissions Analysis

Client: Air Control Techniques

RFA #: 1756- Filters
Date Received: 10/31/2012
Date Analyzed: 11/27/2012

Analyst: TCS

Analysis: EPA Method 26/26A

Analyte(s): Hydrogen Halides and Halogens

Analytical Narrative

Sample Matrix & Components:

Filters in DI H2O

Summary of Sample Prep:

Filters were desorbed in 20 ml Dl H2O, sonicated for 15 minutes and homogenized prior to analysis by ion chromatography. See data for dilution factors used in analysis.

Summary of Instrumentation:

Dionex ICS-2100 ion chromatogragh IonPac AS20 4x250mm Eluent: 25mM KOH Suppressor current: 85 mA 25µl injection volume Flow rate: 1.25 mls/min

Temp: 30° C

Limits Of Quantification:

Limit of Detection	Limit of Quantitation	Analytical Uncertainty
0.003 mg/L Cl ₂	0.200 mg/L Cl ₂	Cl ₂ ± 0.4%

Summary Of QA Audit Sample Analysis:

See analytical data sheets for results of internal calibration verification standard results. All internal QC results within $\pm 10\%$ limits.

Summary Sample Spike Analysis:

See Analytical data sheets for results of sample spike analyses. All spike results within 90% - 110% limits

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

None

Specialists in Air Emissions Analysis

S2-6

6.1035

6.0703

Client: Air Control Techniques

RFA #: 1756- Filters Analysis: EPA Method 26/26A

Chloride Analytical Data Sheet

		Curve			_			_				
Standard Manufacturer:	AccuStand	ard				m ₂	2.38E-04		R2:	0.9999995		
Lot ID:	211035184						2.67E-01					
O.						b:	-1.74E-02					
Cl	0.00	and the										% Deviation
Conc.		dard Areas		Average		%				CI		from
(mg/L)	Inj. 1	Inj. 2	_	Area	_	Diff.	_	_		(mg/L)	_	Actual
0.200	0.0410	0.0377	1 1	0.0394	1	4.19%	1	1	1 1	0.213	1	6.47%
4.00	1.0490	1.0471		1.0481		0.09%				3.98		-0.44%
20.0	5.4155	5.4074		5.4115		0.07%				20.0		0.03%
40.0	11.0753	10.9794		11.0274		0.43%				40.0		0.00%
nternal Calibration V	erification	1										
Standard Manufacturer:	AccuSpec S11011000	6										
				Average		%	Expected C	CT.		Actual Cl		%
	Inj. 1	lnj. 2		Area	Т	Dev.	(mg/L)	_		(mg/L)	-	Diff.
ICV Standard	2.0512	2.1315	1 1	2.0914	1	1.92%	8.00	1	1	7.85	1 1	-1.81%
Field Samples												
										SAMPLE		CI
SAMPLE	Inj. 1	Inj. 2		AVERAGE		%	DILUTION	1	Cl	VOLUME		CATCH
ID	AREA	AREA	ND	AREA	_	Diff.	FACTOR	NI	(mg/L)	(ml)	ND	(mg)
			1 1		1			I	į į			
U1-1	7.0284	6.9898		7.0091		0.28%	4		103.053	20		2.06
U2-1	8.3274	8.2885		8.3080		0.23%	4		121.609	20		2.43
S1-1	3.1435	3.2258		3.1847		1.29%	100		1188.471	20		23.8
S2-1	3.3323	3.3261		3.3292		0.09%	100		1241.538	20		24.8
U1-2												
U2-2	5.5704 9.2121	5.5799 9.1592		5.5752		0.09%	2		41.197	20		0.824
S1-2	2.7820	2.7995		9.1857 2.7908		0.29%	1		33.517	20		0.670
S2-2	2.2626	2.1230		2.1928		0.31%	100		1043.609 823.000	20 20		20.9 16.5
U1-3	6.8634	6.8977		6.8806		0.25%	2		50.604	20		1.01
U2-3	7.0302	7.0240		7.0271		0.04%	2		51.655	20		1.03
S1-3	1.2331	1.2334		1.2333		0.01%	100		467,177	20		9.34
S2-3	9.0500	9.0500		9.0500		0.00%	10		330.363	20		6.61
U1-4	7.1999	7.0651		7.1325		0.94%	2		52.411	20		1.05
U2-4	6.3758	6.3794		6.3776		0.03%	2		46.989	20		0.940
S1-4	4.1894	4.1958		4.1926		0.08%	10		155.749	20		3.11
S2-4	4.8123	4.8156		4.8140		0.03%	10		178.380	20		3.57
U1-5	9.9336	10.0167		9.9752		0.42%	2		72.608	20		1.45
U2-5	10.2018	10.2177		10.2098		0.08%	2		74.259	20		1.49
S1-5	3.2369	3.1784		3.2077		0.91%	100		1196.918	20		23.9
S2-5	4.4614	4.4264		4.4439		0.39%	10		164.913	20		3.30
U1-6	9.0348	9.0204		9.0276		0.08%	4		131.828	20		2.64
U1-6 U2-6 S1-6	9.0348 8.8674 9.4975	9.0204 8.8336 9.4699		9.0276 8.8505 9.4837		0.08% 0.19% 0.15%	4		131.828 129.317 345.704	20 20		2.64 2.59

0.27%

44.894

20

0.898

6.0869

APPENDIX H ANALYTICAL DATA RESOLUTION ANALYTICS SODIUM ON FILTERS

REPORT SUMMARY FRES

RFA#:

1756-Filters

SAMPLE ID	Sodium				
U1-1	4.06 mg				
U2-1	4.14 mg				
S1-1	17.0 mg				
S2-1	17.5 mg				
U1-2	1.63 mg				
U2-2	1.40 mg				
S1-2	17.0 mg				
S2-2	11.8 mg				
U1-3	1.89 mg				
U2-3	2.09 mg				
S1-3	9.72 mg				
S2-3	5.54 mg				
U1-4	2.32 mg				
U2-4	2.13 mg				
S1-4	3.41 mg				
S2-4	4.15 mg				
U1-5	1.63 mg				
U2-5	1.70 mg				
S1-5	16.6 mg				
S2-5	2.36 mg				
U1-6	3.93 mg				
U2-6	3.75 mg				
S1-6	5.99 mg				
S2-6	0.550 mg				

Analytical Narrative

RFA # 1756

Page 1 of 1

Client/Plant Name: Air Control Techniques

Date Rec'd in lab: 10/31/2012

Analyst: TCS

Date of Analysis: 11/29/2012

Analysis Method: Ion Chromatography

Analyte(s): Na

Sample Matrix & Components:

Filters in DI H2O.

Summary of Sample Prep:

Filters were desorbed in 20 ml of DI H2O, sonicated for 15 minutes and homogenized prior to analysis by ion chromatography.

Summary of Instrumentation:

Shimadzu CDD-6A. Hamilton PRP-X200 250x4.1mm 20 µl Inj.

Eluent: 5.7 mM HNO3 Flow Rate: 1.75 mls/min Gain 0.4 µS/cm Temp: 40°C

Limit(s) of Quantification: 1.20 ppm Na

Summary of QA Audit Sample Analysis:

See Analytical Data Sheets for results of internal QC audit results. (All internal QC results were within ±10% limits.)

Summary of Sample Spike Analysis:

See Analytical Data Sheets for results of sample spike analyses (All spike results were within 90-110% recovery limits.)

<u>Miscellaneous Comments Regarding Sample Analysis:</u> (Note unusual catch weights, interferences, odd sample behavior, and steps taken to confirm unusual results. Also note any deviations from standard analytical procedures, together with justification and possible affect on results. Specify samples when applicable.)

