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1. Introduction

Pesticides play an important role in maintaining agricultural productivity,
but they may also be causes of contamination of air, water, soil, and food,
with possible adverse effects on human and animal health. The proper use of
pesticide chemicals must be based on an understanding of the behavior of the
chemicals as they interact with air, water, soil, and biota, react or degrade,
and migrate. This behavior is strongly influenced by the chemicals’ physical-
chemical properties of solubility in water, vapor pressure or volatility, and
tendency to sorb to organic and mineral matter in the soil,

Reviews of such physical-chemical properties have been compiled by
Kenaga (1980), Kenaga and Goring (1980), Briggs (1981), and Bowman and
Sans (1983) for aqueous solubility, octanol-water partition coefficient, bio-
accumulation, and soil sorption; Spencer and Cliath (1970, 1973, 1983), and
Spencer (1976} for vapor pressure and volatilization from soil.

In this chapter we compile and discuss data for Henry’s Law constant //
{which is the ratio of solute partial pressure in the air to the equilibrium water
concentration and thus has units of Pa m3/mol) or the air—water partition
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coefficient K, which is the dimensionless ratio of air and water concentra-
tions. Both H and K, are used to describe air—water partitioning of the
solutes including pesticides (Mackay and Shiu, 1981).

The Henry's Law constant (HLC) is important in several respects. As is
discussed more fully later, the tendency of a chemical to volatilize from water
solution to air is largely determined by the HLC, a high value favouring
volatilization. Chemicals of low HLC may persist in soil, surface, or ground-
waters. If the HLC is large, the chemical may be analyzed by head space
analysis or gas stripping. Samples of water containing chemicals of {arge HI.C
must be handled carefully to avoid vapor loss. Aquatic bioassays and other
tests involving these chemicals must be carefully designed and controlled to
avoid loss of chemical. Air—water partitioning is also important in studies of
pesticide associations with rain, cloudwater, fogwater, dew, and in the alveoli
of the human and other animal lungs.

It is noteworthy that air and water are the ubiquitous, fluid, mobile
components of the environmeni. Many pesticides (and other man-made
chemicals) are known to move, as vapor, between the atmosphere and soil,
plant, and water surfaces. The direction of this transfer is dictated by the
fugacity of each component of the system, which in turn is controlled by the
HLC, Thus, pesticides volatilize from treated soil and plant surfaces and their
vapors are transported away, often to distant locations by atmospheric move-
ment. Once outside the treated area the vapors may be readsorbed by *“dry
deposition.” “Wet deposition™ also occurs when the atmospheric vapors
partition into, and are brought to the soil surface by rain. The processes of wet
deposition, dry deposition, and volatilization are all influenced in rate by the
HLC.

Pesticide volatilization from soil has been extensively studied. Transport
upward through the soil to the soil-atmosphere interface occurs by either
gaseous diffusion through the air-filled volume of the soil, or by the upward
flow of soil solution induced by water evaporation, In either case, the concen-
tration in soil—air at the surface will be governed by soil water—air equilib-
rium, i.e., by Henry’s Law, and such partitioning is a major determinant of
the rate of pesticide volatilization from soil.

When attempting to model this process it is commonly assumed that a thin
boundary layer of near-stagnant air exists between the atmosphere and the
soil surface, across which transport occurs by molecular diffusion. Thus, no
matter how the chemical migrates upwards to the soil surface, the pesticide
flux to the atmosphere will be essentially determined by the proeduct of the
diffusion coefficient and the concentration gradient across the laminar layer.
Model calculations predict that this boundary layer resistance may lead to
the accumulation of compounds with very low HLCs at the soil surface,
because these compounds can establish only very low concentrations in the
soil air and thus very slow fluxes across the boundary layer (Jury et al., 1984).
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An analogous modeling approach may be used for calculations of volatil-
ization from water surfaces. The canventional “two resistance” or “two film”
model (Liss and Slater, 1974) assumes that the well-mixed bulk phases are
connected by two thin boundary layers, one in the air phase and one in the
water phase, across which transport only occurs by molecular diffusion.
Transport through one or both of these two films is thus the rate controlling
step in volatilization or adsorption. The relative resistances are controlled by
the magnitude of the HLC.

As described earlier, the so-called “dry deposition,” or adsorption of
atmospheric pesticides at soil and water surfaces, is a process that is largely
dependent upon the HLC. Wet deposition also removes pesticides from the
atmosphere. In this process, pesticides dissolve in rain and are brought to the
surface with the precipitation. The flux N (g/m? hr) of a vapor-phase pesticide
from the atmosphere to the surface with rain is given by

N = W,C\K; (1

where C, is the total vapor-phase concentration (g/m?), K, is the precipitation
rate (m/hr), and W, is the vapor-phase washout coefficient, [(g/m?),,;./
(g/m?),,]. If the pesticide forms an ideal dilute solution in the raindrop, then
W, is the reciprocal of the air—water partition coefficient or HLC, i.e. W,
equals 1/K, . If washout is a first-order process, then it can be shown from
Equation | that the half-life of a pesticide in the atmosphere during rain is
directly proportional to the HLC.,

Atmospheric washout coefficients have been extensively studied. It is clear
that W, contains contributions from both particle and vapor scavenging; thus
the relationship between W, and K, is variable and not entirely predictable.
Ligocki et al. (1985) found excellent agreement between K, ™' and W, pro-
vided the temperature dependence of K, was taken into account, Bidleman
and Christensen (1979), on the other hand, found that W, for PCBs and
DDT were much greater than X, !, which they interpreted as evidence
of attachment and washout upon atmospheric particles. Williams (1986)
recently measured the washout of a group of pesticides whose H spanned
five orders of magnitude. He found that X, ! was at best only a semi-
quantitative predictor of W,. This issue has also been discussed by Mackay
et al, (1986).

