EMPAX-CGE Model

Presented in EPA/OAQPS RIA Workshop By Larry Sorrels, OAQPS

October 18, 2007

EMPAX-CGE:

Presentation Overview

- Background of EMPAX
- Overview of Existing Model
 - Description of Industries and Regions
 - General Model Structure
 - Dynamics
 - Types of Model Outputs
- Ongoing Extensions
 - Updates
 - Additional Industries
 - Structure
 - State-level Results
 - Global Insights forecasts of economic activity

Background of EMPAX

- Predecessor model (i.e., ICCR EIA model) used for Combustion MACTs (e.g., Industrial Boiler MACT) and SAMI (Southern Appalachian Mountain Initiative) project in late '90s to 2004 timeframe
 - Largely applied a partial equilibrium approach estimate impacts to a single or few industries or markets at a time
- Determined that multi-sector, energy market focus more appropriate with CGE model
- Previous EMPAX development effort
 - National, static version (383 sectors) not used
 - Regional, static version (10 regions w/ 39 sectors) not used very much
 - Regional, dynamic version (5 regions w/ 17 sectors) current version
- Linked to cost models such as IPM and AirControlNet for CAIR, CAVR, PM NAAQS, and Ozone assessments (dynamic version used in each)
 - Note: still at work in determining if EMPAX will be utilized in ozone RIA due to extrapolated cost concerns – EMPAX is run with known control costs as for previous RIAs
- Underwent external peer-review in 2006, presented to SAB
- Will be used in latest Section 812 report

EMPAX-CGE: Overview of Current Model

- Dynamic regional economic model of US economy
- 5 Regions
 - Aggregation of 10 NERC regions (along state lines)
- 17 Sectors
 - 6 energy sectors
 - 8 manufacturing sectors
 - 3 non-manufacturing sectors
- Baseline conditions characterized by:
 - IMPLAN state-level economic data for 2000 (extended to 2005)
 - DOE/EIA energy data and forecasts (Annual Energy Outlook AEO - 2003)
- Intertemporal optimization with perfect foresight
- Except dynamics, use equations from the MIT EPPA model
- Model operates using GAMS software

EMPAX-CGE: Current Regions

EMPAX-CGE: Current Regional Detail

Baseline forecasts of energy production, consumption, and prices from *Annual Energy Outlook* (also output by sector and regional GDP growth)

EMPAX-CGE: Current Sectoral Detail

• 17 Sectors in each of 5 Regions:

Energy Production

Coal Crude oil Electricity (fossil and nonfossil) Natural Gas Refined Petroleum

Energy-Intensive Sectors

Food Paper Chemicals Glass Cement Iron and Steel Aluminum

Others

Agriculture Other Manufacturing Services Transportation

- All sectors are interconnected; sectors are at 2 to 4-digit NAICS level and below (except for crude oil, natural gas, and refined petroleum sectors)
- Model distinguishes between fossil-fired and nonfossil-fired electricity production so costs can be applied separately
- The 7 sectors called "energy-intensive" are defined as such by the Energy Information Administration (EIA)

EMPAX-CGE: Baseline Data Summary

- Economic and energy data sources:
 - IMPLAN state-level economic data (2000) (information on 528 industries and 9 household types)
 - EIA (AEO, MECS, State Reports, Industry Annuals)
- AEO 2003 energy and industrial output forecasts
 - Production and consumption by industry and fuel
 - Incorporate baseline energy efficiency improvements
- Natural resources (coal, crude oil, natural gas)
 - Match resource prices to AEO forecast (as feasible)
 - Set supply elasticity (from MIT/EPPA) around resulting price path