1. All samples were blank-corrected to account for background levels of sodium found in DI H2O.

Confirmation of Data Review:

To the best of my knowledge this analytical data has been checked thoroughly for completeness and the results presented are accurate, error-free, legible, and have been performed and validated in accordance with the approved method(s).

Lab QA Officer Signature

OTM-036

Date 11/30/2012

Page 613 of 643 4/11/2016

Sodium Analytical Data Sheet

Client Name:	Air Control Techniques C:\JOBS\ACT\1756\FILTERS.WB1 TCS	Job Num.	1756
File Pathway:		File:	Filters
Analyst:		Date:	11/29/2012

1.2.0-1			ibration Cu	4			%
Na Conc. (ppm)	Standa Inj. 1	ard Areas Inj. 2	Average Area	% Diff.		Calculated Std Conc. (ppm)	Deviation from Actual
1.25	82326	79160	80743	1.96%		1.20	
5.00	321662	314363	318013	1.15%		4.94	-3.65%
20.0	1289664	1287450	1288557	0.09%		20.2	-1.28%
40.0	2484038	2599314	2541676	2.27%		39.9	1.00%
andard Curve		Slope:	63582	Y-Int:	4170	LoQ (ppm):	1.20

		Field Sam	ples in:	DI H2O			
SAMPLE ID	Inj. 1 AREA	Inj. 2 AREA	AVERAGE AREA	% Diff.	DILUTION FACTOR	SAMPLE VOLUME (ml)	Na CATCH (mg)
DI H2O Blank	Blank 123389 118754 121072		1.91%	1	20	0.037	
UI-1	1622859	1643805	1633332	0.64%	8	20	
U2-1	1645404	1679119	1662262	1.01%	8	20	4.06
S1-1	536512	556878	546695	1.86%	100	20	4.14
S2-1	570812	554541	562677	1.45%	100	20	17.0 17.5
U1-2	1337823	1326913	1332368	0.41%	4	20	1.63
U2-2	2289314	2301486	2295400	0.27%	2	20	1.40
S1-2	540383	550533	545458	0.93%	100	20	17.0
S2-2	391067	367524	379296	3.10%		20	11.8
U1-3	1521885	1544548	1533217	0.74%	4	20	1.89
U2-3	1686122	1703289	1694706	0.51%	4	20	2.09
S1-3	321512	307474	314493	2.23%	100	20	9.72
S2-3	1767171	1787564	1777368	0.57%	10	20	5.54
U1-4	1872000	1881530	1876765	0.25%	4	20	2.32
U2-4	1740608	1707732	1724170	0.95%	4	20	2.13
S1-4	1103217	1095680	1099449	0.34%	10	20	3.41
S2-4	1350970	1321154	1336062	1.12%	10	20	4.15
U1-5	1317554	1346082	1331818	1.07%	4	20	1.63
U2-5	1380066	1394043	1387055	0.50%	4	20	1.70
S1-5	531970	537281		534626 0.50%	100	20	16.6
S2-5	771837	763657	767747	0.53%	10	20	2.36
U1-6	1586442	1572047	1579245	0.46%	8	20	3.93
U2-6	1515010	1506695	1510853	0.28%	8	20	3.75
S1-6	1917174	1923842	1920508	0.17%	10	20	5.99
S2-6	935717	939775	937746	0.22%	2	20	0.550
UDIT REPORT	****						
			Avenage	0/	Eumanted	Caladadad	D

**** AUDIT REPORT	****		Average	%	Expected	Calculated	Percent
	Inj. 1	Inj. 2	Area	Dev.	ppm Na	ppm Na	Diff.
IN-HOUSE AUDIT	252038	250449	251244	0.32%	4.00	3.89	-2.85%

Appendix E

Precutter Nozzle Cut Size Test Protocol

May 12, 2014

Test Protocol

Precutter Nozzle Cut Size Filterable PM2.5 Wet Stack Test Method

Prepared for

American Petroleum Institute 1220 L Street NW Washington, DC 20005

and

The National Council for Air & Stream Improvement NCASI Southern Regional Center 402 SW 140th Terrace Newberry, FL, 32669

Prepared by

Air Control Techniques, P.C. 301 E. Durham Road Cary, NC 27513

May 12, 2014

Precutter Nozzle Testing Protocol Filterable PM2.5 Wet Stack Test Method

This protocol summarizes a revised and expanded test program to evaluate a re-designed precutter nozzle for the filterable PM2.5 wet stack test method. This test program has been revised to address API, NCASI, and EPA review comments. The test program will be conducted after the present nozzle design is changed to increase the efficiency of droplet capture.

1. Purpose and Scope of the Nozzle Testing

Air Control Techniques, P.C. will redesign the nozzle to reduce the 50% cut size from the present range of 25 to 45 micrometer range to approximately 15 micrometers (aerodynamic). We will design for a 100% capture efficiency at or below 42 micrometers. As shown in Figure 1, the collection efficiency curve becomes asymptotic as it approaches 100%; accordingly, we will define the 100% capture efficiency size as the efficiency indicated by droplet penetration of less than or equal to 3% of the injected microspheres.

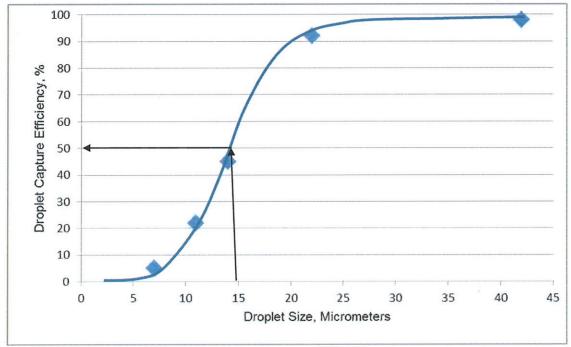


Figure 1. Target Capture Efficiency Versus Droplet Size Curve Using A Set of Five Monodisperse Microspheres

The nozzle orifice section diameter will be reduced to increase the velocity of droplets entering the main body of the precutter nozzle to achieve the lower cut size. The modified nozzle will be fabricated by Environmental Supply, Inc. in Durham North Carolina.

Protocol, Precutter Nozzle Testing May 12, 2014 Page 2 of 4

2. Precutter Nozzle Tests

The precutter nozzle tests have been divided into two parts: (1) runs 1 through 15 will evaluate the droplet capture efficiency versus droplet size curve at a simulated stack velocity of 30+3 feet per second, and (2) runs 16 through 21 will evaluate the change in the 50% cut size at simulated stack velocities of 60+6 and 90+9 feet per second. The 30+3 feet per second condition provides the worst case condition for achieving the EPA-specified 50% cut size at 15 micrometers. The higher stack velocities bracket the normal range of velocities in industrial wet scrubber stacks.

Droplet Capture Efficiency Curve at 30 Feet per Second—Air Control Techniques, P.C. will use NIST-traceable dry monodisperse spheres as standards in evaluating the performance of the modified nozzle. Borosilicate glass spheres with sizes of 7, 11, 14, and 22 micrometers (aerodynamic) and soda lime glass spheres of 42 micrometers (aerodynamic) will be purchased for the test program.

The spheres will be atomized in a small chamber that is heated to approximately 160°F to remove surface moisture and to minimize clustering. Particle charge neutralizers will be used in the chamber to minimize static charges that could contribute to clustering of the dispersed spheres.

The carrier gas stream from the mixing chamber will be cooled, if necessary, to approximately 140°F to 160°F to be consistent with typical scrubber stack temperatures. A portion of the carrier air stream will be directed into the sampling train nozzle tip. The nozzle sampling rate will be set at 0.50 to 0.60 ACFM depending on the temperature of the gas stream entering the nozzle.

