EPA Handbook for Optical Remote Sensing

Dennis K. Mikel

EPA-Office of Air Quality, Planning and Standards

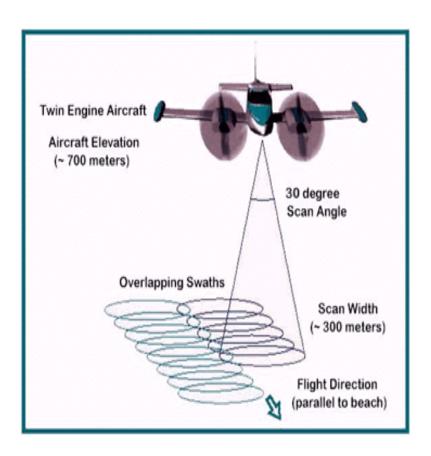
Outline

- Strategy
- What to Expect
- Chapter Description
- Deadlines and Next Steps


What do we mean by Remote Sensing?

What do we mean by Remote Sensing?

Leak Detection


Copyright FLIR Systems

What do we mean by Remote Sensing?

Roadside Monitoring

Air borne LIDAR – Leak Detection

Strategy

Industry, researchers and State/Local/Federal agencies have been requesting EPA guidance

Reasoning: create a document that can be of significant use to the non-spectroscopist.

Target Audience: Engineers, scientists, monitoring professionals

Create a comprehensive, but living document!!

What to Expect

We will attempt to address issues related to Optical Remote Sensing

- Technology and Technique Crosswalk
- Strengths and Limitations
- Instrument Descriptions
- Lists of Target Compounds
- Method Descriptions
- Data Validation

Chapter 1 - Introduction

- Purpose
- Evolution and Updates
- EPA Quality System Summary
 Range, Sensitivity, Measurement Errors and Uncertainty

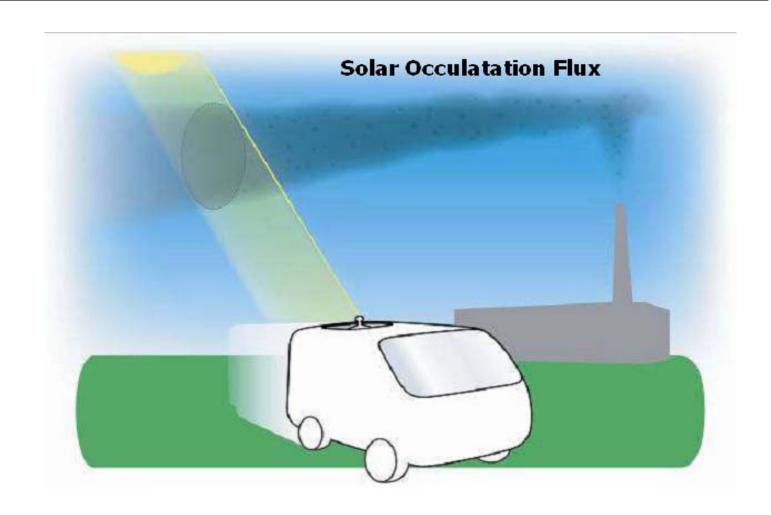
Selecting the Right Tool for Program Objectives

Chapter 1: Technology/Technique Crosswalk

Application	Technology		
Emission Flux Applications			
DIAL	LIDAR		
SOF			
Emission Factor	ORS FTIR, UV-DOAS, TDL		
bLS	ORS FTIR, UV-DOAS, TDL		
Emission Concentration Applications			
ID VRPM	ORS FTIR, UV-DOAS, TDL		
Tracer Correlation	CRDS/TDL, Mobile FTIR		
Leak Detection Applications			
Optical Imaging	FTIR Camera		