EMPAX-CGE Energy Detail Baseline Energy Use: Northeast

Sector	Fuel (Quad Btu)	2005	2010	2015	2020	2025	Growth Rate
Residential	Electricity	0.64	0.68	0.69	0.71	0.74	0.8%
	Natural Gas	1.27	1.32	1.36	1.43	1.49	0.8%
	Oil	3.59	3.99	4.33	4.61	4.91	1.6%
	Total	5.49	5.98	6.38	6.75	7.14	1.3%
Electricity	Coal	1.69	1.89	1.91	1.96	1.99	0.8%
	Natural Gas	0.97	1.14	1.32	1.50	1.72	2.9%
	Oil	0.49	0.52	0.54	0.55	0.52	0.3%
	Total	3.15	3.54	3.77	4.00	4.23	1.5%
Petroleum Refining	Crude Oil	3.07	3.33	3.42	3.53	3.58	0.8%
	Electricity	0.01	0.01	0.01	0.01	0.01	1.5%
	Natural Gas	0.06	0.08	0.08	0.08	0.08	1.2%
	Oil	0.20	0.21	0.21	0.22	0.21	0.3%
	Total	3.34	3.63	3.72	3.83	3.88	0.7%
Agriculture	Coal	0.00	0.00	0.00	0.00	0.00	0.0%
	Electricity	0.01	0.01	0.01	0.01	0.01	0.9%
	Natural Gas	0.03	0.03	0.03	0.03	0.03	1.3%
	Oil	0.08	0.09	0.09	0.10	0.10	1.2%
	Total	0.12	0.13	0.13	0.14	0.15	1.2%
Energy-Intensive Manufacturing	Coal	0.34	0.35	0.35	0.34	0.34	0.0%
	Electricity	0.16	0.17	0.18	0.18	0.18	0.6%
	Natural Gas	1.15	1.25	1.33	1.41	1.50	1.3%
	Oil	1.28	1.43	1.58	1.69	1.81	1.8%
	Total	2.93	3.20	3.43	3.62	3.84	1.4%
Other Manufacturing	Coal	0.05	0.06	0.06	0.06	0.06	0.6%
	Electricity	0.16	0.19	0.22	0.24	0.26	2.4%
	Natural Gas	0.44	0.48	0.54	0.60	0.67	2.2%
	Oil	0.41	0.45	0.49	0.52	0.55	1.6%
	Total	1.05	1.18	1.30	1.41	1.54	1.9%
Services	Coal	0.01	0.01	0.01	0.01	0.01	0.9%
	Electricity	0.66	0.73	0.78	0.82	0.88	1.4%
	Natural Gas	0.80	0.84	0.88	0.95	1.01	1.2%
	Oil	0.24	0.25	0.25	0.26	0.26	0.3%
	Total	1.71	1.83	1.93	2.04	2.15	1.2%
Transportation	Coal	0.00	0.00	0.00	0.00	0.00	0.0%
	Electricity	0.01	0.02	0.02	0.02	0.02	1.3%
	Natural Gas	0.05	0.06	0.07	0.07	0.08	2.4%
	Oil	1.68	1.93	2.16	2.36	2.59	2.2%
	Total	1.75	2.01	2.25	2.45	2.70	2.2%
Total	Coal	2.11	2.32	2.34	2.39	2.42	0.7%
	Electricity	1.71	1.87	1.97	2.06	2.17	1.2%
	Natural Gas	4.87	5.30	5.73	6.18	6.73	1.6%
	Oil	7.98	8.88	9.67	10.31	10.98	1.6%
	Total	16.67	18.37	19.71	20.94	22.30	1.5%

10

EMPAX-CGE: Calibration

- Model uses nested constant elasticity of substitution (CES) equations
 - Data show inputs currently used to produce output
 - CES functions show options for and ease of substitutions
 - Allows changes in inputs and energy-efficiency improvements
- Calibrated to production functions & elasticities of MIT's CGE model, EPPA (engineering based)
- Initial model year of 2005 balanced SAM data
- AEO forecasts (regional GDP, energy production, industrial output & energy consumption, energy prices)

EMPAX-CGE: Intertemporal Dynamics

- Arrow-Debreu general equilibrium theory (i.e., perfectly competitive markets, firms are pricetakers) for markets that are covered in EMPAX
- Intertemporally optimizing with foresight
 - Households maximize present value (PV) of future consumption subject to budget (and time) constraints
 - Firms maximize PV of future profits subject to technology constraints
- Initial year of 2005, usually solves to 2050
- Time periods at 5-year intervals connected by savingsinvestment decisions of households

EMPAX-CGE: Intertemporal Dynamics

- Sources of Growth:
 - Technology change
 - Baseline includes technological progress & energy efficiency improvements from AEO forecasts
 - Increases in energy prices encourage industrial efficiency and substitution to K/L as well as household substitution to out of energy goods
 - Increases in natural resources (stocks are modeled)
 - Capital accumulation
 - Labor supply and productivity (regional GDP forecasts)
- Includes capital installation costs that determine adjustment dynamics over time
 - Capital stock levels do not adjust instantly or costlessly
 - Quadratic costs control how fast economy responds (Goulder, McKibbin/Wilcoxen)

EMPAX-CGE: Changes in Technology

- Baseline energy efficiency improvements from AEO energy consumption forecasts
- Model structure allows technology improvements (not a fixed coefficient input-output approach)
- Model structure captures effects from changes in energy prices
 - Encouragment of industry fuel efficiency through use of additional capital/labor in place of fuel
 - Substitution out of energy goods by households due to increase in energy prices
- All interactions between energy and economy are considered (e.g., lower energy consumption, use of additional capital in manufacturing, extra purchasing power of households)