The adequacy of dispersion of the monodisperse microspheres will be determined by drawing off a small sample gas stream after the mixing chamber and prior to gas stream entry to the nozzle. A particulate filter with polycarbonate filters will be used to obtain a sample of the dispersed microspheres. The sampling time will be less than 30 seconds to avoid build-up of microspheres, which could confound the evaluation of microsphere cluster formation. Photomicrographs of the filter samples during each test run will document the extent of cluster formation.

Prior to each test run, a thin layer of water generated by a fogging spray to simulate entrained droplets in a stack will be applied to the inside surfaces of the precutter nozzle to minimize microsphere bounce off the surface of the precutter. This coating is needed to adequately simulate the behavior of droplets in the nozzle.

Change in 50% Cut Size at 60 and 90 Feet per Second—These test runs will be conducted using only the 14-micrometer-sized microspheres. The tests will use procedures identical to those described for runs 1 through 15. The data from these six runs will be combined with the 14-micrometer microsphere tests included as runs 2, 7, and 12 (see test matrix) to evaluate the impact of the stack velocity on the droplet capture efficiency.

3. Test Matrix

The test program will consist of twenty-one separate test runs as summarized in Table 1. Following Run 5, the data will be summarized to determine if the modified nozzle has the desired 50% cut size at 15 micrometers and 90% capture efficiency at or below 42 micrometers. If not, the nozzle will be redesigned prior to Run 6.

	Table 1. Test Matrix									
Run	Sphere Size,	Sphere Size, Velocity,		Microscopy Particle						
	Microspheres,	ft/sec	Analyses	Clustering Evaluation						
	Micrometers		(Resolution							
			Analytics)							
I	22	30	Yes	Yes						
2	14	30	Yes	Yes						
3	11	30	Yes	Yes						
4	7	30	Yes	Yes						
5	42	30	Yes	Yes						
6	22	30	Yes	Yes						
7	14	30	Yes	Yes						
8	11	30	Yes	Yes						
9	7	30	Yes	Yes						
10	42	30	Yes	Yes						
11	22	30	Yes	Yes						
12	14	30	Yes	Yes						
13	11	30	Yes	Yes						
14	7	30	Yes	Yes						
15	42	30	Yes	Yes						
16	14	60	Yes	Yes						
17	14	60	Yes	Yes						
18	14	60	Yes	Yes						
19	14	90	Yes	Yes						
20	14	90	Yes	Yes						
21	14	90	Yes	Yes						

4. Data Analysis

Following each test run, the nozzle assembly and the connecting tube between the precutter nozzle and the filter will be rinsed with acetone to determine the mass of microspheres captured in the nozzle. The front half of a 47mm filter holder and the filter will be recovered to determine the mass of microspheres that penetrated the nozzle assembly. All three samples from each test run will be dried and weighed by Resolution Analytics. The collection efficiency for the specific microsphere size will be determined based on the ratio of (1) the weight of the solids on the filter

Protocol, Precutter Nozzle Testing May 12, 2014 Page 4 of 4

and the filter holder rinse and (2) the weight of the solids in the nozzle assembly rinse. Three test runs will be conducted for each size of monodisperse microspheres used.

The target catch weights during each of the runs will be a total of 20 to 50 milligrams of microspheres. Runs having catch weights lower than 3 millgrams of microspheres will be rejected and repeated. Rinses with less than 2 milligrams will be handled as zero values.

The precision of the three runs at each size range will be determined. An acceptable standard deviation of 3 runs would be approximately 20% of the efficiency value measured (i.e. 50% $\pm 10\%$ efficiency).

5. Report

A report summarizing the test results and the precutter nozzle design characteristics will be prepared following completion of the test matrix.

Appendix F

Precutter Nozzle Cut Size Test Report

April 19, 2015

Test Protocol

Precutter Nozzle Cut Size Filterable PM2.5 Wet Stack Test Method

Prepared for

American Petroleum Institute 1220 L Street NW Washington, DC 20005

and

The National Council for Air & Stream Improvement NCASI Southern Regional Center 402 SW 140th Terrace Newberry, FL, 32669

Prepared by

Air Control Techniques, P.C. 301 E. Durham Road Cary, NC 27513

May 12, 2014 Revised December 19, 2014

Precutter Nozzle Testing Protocol Filterable PM2.5 Wet Stack Test Method

This protocol summarizes a modified test program to evaluate a re-designed precutter nozzle for the filterable PM2.5 wet stack test method. This test program has been revised to address testing issues identified during preliminary nozzle cut size tests and discussed during the December 18, 2014 meeting between EPA, API, NCASI, and Air Control Techniques, P.C. representatives.

1. Purpose and Scope of the Nozzle Testing

Air Control Techniques, P.C. has redesigned the nozzle to reduce the 50% cut size from the previously estimated range of 25 to 45 micrometer range to a range of 10 to 15 micrometers (aerodynamic).

As shown in Figure 1, the theoretical collection efficiency curve (solid black) becomes asymptotic as it approaches 100%. Preliminary tests using monodisperse microspheres indicated that the laboratory-measured capture efficiency for microspheres of 20 micrometers and larger is limited to the 80% to 90% range (dotted red line) due to bouncing of the rigid microspheres off of the interior surfaces of the precutter nozzle. Furthermore, the laboratory-measured capture efficiency curve approaches a minimum of approximately 20% for microspheres in the range of 2 to 8 micrometers due to clustering of the microspheres. Both microsphere-related issues affecting the laboratory tests are not relevant to droplets in wet stacks. Due to these limits, this laboratory test program will focus primarily on the 6 to 15 micrometer size range where both microsphere-related conditions are minimal.

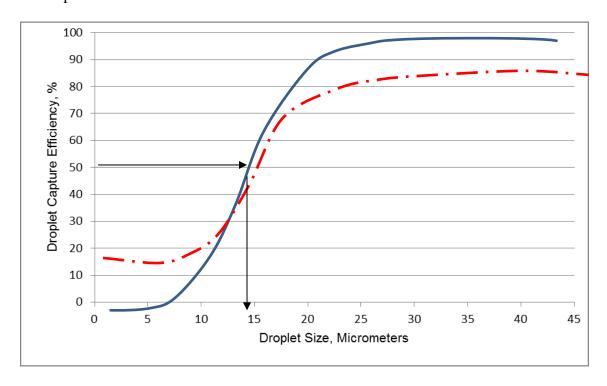


Figure 1. Target Capture Efficiency Versus Droplet Size Curve Using Monodisperse Microspheres

Protocol, Precutter Nozzle Testing December 19, 2014 Page 2 of 3

The nozzle orifice inlet barrel diameter has been modified to increase the velocity of droplets entering the main body of the precutter nozzle to achieve a 50% cut size between 10 and 15 micrometers. The modified nozzle has been fabricated by Environmental Supply, Inc. in Durham North Carolina.

2. Precutter Nozzle Tests

The precutter nozzle capture efficiency tests have been divided into three parts: (1) runs 1 through 9 will be at a simulated stack velocity of 30 ± 6 feet per second, (2) runs 10 through 14 will be at a simulated stack velocities of 60 ± 12 feet per second, and (3) runs 15 through 18 will be at simulated stack velocities of 90 ± 18 feet per second. Table 1 summarizes the test matrix.