Chapter 1: Strengths and imitations

Strengths	Limitations		
Fourier Transform Infrared Spectroscopy – 2.1			
Relatively low instrument cost (about \$80,000 - \$125,000)	Gas-phase water spectral interference as well as CO and CO ₂ interference ^{5,12,13}		
FTIR equipment is fairly rugged and easily portable	Not applicable to homonuclear diatomic gases such as chlorine, oxygen, and nitrogen ^{1,2,3}		
There are a large number of compounds that are infrared active (absorb IR light)	Weak IR absorption features for many inorganic molecules such as sulfur dioxide and nitrogen oxides ⁶		
Large number of compounds can be analyzed simultaneously	Infrared beam has a limited range and may not be sensitive enough to meet ambient data quality objectives. Maximum path length is on the order of 400–500 meters.		
No gas calibration standards necessary (uses standard reference spectral library)	Multiple vertical or horizontal path measurements necessary to calculate plume flux, can require significant time and cost to set up and implement		
FTIR can be used to locate discrete emissions hotspots at a facility/area source	Typical infrared detectors require cryogenic cooling to operate. Liquid nitrogen used for detector cooling must be refilled and maintained regularly (weekly).		
Multi-compound coverage makes FTIR ideal for leak detection or source location where the facility being monitored has multiple compounds present (e.g., chemical plants)	Typical set-up time usually requires about 5 to 8 hours and a minimum of two people		
Equipment can be allowed to run unattended for months at a time with remote access to check instrument operation and recover data	Single beam open-path method measures concentration along a path. The path must capture most if not all of an analyte plume to provide accurate measure of emissions.		
No sample collection, handling, or preparation is necessary	Field implementation and data collection requires highly experienced personnel		


Chapter 2: Target Compounds

Laser Type	λ Range (nm)	Target Compounds	
AlGaInP	630-690	NO_2	
AlGaAs	750-1000	O ₂ , NH ₃	
Vertical Cavity	650-1680	H ₂ O, C ₂ H ₂ , HF, H ₂ S, O ₂ , H ₂ O, NH ₃	
Antimonide*	2000-4000	CO, CO ₂ , NO, N ₂ O, CH ₄ , HCl, HBr, H ₂ CO	
Quantum Cascade**	4000-12000	H ₂ O, CO, CO ₂ , NO, NO ₂ , N ₂ O, SO ₂ , C ₂ H ₂ , HCN, NH ₃ , PH ₃ , O ₃	
Lead-salt**	3000-30000	H ₂ O, CO, CO ₂ , NO, NO ₂ , N ₂ O, SO ₂ , CH ₄ , C ₂ H ₂ , HCl, HBr, HCN, NH ₃ , H ₂ CO, PH ₃ , O ₃	

Chapter 2 - Compounds and Detection

Species (Tuneable Diode Lasers)	Approximate near- IR λ (nm)	Reported Detection Limit (ppm-m)
ammonia	760, 1500	0.5-5.0
carbon monoxide	1570	40-1,000
carbon dioxide	1570	40-1,000
hydrogen chloride	1790	0.15-1
hydrogen cyanide	1540	1.0
hydrogen fluoride	1310	0.1-0.2
hydrogen sulfide	1570	20
methane	1650	0.5-1
nitric oxide	1800	30
nitrogen dioxide	680	0.2
oxygen	760	50

Chapter 3 - Measurement Approaches

Chapter 4 - Ancillary Data

- Types of data that is typically collected
- Meteorological Measurements
 - •How is Met data used to calculate flux
 - Monitoring location siting
- Process information: Emission factors, through-put, stack height, exit velocities
- Other useful data: GPS

Chapter 5: Data Validation and Verification

Validation and

Verification Level Activity Level 0 Verify Initial setup and calibration data Review Instrument is functioning as expected Level 1 Verify Quality checks were performed Review during sampling Level 2 Validate data relative to ancillary Review measurements and/or historical data... Level 3 Full post test Validation of data by an Review independed QA reviewer.

Quality Review

Timeline

- OAQPS requested 2010 fiscal year funds
- Work Assignment just ended
- Sections 1 5 are written
- All sections are under external and internal review

First Draft must be finished by December 2010

Timeline

- Due to time constraints:
- Modified the original Table of Contents
- Focusing on the "flux" determination methods
- Intend to expand document to include:
 - Ambient Near roadway monitoring
 - Mobile Monitoring
 - Fence-line Monitoring

Acknowledgements

- Connie Oldham EPA OAQPS
- Robin Segall EPA OAQPS
- Jason DeWees EPA OAQPS
- Eben Thoma EPA OAQPS
- Ray Merrill EPA OAQPS
- Eastern Research Group
- Everyone who has submitted comments.
- Many Thanks