EMPAX-CGE: Tax Interactions

- Includes distortions from taxes:
 - Labor (FICA) and sales/excise taxes IMPLAN data
 - Personal income taxes based on NBER TAXSIM data
 - Capital user cost of capital formulation (e.g., Fullerton)
- Labor supply elasticities control willingness of households to switch between labor and leisure
 - Compensated elas of 0.4, uncompensated elas of 0.15 (based on Goulder, Williams, Fullerton, others)
- Estimates of baseline tax distortions in model:
 - MCPF marginal cost of public funds (~1.22)
 - MEB marginal excess burden (~0.31)

EMPAX-CGE: Households

- Need to examine how spillover effects of policies will affect labor and capital markets, thus altering purchasing power of households
- IMPLAN data define consumption patterns and income sources for 9 groups based on:
 - US BLS Consumer Expenditure Survey
 - US Census Bureau Decennial Census & Population Survey

EMPAX-CGE: Households

- To capture important effects, several households are specified in each region based on income
- Different groups are run simultaneously in model so that interactions between households' decisions and policies are determined endogenously by the model
- Typically aggregate households into
 4 types in each of 5 regions = 20 households
 - \$0 to \$14,999
 - \$15,000 to \$29,999
 - \$30,000 to \$49,999
 - \$50,000 and above

EMPAX-CGE: Environmental Expenditures

- Environmental expenditures (e.g., compliance cost estimates from IPM and/or AirControlNet) must be allocated to purchases of inputs from other industries within CGE model
 - In absence of other data, Nestor and Pasurka (1995) information on environmental protection expenditures forms basis of this allocation
- Allows model to capture ripple effect to other sectors associated with environmental expenditures by linking them to purchases of their goods and services (and factors of production)

EMPAX-CGE:

Outputs

• General: GDP, welfare (EV), trade, investment

Production

- Output by sector (\$ and %)
- Labor use by sector (\$ and %)
- Capital earnings by sector (\$ and %)

Households

- Consumption of goods (\$ and %)
- Labor supply decisions

• Energy

- Production by type (\$ and BTU and %)
- Industrial consumption by fuel (\$ and BTU and %)
- Household consumption by fuel (\$ and BTU or kWh and %)
- Heatrates in electricity generation (BTU per kWh)

EMPAX-CGE: External Peer Review

- Dr. Charles Ballard, Economics Professor, Michigan State University
 - In many ways, the model described there is an impressive piece of work... generally speaking, I believe that this
 model is capable of providing insights into the effects of environmental policy changes.
- Dr. Christoph Bohringer, Professor, Center for European Economic Research
 - Overall, the model documentation conveys the impression of solid competent work.
- Dr. Hillard Huntington, Stanford Energy Modeling Forum
 - The model will be very useful for deriving regional and sectoral impacts of environmental policies that use economic instruments that directly affect the costs of using different energy types.

• Suggestions for Improvement:

- Provide results from analyses at the time, there were no publicly available findings.
- Conduct sensitivity analyses to illustrate model reactions.
- Consider adjusting some of the elasticity parameters
- Add additional descriptions of policy evaluation techniques.

EMPAX-CGE Output (CAIR: Energy Intensive Production - US)