	Table 1. Test Matrix								
Run	Microsphere	Velocity,	Gravimetric						
	Size,	feet/sec	Analyses						
	Micrometers								
1	6	30	Yes						
2	6	30	Yes						
3	6	30	Yes						
4	8	30	Yes						
5	15	30	Yes						
6	15	30	Yes						
7	10	30	Yes						
8	12.6	30	Yes						
9	20	30	Yes						
10	6	60	Yes						
11	8	60	Yes						
12	15	60	Yes						
13	12.6	60	Yes						
14	20	60	Yes						
15	6	90	Yes						
16	8	90	Yes						
17	12.6	90	Yes						
18	20	90	Yes						

The test program summarized in Table 1 will include eighteen separate runs using various sizes of monodisperse micrometers and three nozzle inlet velocities. In addition, a preliminary run will be made for the six, eight, and fifteen micrometer sized monodisperse microsphere size to evaluate the extent of clustering.

Droplet Capture Efficiency Curve at 30 Feet per Second—Air Control Techniques, P.C. will use NIST-traceable dry monodisperse spheres as standards in evaluating the performance of the modified nozzle. Microspheres with aerodynamic sizes of 6, 8, 10, 12.6, 15 and 20 micrometers will be used for the test program.

Protocol, Precutter Nozzle Testing December 19, 2014 Page 3 of 3

Liquid-suspended microspheres will be dispersed in a small chamber that is heated to 100°F to 130°F to remove surface moisture and to minimize clustering. The carrier air stream will be directed into the sampling train nozzle tip. The nozzle size will be selected to provide the appropriate inlet velocity specified in the test matrix.

Solid (borosilicate glass) microspheres will be dispersed in a small chamber using the sampling system inlet air stream. An impactor will be used after the dispersion chamber to remove clusters of microspheres. The carrier air stream will be directed into the sampling train nozzle tip. The nozzle size will be selected to provide the appropriate inlet velocity specified in the test matrix.

The adequacy of dispersion of the monodisperse microspheres will be determined by examining the filters during a set of preliminary test runs. A polycarbonate filter media will be used to obtain a sample of the dispersed microspheres. The sampling time will be less than 30 seconds to avoid build-up of microspheres, which could confound the evaluation of microsphere cluster formation. Photomicrographs of the filter samples from each preliminary test run will document the extent of cluster formation.

Prior to each test run, a thin layer of water will be applied to the inside surfaces of the precutter nozzle so that the behavior of the rigid microspheres simulates the behavior of water droplets striking the interior wall of the precutter.

Change in 50% Cut Size at 60 and 90 Feet per Second—The tests will use procedures identical to those described for runs 1 through 9. The nozzle will be changed to provide the appropriate inlet velocity.

3. Sample Analysis

Following each test run, the nozzle assembly and the connecting tube between the precutter nozzle and the filter will be rinsed with acetone to determine the mass of microspheres captured in the nozzle. The front half of a 47mm filter holder and the filter will be recovered to determine the mass of microspheres that penetrated the nozzle assembly. All three samples from each test run will be dried and weighed. The collection efficiency for the specific microsphere size will be determined based on the ratio of (1) the weight of the solids on the filter and the filter holder rinse and (2) the weight of the solids in the nozzle assembly rinse.

The target catch weights during each of the runs will be a total of 50 to 100 milligrams of microspheres. Runs having catch weights lower than 5 milligrams of microspheres will be rejected and repeated.

4. Report

A report summarizing the test results and the precutter nozzle design characteristics will be prepared following completion of the test matrix.

Appendix G

Leith, D. and Boundy, M. 2008. "Development of Plans for Monitoring Emissions of PM_1 , $PM_{2.5}$ and PM_{10} from Stationary Sources with Wet Stacks," U.S. Environmental Protection Agency, Research Triangle Park, NC 27709

DEVELOPMENT OF PLANS FOR MONITORING EMISSIONS OF PM1, PM2.5 AND PM10 FROM STATIONARY SOURCES WITH WET STACKS

prepared for:

Dr. Arthur S. Werner Senior Principal Engineer MACTEC Federal Programs 5001 South Miami Blvd., Suite 300 PO Box 12077 Research Triangle Park, NC 27709

prepared by:

David Leith and Maryanne G. Boundy Department of Environmental Sciences and Engineering University of North Carolina at Chapel Hill

29 February 2008

DEVELOPMENT OF PLANS FOR MONITORING EMISSIONS OF PM1, PM2.5 AND PM10 FROM STATIONARY SOURCES WITH WET STACKS

This report reviews and evaluates methods that might be used to monitor emissions of PM1, PM2.5 and PM10 from stationary sources whose exhaust gases contain water droplets. These droplets may contain both soluble and insoluble materials that become solid particles when the droplets are emitted to the atmosphere and evaporate. In addition to water droplets, the exhaust gas may contain solid particles unassociated with water droplets. Finally, the exhaust may also contain organic or inorganic compounds that condense to form particles when the gas cools. The specific mix of soluble and insoluble materials in water droplets, distinct solid particles, and condensable compounds will depend on the source of the exhaust gas and cannot be generalized.

The report contains three parts. The first describes a literature review, the second a statement of objectives for future research based on that review, and the third some recommendations for research to address the problems identified.

PART I – LITERATURE REVIEW

The review presented here is based on published and gray literature, much of which was supplied by Mr. Ron Myers at the U.S. EPA. In addition, we have discussed this issue with aerosol experts at other universities, at consulting firms, and elsewhere. Disagreement exists and some topics are controversial. The opinions presented here are those of the authors and are not intended to reflect a consensus.

Much of the literature that describes the emissions of particles from evaporated liquid droplets was developed to evaluate emissions from cooling towers. Some of this information concerns the percentage of liquid lost from these towers as droplets without regard to droplet size; a term called "drift" that is an important aspect of the performance guarantee given by cooling tower manufacturers. Methods to measure drift without regard to droplet size are not relevant to the present review and are not considered here.

The emission rate of PM1, PM2.5 and PM10 is defined as the mass rate at which particles smaller than 1 μ m, 2.5 μ m and 10 μ m in aerodynamic diameter respectively, are released to the atmosphere after all droplets completely evaporate.

1. Aerodynamic Diameter

The definition of aerodynamic diameter is important here because this term is not always interpreted correctly in the literature reviewed. Aerodynamic diameter, d_a, is the diameter of a sphere with the density of water that has the same aerodynamic properties as the particle in question. The aerodynamic diameter of an irregularly shaped particle with known density is¹

$$d_a = d_e \sqrt{\frac{\rho_p}{\rho_o \chi}} \quad , \tag{1}$$

where d_e is the equivalent volume diameter (the diameter of a sphere with the same volume as the particle in question), ρ_p is the density of the particle, ρ_o is the density of water, and χ is the dynamic shape factor for the particle. If a droplet that contains soluble and insoluble materials evaporates to leave a residual solid particle, that residual particle will have a density that is the weighted average of the densities of its constituents.

If the particle is spherical then χ is unity, but as particles become increasingly non-spherical χ becomes progressively larger. A residual particle that arises from a droplet that contains irregularly shaped, insoluble particles would tend to be irregular and have a shape factor greater than unity. A residual particle that arises from a droplet that contains soluble materials would tend to be spherical and have a shape factor closer to unity.

The equivalent volume diameter of the residual particle left after evaporation of a drop that contains both soluble and insoluble materials is

$$d_{e} = d_{d} \left(\frac{\rho_{o} TS}{\rho_{p}} \right)^{1/3} , \qquad (2)$$

where d_d is droplet diameter and TS is "total solids", defined as the mass fraction of both soluble and insoluble materials in the drop. Combination of equations (1) and (2) gives the relationship between droplet diameter and the aerodynamic diameter of the solid particle that results after the water in the droplet completely evaporates.

$$d_{a} = d_{d} \left(\frac{\rho_{p}}{\rho_{o}}\right)^{1/6} (TS)^{1/3} \left(\frac{1}{\chi}\right)^{1/2} . \tag{3}$$

The importance of Eqs (1) through (3) will become more apparent as the discussion proceeds.

2. Methods to Measure PM1, PM2.5 and PM10

Two important methods have been described to measure particulate matter from wet gas streams. The first involves estimating the size distribution of emitted droplets and the TS in these droplets, then calculating the emission rate and size distribution of the residual solid particles that are generated *after the droplets evaporate in the atmosphere*. This method will be termed the "Droplet Distribution Method." The second method involves drying these droplets *as part of the sampling procedure*, and then measuring the emission rate of the resultant solid particles; this method will be termed the "Dried Particle Method."

2.1 Droplet Distribution Method

The procedure used with the Droplet Distribution Method is to calculate the aerodynamic diameter of the residual particle that results from each droplet emitted using Eq. (3), and then to

add up the mass emissions for all such particles that are smaller than the aerodynamic diameter of concern.

The Droplet Distribution Method requires knowledge of:

- (1) The mass emission rate of droplets to the atmosphere,
- (2) The mass-based size distribution of these droplets,
- (3) The concentration of TS in the droplets as a function of droplet size,
- (4) The shape factor and density of residual solid particles as a function of particle size.

<u>Mass Emission Rate</u> – The mass emission rate of droplets to the atmosphere is, in the case of a cooling tower, the product of the mass flow of water through the tower and "drift". Although water flow through the tower can be determined relatively easily, drift is difficult to measure. Values of drift vary by orders of magnitude from installation to installation and depend on factors such as design of the entrainment separator, operating conditions, and state of repair.

<u>Droplet Size Distribution</u> – The mass-based size distribution of water droplets emitted to the atmosphere is difficult to measure because droplets can be tens to hundreds of micrometers in diameter. The inertia of such large droplets makes representative sampling difficult.

One method that has been used to measure droplet size distribution involves collecting droplets on sensitive paper. A disk of this paper about 50 mm in diameter is held in the flowing gas stream and droplets collect on the disk by impaction. Each collected droplet produces a stain on the paper whose diameter is related to the original diameter of the droplet through a calibration. The sensitive paper method is a clever approach, but its use is not without problems. Because the method relies on impaction to collect droplets on the paper, and because impaction efficiency decreases strongly as droplet diameter decreases, a correction factor must be applied for droplets smaller than about 50 μ m in diameter. The importance of this factor increases rapidly as droplet diameter decreases. Eq. (3) shows that if we are concerned primarily with residual solid particles whose aerodynamic diameters are smaller than 10 μ m, for TS of about 10,000 ppm the parent droplets must be smaller than about 50 μ m. Thus the importance of the correction factor would seem to increase, and the reliability for the sensitive paper method would seem to diminish for the very droplet sizes where accuracy is most important.

Another investigation of droplet size from cooling towers utilized simultaneous sampling through a forward-facing and a backward-facing nozzle. The forward-facing nozzle should collect droplets of all sizes, whereas calculations suggest that the backward-facing nozzle should have a cut size (50% collection efficiency) of about 3.5 μ m and collect relatively few particles larger than this size. At the same time, droplets larger than about 23 μ m were collected on a static filter by impaction. This method requires sampling with forward and backward nozzles and with a static filter simultaneously to establish two points in the droplet size distribution curve: the fraction smaller than 3.5 μ m and the fraction smaller than 23 μ m in diameter.

Because droplet size distribution is difficult to measure accurately and requires substantial effort to obtain, it is tempting to use measurements at one facility to represent conditions at another. This approach, although expedient, comes with no assurance that measurements at one place will adequately represent another. Size distribution measurements made at different facilities can differ appreciably, a finding that is not reassuring if we wish to generalize results. Figure 1 shows cumulative size distributions by mass for droplets from cooling towers presented by Wilber², by Reisman and Frisbie⁶, and by Entropy Environmentalists, Inc.⁵ Substantial differences in these size distributions are apparent. For example, data in Figure 1 show that measurements of the mass median diameter (50% size) differ by over two orders of magnitude.

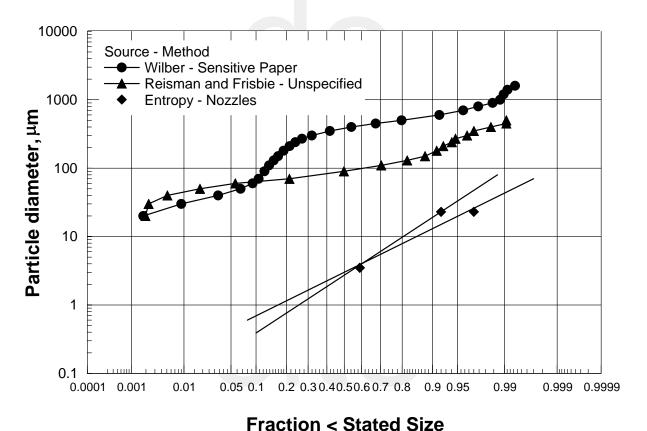


Figure 1. Cumulative size distributions by mass for droplets from cooling towers as reported in three studies. ^{2,5,6}

<u>Solids Concentration</u> – The TS concentration for droplets emitted from cooling towers might be assumed to be the same as the TS concentration in the raw process water. As droplets form they undoubtedly have the same TS as the process water; however, some droplet evaporation occurs in the tower and to the extent that it does, the droplets become enriched in TS. No method has been described to measure the TS in droplets at their point of release.

<u>Shape Factor and Density of the Dried Solid Particles</u> – Equation (3) shows that particle density and dynamic shape factor both affect the conversion from droplet diameter to aerodynamic diameter of the residual, dried solid. The effect of particle density is comparatively unimportant as it appears to the 1/6 power in the conversion; the effect of shape factor is more important as it

appears to the 1/2 power. Although the effect of particle density has sometimes (but not always) been considered in calculations to determine particulate emissions, the more important effect of shape factor has not been considered.

Particulate emissions from scrubbers contain uncollected particles as well as insoluble particles in droplets. These particles are likely to have irregular shape so would have larger shape factors than particulate emissions from cooling towers that arise primarily from solids dissolved in water droplets.

Some authors have calculated emissions of PM10 using the Droplet Distribution Method without accounting for the difference between equivalent volume diameter and aerodynamic diameter as given in Eq. (1). For example, Reisman and Frisbie⁶ determined the size distribution of emitted particles whose size was taken as the *equivalent volume* diameter rather than the *aerodynamic* diameter. Eq. (1) shows that if particle relative density is about 2.4 and shape factor is about 1.2, aerodynamic diameters are about 40% larger than the equivalent volume diameters presented in their work.

The Droplet Distribution Method focuses exclusively on TS, the dissolved and insoluble materials present in water droplets. This source seems likely to dominate particulate emissions from cooling towers. The Droplet Distribution Method does not include or consider the emission of particles unassociated with water droplets or the contribution of condensable materials, two sources that are unimportant for cooling towers but may be very important for industrial sources controlled by scrubbers. The Droplet Distribution Method will underestimate emissions to the extent that unassociated particles and condensable compounds are present.

In summary, the Droplet Distribution Method can provide useful estimates of particulate emissions from wet stacks, but only when certain conditions are met. These conditions include accurate knowledge of the droplet emission rate, droplet size distribution, and the concentration of TS in the droplets as a function of droplet size. Some of these data, particularly the droplet emission rate, the droplet size distribution and the TS concentration, are difficult to measure and may vary substantially from facility to facility. In addition, although somewhat less important, the density and shape factors of the residual solid particles must be known or estimated. The method does not address the contributions to PM1, PM2.5 and PM10 emissions that will occur if discrete solid particles or condensable materials are present. Because of these concerns, the Droplet Distribution Method does not seem to be a reliable way to determine PM1, PM2.5 and PM10 emissions accurately, except under unusual circumstances.