Growth Rate / Average Effect 2025 Model Run 2005 2010 2015 2020 Industry Food and Kindred \$428,137 \$460,434 \$494,433 \$529,365 \$563,832 1.4% Paper and Allied \$168,599 \$186,194 \$205,503 \$221,028 \$236,642 1.7% Chemicals \$437.013 \$514.623 \$593,712 \$670.607 \$747,446 2.7% **Baseline Revenue** \$35,979 Glass \$22,082 \$26,330 \$29,489 \$32,245 2.5% (\$ million) Cement \$6.829 \$7,776 \$8.571 \$8.952 \$9.270 1.5% Iron and Steel \$83.072 \$94,430 \$100.583 \$103.321 1.1% \$101.146 Aluminum \$41.747 \$46,458 \$50.889 \$53.445 \$56,737 1.5% Food and Kindred \$428,048 \$460,237 \$494,181 \$529,018 \$563,478 1.4% Paper and Allied \$168,607 \$186,125 \$205,393 \$220,861 \$236,472 1.7% Chemicals \$593,398 \$670,049 \$436,961 \$514,426 \$746,859 2.7% **Scenario Revenue** \$22,087 \$26,318 \$29,470 \$32,214 \$35.947 Glass 2.5% (\$ million) \$7,775 Cement \$6,827 \$8,568 \$8,946 \$9,264 1.5% Iron and Steel \$83.089 \$94,396 \$103,235 \$100,526 \$101,056 1.1% Aluminum \$41,770 \$46,460 \$50,878 \$53,424 \$56,713 1.5% Food and Kindred -\$90 -\$197 -\$252 -\$347 -\$354 -\$248 \$8 -\$110 Paper and Allied -\$69 -\$168 -\$170 -\$102-\$314 -\$588 Chemicals -\$51 -\$197 -\$558 -\$341 **Difference in Revenue** -\$19 Glass \$5 -\$12 -\$31 -\$32 -\$18 (\$ million) Cement -\$2 -\$1 -\$3 -\$5 -\$5 -\$3 \$17 -\$34 -\$57 Iron and Steel -\$89 -\$85 -\$50 Aluminum \$23 \$1 -\$11 -\$22 -\$24 -\$6 Food and Kindred -0.02% -0.04% -0.05% -0.07% -0.06% -0.05% Paper and Allied 0.00% -0.04% -0.05% -0.08% -0.07% -0.05% **Percentage Change** Chemicals -0.01% -0.04% -0.05% -0.08% -0.08% -0.05% in Revenue Glass 0.02% -0.04% -0.06% -0.10% -0.09% -0.05% (%) Cement -0.03% -0.02% -0.03% -0.06% -0.05% -0.04% Iron and Steel 0.02% -0.04% -0.06% -0.09% -0.08% -0.05% -0.03% Food and Kindred -0.01% -0.04% -0.05% -0.05% -0.04% -0.05% -0.07% Paper and Allied 0.00% -0.04% -0.08% -0.05% **Percentage Change** Chemicals -0.02% -0.04% -0.05% -0.08% -0.08% -0.05% in **Ouantity** Glass 0.00% -0.06% -0.08% -0.12% -0.12% -0.08% (%) 0.06% -0.04% -0.07% -0.09% -0.09% Cement -0.05% Iron and Steel 0.05% -0.04% -0.07% -0.10% -0.10% -0.05% Aluminum -0.02% -0.12% -0.14% -0.19% -0.17% -0.13%

EMPAX-CGE Output (CAIR: Production Changes - US)

EMPAX-CGE Output (CAIR: Regional Production Changes)

24

EMPAX-CGE: Extensions to Model

- General Updates
 - Use 2004 state economic data that RTI got from IMPLAN
 - current version uses 2000 IMPLAN data
 - Newer AEO forecasts (2006 or 2007)
 - current version uses AEO 2003
- Additional Industries
 - Increase the number of industries from current 17 to perhaps 25-30, depending on model willingness (tradeoff between industry coverage v. computing efficiency) – many nonlinear equations in dynamic EMPAX version makes convengence concerns important

Possible Additional Industries for Inclusion in EMPAX-CGE

- Mining NAICS 21 (mining other than coal)
- Construction NAICS 23
- Services
 - Wholesale & Retail Trade (NAICS 42, 44-45)
 - Transportation Services (NAICS 48)
 - Information (NAICS 51)
 - Business/Professional (NAICS 52-56)
 - Education (NAICS 61)
 - Health Care (NAICS 62)
 - Other Services (NAICS 71, 72, 81)
 - Public Services (NAICS 92)

EMPAX-CGE: Extensions to Model

- Developing a state-level version of EMPAX; to do so,
- Run a regional model of the U.S. (use current 5 regions)
- Pass relevant results to individual state model (under development)
- State-level version of EMPAX then uses regional/U.S. impacts to estimate statespecific effects of a policy – useful for driving emission projection models (e.g. EGAS)
- Difficulties:
 - Getting model baselines to solve is significant effort (especially with more industries and regions)
 - How to make the model framework flexible:
 - save new policy results into model baselines
 - possible shifts in industries or time frame?

EMPAX-CGE: Extensions to Model

- Global Insights forecasts of economic activity
 - Annual forecasts for around 25 years into future to help guide the baseline solution in EMPAX
 - Most important forecasts are for:
 - Real state GSP by NAICS (generally 2-digit)
 - Industrial production indices for manufacturing (3-digit NAICS)
 - Other possible data includes things like number of households, employment, income, etc.
- Use EMPAX baseline to provide information to EGAS model (for emissions growth) on things like industrial output and earnings, income, consumption, fuel use
- EMPAX should be updated to include changes listed above in first half of 2008

Need more information?

- Model documentation is on the Internet at http://www.epa.gov/ttn/ecas/EMPAXCGE.htm In addition, responses to peer review questions are also found at this web site
- Or, contact Larry Sorrels

 (sorrels.larry@epa.gov) or Tom Walton
 (walton.tom@epa.gov) for more information