2.2 Dried Particle Method

With the Dried Particle Method, both droplets and individual particles not associated with droplets are sampled isokinetically from the wet gas stream. The sample is then immediately dried to evaporate all droplets. The residual, dry particles then pass through a heated size classification device that removes particles larger than a specified cut size such as 1, 2.5 and 10 μ m. All particles that remain collect on a filter. After filtration, the sample gas can then be further processed to condense any inorganic or organic compounds present.

The Dried Particle Method requires:

- (1) Isokinetic sampling of the exhaust gas stream,
- (2) Representative sampling of the exhaust gas stream,
- (3) An effective way to dry the gas stream immediately after sampling without losing droplets or particles to the wall of the sampling probe or drying chamber,
- (4) A method to separate particles smaller than a specified size such as 1, 2.5 and 10 μ m in aerodynamic diameter from the sample gas stream that operates properly even when sample flow changes to match isokinetic conditions,
- (5) A method to analyze for condensable particles.

The Dried Particle Method can include discrete and condensable particles along with residual solids from dried water droplets. The chief disadvantage of the Dried Particle Method, and it is an important disadvantage, is that this method has not been widely used. Although at least one study has attempted to use some aspects of this method,⁷ none has adequately addressed all aspects.

<u>Isokinetic Sampling</u> – If the velocity of the process gas matches the velocity of the gas that enters the sampling probe, then sampling is isokinetic. Departure from isokinetic sampling can cause appreciable errors in measured concentrations, errors that become larger as particle (or droplet) size increases. As shown in Figure 1, water droplets in a wet gas stream may be tens or even hundreds of micrometers in diameter. For water droplets this large, isokinetic sampling is critical. The dependence of sampling error on departure from isokinetic sampling is an important issue that needs full consideration. Gas velocities across the exhaust duct may vary from location to location and may swirl, particularly if the gas passes through a fan before sampling. Isokinetic sampling under these conditions presents a major challenge.

<u>Representative Sampling</u> – Droplet concentration and size distribution as well as the concentration of dissolved solids in the water droplets may vary with sampling location. As a result, to obtain results representative of the entire gas stream, multiple samples must be taken. This requirement leads to further complexity in the sampling plan.

The requirements for isokinetic and representative sampling for wet gas streams is even more important than for dry gas streams because droplets tend to be larger than the dry, solid particles emitted from dry industrial and combustion stacks. The error from anisokinetic sampling is relatively low for small particles, but increases as particle size increases.¹

<u>Drying the Sampled Gas Stream</u> – For the Dried Particle Method to work, all droplets must rapidly and completely evaporate from the gas stream immediately downstream of the sampling nozzle. During this process the droplets must maintain their integrity; that is, they must not shatter or combine, because to do so would affect the sizes of the residual particles.

Israelson, Stich and Weast⁷ used a heated probe for this purpose, and deserve full credit for developing this innovative method. Nevertheless, their results lead to some vexing questions for which answers are needed. They provide no information to establish conclusively that droplet

evaporation in their heated probe is complete. Without complete evaporation of all droplets, the Dried Particle Method can give results that are seriously in error. Further, roughly half of the particles they sampled deposited on the inner walls of their heated probe. Particles that deposit on the probe walls do not reach the size-selective part of the sampling train so cannot be classified with regard to size.

Particle Classification – From the heated probe, the dried particles immediately pass to a heated size-classification device that removes particles larger than 1, 2.5 or 10 μm in aerodynamic diameter for measurement of PM1, PM2.5 or PM10, respectively. Although Israelson, Stich and Weast⁷ used a heated cascade impactor for this purpose, a cyclone would be simpler and should be just as effective.

Ideally, the cyclone or impactor would be located directly after the droplet drier and at the inlet end of the sampling probe; however, placement there could make the sampling probe unwieldy. Placement at the outlet end of the sampling probe would solve that problem but raises the potential problem of particle collection in the probe itself.

Cut size, the aerodynamic particle diameter for which collector efficiency is 50%, depends on gas viscosity for both impactors and cyclones; therefore, gas temperature and gas makeup are both important. Either a cyclone or an impactor must be operated at a temperature at least as high as the heated probe to prevent condensation. If the sampled gas stream is close to 100C and saturated, much of the gas will be water vapor and have physical properties different from air.

In addition, cut size for both impactors and cyclones depends on gas flow. The dependence of cut size on flow is a problem here because sampling flow must be adjusted to the isokinetic value at each sampling point. A possible solution to this problem would be always to sample from the gas stream at a flow less than that required for the particle classification device, and to make up the difference in flow using clean makeup gas with appropriate temperature and physical properties.

Either an impactor or a cyclone could provide a cut diameter of 1, 2.5 or 10 μm . A filter immediately after the impactor or cyclone then collects the solid particles for gravimetric analysis. The filter is also heated to the temperature of the size classification device.

<u>Condensable Particles</u> – Following the filter, the gas stream might pass to an EPA CTM 039 sampling train that utilizes a dilution system to measure condensable aerosols. In this system, the hot stack gas is mixed with cool gas to lower its temperature, cause supersaturation of condensable compounds, and bring about their partitioning from the gas phase into the condensed phase. An EPA Method 202 sampling train could also be used, although this method is difficult to employ when sampling hot, saturated gas streams because a large amount of condensate is produced.

Israelson, Stich and Weast⁷ used a Method 202 sampling train and found that an important portion of the total particle catch came from the impingers. They assumed that the particles that reached the impingers were too small to be caught by the upstream filter, but that explanation seems unlikely. Final filters used with impactors are very efficient even for the smallest particles. Another explanation is that the impingers collected particles of compounds that condense under ice-bath conditions. Such particles would be in the vapor phase at the hot filter,

but would condense under the cold conditions of an ice bath. The implication of these findings is that the contribution of condensable particles can be important.

In summary, the Dried Particle Method requires considerable effort for isokinetic and representative sampling. The main disadvantages of this method are that a satisfactory heated probe, size classifying device, and final filter have yet to be developed. An important advantage is that unlike the Drop Distribution Method, the Dried Particle Method accounts for both unwetted and condensed particles.

2.3 Other Methods

Improvements might be made to the methods described above, or additional alternative methods might also be used. Some of these will be described here. All other methods also have problems, as will be described.

<u>Possible Improvement to Sensitive Paper Method</u> – A drawback of the sensitive paper method is that it relies on impaction to collect droplets on the paper surface. Because impaction efficiency decreases rapidly with decreasing droplet diameter, this method requires a correction factor that becomes increasingly important as droplet diameter becomes smaller.

A potential improvement to this method might be to sensitize and use a paper that is permeable to air flow. Sample would then be drawn through the sensitive paper at isokinetic velocity, eliminating the dependence of sampling efficiency on the impaction characteristics of the paper itself.

Interpretation of these results would still require knowledge of the TS value for each droplet analyzed, and these values seem likely to vary with droplet size. Droplets that are smaller because they have evaporated more could have higher TS than larger droplets. No easy method to determine how TS varies with droplet diameter seems apparent. In addition, this method would still not detect unwetted particles or account for condensed particles.

<u>Light Extinction Method</u> – Optical extinction of a light beam that shines across a droplet-laden gas is related to, among other parameters, the concentration of the droplets. With this procedure, a simple measurement of light extinction ¹ might be used to determine the concentration of emitted droplets. Computed tomography coupled with light extinction can, in principle, account for spatial variations in droplet concentration and size distribution over a cross section of the gas stream.⁸

This method, although relatively simple and inexpensive to use, also relies on assumptions that are not readily verified. For example, the concentration calculation requires that TS values for the droplets be known – an assumption shared with the Droplet Distribution Method. The effect of multiple scattering would need to be addressed. The advantage of the Light Extinction Method over the Droplet Distribution Method is that the Light Extinction Method would seem to be a relatively easy way to measure drift. Development work would be necessary.

<u>Heated Wire Method</u> – A heated wire has been used to collect droplets to determine their size distribution and concentration. Droplets that collect on the wire alter its electrical resistance over a distance related to droplet diameter. After a brief period the droplet evaporates. A second-

generation instrument developed using this principle was evaluated through laboratory and field tests. The heated wire method is clever and holds promise. An important advantage of the heated wire method is that the development work has already been done. Although the wires used as sensors are fragile and can become coated with particles, disposable sensors can be used.

A significant disadvantage is that the heated wire method, like the Droplet Distribution Method, does not account for unwetted particles or condensed particles. Further, use of the heated wire method to characterize PM1, PM2.5, or PM10 emissions requires knowledge of TS as a function of droplet diameter, information that is difficult to acquire. No instrument based on the heated wire method is commercially available.

In summary, the heated wire method seems most appropriate for measurements of drift from cooling towers where the emissions of primary concern are the droplets themselves. This method is less suited to measurements of particulate emissions.

3. Overall Evaluation

Monitoring the emission of PM1, PM2.5 and PM10 emissions from a wet gas stream is a challenging problem that has not been addressed successfully despite considerable effort. No consensus method to provide this information has emerged. The evaluation below is our best judgment of the approach that seems most likely to succeed, given the present state of our knowledge and the technical complexity of issues that must be overcome if the outcome is to be successful.

The Droplet Distribution Method relies on information that is difficult to obtain. Measurements of droplet emission rate, droplet size distribution, TS concentrations as a function of droplet size, and particle properties that include both density and shape factor as a function of particle size will require substantial effort and expense. These parameters are likely to vary from facility to facility with the result that assumptions for one facility based on measurements at another facility are suspect. The advantage of the Droplet Distribution Method is that this method has been used most widely, and as a consequence, it has gained some acceptance among facilities, consultants, and regulatory agencies.

The Dried Particle Method has methodological aspects superior to those of the Droplet Distribution Method. Whereas the Droplet Distribution Method relies on calculations to determine the size distribution of residual solid particles, and then requires further calculations to convert equivalent volume diameters into aerodynamic diameters, the Dried Particle Method measures directly the mass emission rate of particles with specified aerodynamic size. No conversions or calculations based on questionable assumptions are necessary. Further, the Dried Particle Method includes distinct, dry particles and condensable particles whereas the Droplet Distribution Method does not include particles from these sources. A disadvantage of the Dried Particle Method is that it has not been widely used so that many facilities, consultants, and regulatory agencies may not be familiar with it. A more significant disadvantage is that further development work will be necessary to address some important issues with method performance.

In our opinion, the methodological advantages of the Dried Particle Method outweigh its disadvantages. The work needed for this Method to become robust can help identify a research agenda.

PART II - PROBLEM STATEMENTS

This section of the report presents a succinct statement of objectives for future research related to monitoring PM emissions from wet gas streams and related to development of continuous emission monitors. These statements have been developed from gaps in our knowledge of how to monitor these emissions, identified from the literature search described above.

Problem 1 – Develop a wet stack simulator to produce in the laboratory the wet stack conditions found in industry.

Whatever method is developed to measure emissions from wet stacks, that method will need to be checked against conditions found in industry. The most efficient way to produce these conditions is in a laboratory with a wet stack simulator.

The simulator must be able to produce realistic concentrations of: (1) droplets containing representative dissolved and trapped TS; (2) residual particles that result from evaporation of droplets with a range of sizes and TS concentrations; (3) free particles unassociated with liquid droplets; and (4) particles that result from condensable compounds. The wet stack simulator must produce these concentrations at a range of conditions of temperature, moisture content, and gas composition representative of industry.

Problem 2 – Develop a "gold standard" for measuring emissions of PM1, PM2.5 and PM10 from wet gas streams.

A reliable and accepted method is needed to measure PM1, PM2.5 and PM10 emissions from wet gas streams. All methods used to date have limitations. Until a "gold standard" method is developed to satisfy this need, and until questions of its reliability are satisfied, questions about emissions from wet stacks will persist.

A "gold standard" method is needed both to determine accurately the emissions from processes that have wet stacks, and as a benchmark against which to judge alternative measurement methods.

Problem 3 – Evaluate the practicality and feasibility of continuously monitoring PM1, PM2.5 and PM10 emissions from wet gas streams.

Continuous monitors are particularly important for emissions trading. They are also useful to track emission excursions that can occur if process equipment malfunctions.

The "gold standard" method for measuring emissions may be impractical for use for continuous monitoring. Alternative methods more appropriate for continuous operation may be feasible and can be calibrated or validated using the "gold standard" method.

PART III - RECOMMENDATIONS

Here we present recommendations for research to address the problems identified in Part II above. Included are ideas related to the development of a "wet stack simulator", the development of a "gold standard" for measurement of PM1, PM2.5 and PM10 from wet gas streams, and the development of continuous monitors for PM1, PM2.5 and PM10 from these streams. Also included is a timeline for conducting this work.

DEVELOPMENT OF A WET STACK SIMULATOR

The wet stack simulator must be able to produce a gas stream that adequately represents PM emissions and gas stream conditions, at a flow that is adequate to evaluate alternative sampling methods.

Task A – Design, Build, and Evaluate a Method to Produce a Representative Gas Stream.

The gas stream must be representative of the temperatures, moisture contents, and compositions found in industry, and at a flow that allows full-scale evaluation of particle sampling methods. Design specifications for these criteria need to be established. Alternative methods for producing a representative gas stream need to be considered, and the most feasible method selected.

One method to produce a saturated, hot gas stream is to add live steam to flowing gas. The ratio of steam to gas can control the temperature achieved. Particles can then be introduced to provide the required test conditions, see Task B.

Task B – Design, Build, and Evaluate a Method to Produce Representative Particles.

Particles and particle precursors should be added from three sources: (1) from droplets that contain TS in representative sizes and concentrations; (2) from unassociated, dry particles, and (3) from condensable compounds. These particles and particle precursors must be mixed with the gas stream. Provision should be made to introduce particles from each source both alone and in combination with each other.

DEVELOPMENT OF A "GOLD STANDARD" METHOD

For the reasons given above, we believe the Dried Particle Method is most appropriate for use as a "gold standard" method to measure PM emissions from wet stacks. We believe this method should be able to quantitate residual particles from dried liquid droplets, dry particles not associated with liquid droplets, and condensable particles. Below we list tasks related to development of a "gold standard" method based on the dried particle approach.

Task A – Design, Build and Evaluate a Heated Sampling Nozzle that will Evaporate All Water Drops Without Loss to Nozzle Walls.

This task is critical to effective development of the Dried Particle Method. The work involves determination of the minimum diameter for a sampling nozzle that can representatively collect "large" droplets, determination of the heat input necessary to evaporate all droplets, selection and design of a heat transfer method, and development of a method to assure that neither droplets nor residual particles deposit on the walls of the nozzle.

Small inlet nozzles may not be able to sample large water drops representatively. The relationship between nozzle size and droplet diameter, and the relationship between these parameters and flow required for isokinetic sampling under realistic conditions, should be investigated.

To minimize wall losses the use of a stream of sheath air near the nozzle walls should be investigated. The sheath air should help focus the droplets at the center of the gas stream. Sheath air is used for this purpose in the inlet nozzles for instruments such as the Aerodynamic Particle Sizer and the Aerosizer.

After design and fabrication, the heated sampling nozzle should be tested in the laboratory to assure that all sampled droplets evaporate completely, and to assure that no droplets or particles deposit on nozzle walls. A further goal of this work should be to establish that the method obtains a representative sample of the droplets in flowing gas. Iteration in design and testing will probably be necessary to meet these objectives.

Task B – Design, Build and Evaluate a Size Selective Classifier

The classifier will follow the drying nozzle and remove particles larger than a specified size in aerodynamic diameter. Three classifiers should be made: one to separate particles larger than 1 μ m in aerodynamic diameter for PM1 measurements, one to separate particles larger than 2.5 μ m in aerodynamic diameter for PM2.5 measurements, and one to separate particles larger than 10 μ m in aerodynamic diameter for PM10 measurements. Operation could be at the temperature selected for the drying nozzle. Cyclones are simpler to operate than impactors, so initial efforts should probably focus on the development of cyclones for these purposes.

Work under this task includes both the design of suitable cyclones as well as the design of a system that will supply a fixed flow of gas to the cyclone to maintain its cut point even though sample flow varies to match isokinetic conditions. This flow maintenance system should be integrated with the design of the heated sampling nozzle and the sampling train for condensable particles.

Task C – Design, Build and Evaluate Filter System

This task is relatively straightforward compared to the previous two, but needs to be done. Included here is the need to identify appropriate filter media and a holder that will withstand the design temperatures and not shred the filters.

Task D – Investigate Methods to Sample Condensable Particles

This task is to evaluate alternative methods to sample condensable particles from the sample gas, and to select the method that seems most promising. A dilution-based method for sampling condensable particles, CTM 039, is currently in an advanced stage of development and should be given primary consideration although other methods should also be considered. The method selected must be appropriate for the sample gas flow to be used.

Task E – Assemble and Evaluate the Dried Particle Sampling System

Under this task, a complete prototype sampling system should be assembled and its performance evaluated under lab conditions. This laboratory work should be done for gas streams that carry known quantities of water droplets with known TS, in addition to discrete dry particles and condensable particles. Comparison should be made between the results from the method and known inputs. Again, some iteration in design and evaluation may be necessary.

Because the objective is to develop a "gold standard", comprehensive laboratory tests to evaluate the system are necessary. These tests should cover the range of conditions reasonably expected under true, field conditions.

When this task is completed, a prototype system that is ready for evaluation under field conditions will be available.

Task F – Field Tests

Suitable sites must be selected, and permissions obtained to conduct the field tests. The goal of the field tests is to evaluate the practicality of the method under actual, field conditions.

DEVELOPMENT OF A METHOD FOR CONTINUOUS EMISSION MONITORING

A "gold standard" method developed along the lines described here is likely to require multipoint, isokinetic sampling. This methodology is accurate but is not readily compatible with continuous emission monitoring.

Alternative methods to monitor continuously can be developed, but are likely to rely on assumptions that are open to question. The work outlined below will investigate practical methods for continuously monitoring PM10. PM2.5, and PM1 emissions from wet stacks, and will identify and characterize the importance of the assumptions necessary for these methods to give reliable results. Once the "gold standard" method for monitoring emissions is developed, it can be used to validate the performance of continuous emission monitors in the field.

Task A – Identify and Characterize Methods for Continuous Emission Monitoring

Candidate methods range from the simple to the complex. One simple method involves the use of emission factors like those in AP-42 and used now. These factors are found by multiplying together a few terms that include factors such as TS of the process water and water

flow rate. Instruments are already commercially available that can continuously monitor terms like TS and water flow rate, and the output from these instruments could feed into an emission factor to provide a continuous estimate of emissions that varies with process conditions. A more technically complex method less reliant on assumptions might involve use of the Light Extinction Method, perhaps coupled with computed tomography to provide continuous data for emissions over time.

Work under this task would evaluate candidate methods, list their input needs and the likelihood that these needs can be met, describe the work necessary to bring the most promising methods to fruition, and to estimate their inherent reliability.

Task B – Evaluate Candidate Methods for Continuous Emission Monitoring

With the information from Task A, the most promising approaches can be identified based on technical feasibility and on estimated complexity and cost. This task would involve consultation with colleagues at the U.S. EPA, at consulting firms, and with others who have knowledge and interest in this issue.

Completion of this task would result in identification of one or more approaches that seem promising.

Task C – Develop Prototype Continuous Emission Monitor

The promising approaches identified in Task B would be investigated further. Prototype systems would be built and evaluated under laboratory conditions.

Task D - Field Testing

The prototype continuous monitoring method would be evaluated at industrial sites. Comparisons between results from the continuous method and the "gold standard" method would be made. Calibration or redesign of the continuous monitoring method would be done as necessary.

TIMETABLE

Below is a timetable for accomplishing the tasks listed above.

Task	0	Months A	After Project B 12	Segins 18	24
Develop Simulator A Produce Gas Stream B Produce Particles	=		_		
Develop "Gold Standard" A Develop nozzle B Develop size classifier C Develop filter system D Condensable particles E Assemble and evaluate system F Field test system				- - 	—
Develop Continuous Monitor A Identify methods B Evaluate methods C Develop Prototype D Field test system	F	0	_		→

REFERENCES

- 1. Hinds, W. Aerosol Technology, 2nd ed. John Wiley & Sons, New York, 1999.
- 2. Wilber, Karl, "Comprehensive Drift Measurements on a Circular Mechanical Draft Cooling Tower", J Cooling tower Institute 7 (2) 34-47 (no year indicated)
- 3. Webb, R.O. and E.D. Culter, "Calibration Study of Special Water Sensitive Paper Including Droplet Impaction at Oblique Angles", EPRI report RP1260-3, Amendment No. 1, March 1979.
- 4. Ranz, W.E. and J.B. Wang, "Impaction of Dust and Smoke Particles", Industrial and Engineering Chemistry 1371 1380 (1952).
- 5. Entropy Environmentalists, Inc., "Emission Test Report Chromium Cooling Towers Southeastern Manufacturing Facility ESED 85/02", U.S. EPA Contract No. 68-02-4336, and U.S. EPA Contract No. 68D90055, U.S. EPA, Emission Measurement Branch, Emission Standards and Engineering Division, Research Triangle Park, NC 27711 (July 1988).
- 6. Reisman, J. and G. Frisbie, "Calculating Realistic PM10 Emissions from Cooling Towers", Environmental Progress 21 (2) 127 130 (2002).
- 7. Israelson, G., N. Stich, and T.T. Weast, "Comparison of Cooling Tower Mineral Mass Emissions by Isokinetic EPA Method 13A and Heated Cascade Impactor Tests", presented at Cooling Tower Institute Annual Meeting, New Orleans, February 1991.
- 8. Ramachandran, G., David Leith and Lori Todd, "Extraction of Spatial Aerosol Distributions from Multispectral Light Extinction Measurements with Computed Tomography", *Journal of the Optical Society of America A*, **11**: 144-154 (1994).
- 9. Medecki, Hector, K.C. Wu, and D.E. Magnus, "Development of Droplet Sizing for the Evaluation of Scrubbing Systems", report EPA-600/7-79-166, U.S. Environmental Protection Agency, Industrial Environmental Research Laboratory, Research Triangle Park, NC (1979).
- 10. Medecki, Hector, Myron Kaufman, and Daniel. E. Magnus, "Design, Development, and Field Test of a Droplet Measuring Device", report EPA-650/2-75-018, U.S. Environmental Protection Agency, Control Systems Laboratory, Research Triangle Park, NC (1975).