There are problems with the way in which these washout coefficients are
determined. Air concentrations are normally measured at ground level and
compared to concentrations in rain that forms at some height in the atmo-
sphere. This raises questions about the extent to which equilibrium is attained
and if indeed the air and rain samples are representative of the same mass of
air. Glotfelty et al. (1987) recently reported measurements of the air—water
distribution of pesticides in fog, a situation in which equilibrium should be
attained, and the water and air samples are undoubtedly taken from the same
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mass of air. They found that the HLC was a poor predictor of the air-water
distribution. Volatile, hydrophobic pesticides were enriched in the aqueous
phase as much as several thousand times greater than predicted by H. It
appears that, in the case of fog, the assumption of ideal dilute solution
properties is invalid.

In summary, the HLC plays a critical role in determining the environmen-
tal dynamics of chemicals in general and pesticides in particutar, Although in
certain areas the role of the HLC remains obscure, it is clear that elucidating
the nature of these roles requires accurate values of this parameter. Accord-
ingly, in this chapter we examine first the thermodynamic background to

HLCs, discuss methods of experimental determinations, then present a com-
pilation of data.

II. Thermodynamic Basis

A fairly complete account of the thermodynamic basis has been presented by
Mackay and Shiu (1981) and only a brief review of the salient points is given
here.

A chemical achieves equilibrium between air and water when its chemical

potential or fugacity (/) is equal in each phase. Applying the conventional
Raoult’s Law expression (Prausnitz, 1969) gives

f=y@ P = xyP; )

where fis fugacity (Pa), y is mole fraction in vapor phase, & is the fugacity
coefficient (which is usually unity for nonassociating chemicals at low pres-
sure), P is total (atmospheric) pressure (e.g., 101,325 Pa), x is mole fraction
in the liquid phase, y is the activity coefficient in the liquid phase (on a Raoult’s
Law basis such that y is 1.0 when x is 1.0}, and P} is the vapor pressure {Pa)
of the pure chemical in the liquid (or subcooled liquid) state. The group yP;
is P the partial pressure of the chemical (Pa). The concentration in the air
phase C, is yP/RT where R is the gas constant (8.314 Pa m*/mol K) and T
is absolute temperature (K). The concentration in the water phase Cy, is x/v
where v is the molar volume (m?*/mol) of the solution. In dilute solution v
approaches that of water, i.e., 18 x 107° m3/mol.
Three expressions for HLC are commonly used,

P=HCy 3
P=Hx (4)
or Gy = KywCyw ()

H has units of Pa/(moi/m?®) or Pa m*/mol, A has units of Pa, and K,y is
dimensionless and is often referred to as the air-water partition coefficient.

1
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These HLCs are thus defined as follows

H = P{Cy = yP j(x[v) = vy P} (6)
H=Pjx = yPjx =yP N
Kaw = Ca/Cw = (yPo/RT)(xV) = vy PL/RT ®)

Clearly H is Hv and K, is H/RT. In principle the required data are thus v,
v, and F. In practice the usually available data are water solubility and vapor
pressure.

For a liquid chemical, if the solubility of water in the liquid is negligible
then at saturation the fugacity is £ and the product xy must be unity, or y
is 1/x® where x* is the mole fraction solubility. Alternatively y is | jvCy, where
C3, is the solubility in units of mol/m? and v is the molar volume of the
saturated aqueous solution. If water is appreciably soluble in the chemical
this expression becomes invalid, because the water-saturated chemical exerts
a different (and probably lower) fugacity than the pure liquid chemical. A
better estimate of this fugacity is B(1 — x,,) where x, is the mole frac-
tion solubility of water in the chemical. The expresston for y then becomes
(1 — x,)vCi.

For a solid chemical the fugacity is that of the solid P which is less than
that of the liquid. An estimate of the ratio of solid/liquid vapor pressure (or
fugacity ratio F) can be obtained from

F= PP = exp{— AS((Ty/T) — D/R] = exp[—0.023(T;, — 298)] (9)

where AS is the entropy of fusion. Some AS measurements are available for
pesticides determined by differential scanning calorimetry (e.g., Plato and
Glasgow 1969; Plato 1972). When no experimental value is avatlable an
estimate of 56 J/mol K is generally adopted, but it should be recognized that
AS can vary substantially from this figure (Yalkowsky, 1979). It follows that

y = Fix* = F/Cv (10)

The use of solubility as a source of information on y results in the following
expressions for A

liguids H = vy = B/C{ or PI(1 — x,)/C] (1)

solids H = vyPy = FR|C2 = P}ICS = PJICE (12)

because FP; equals P? the solid vapor pressure, 1.2., F equals both P§/Ff and

GG
The Henry’s Law constant is thus conveniently calculated as the ratio of
the Liquid vapor pressure and solubility, or the solid vapor pressure and

solubility. It is a mistake to mix a solid and a liquid property. The use of this
ratio is equivalent 1o assuming that a plot of partial pressure versus concen-
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tration is linear extending from the origin to the saturation point P, C* which
may be either of the hiquid or solid. Implicit in this are the assumptions:

i. The solubility of water in the chemical is so small that it negligibly affects
the vapor pressure;

ii. The activity coefficient y does not vary appreciably with concentration.

These assumptions break down when water is appreciably (e.g., > 5% mol)
soluble in the chemical or when the chemical is appreciably {e.g., > 5% mol)
soluble in water.

This approach breaks down completely for chemicals which are miscible
with water and thus have no reported solubility {e.g., ethanol). In such cases
H or y must be determined by another method, such as direct measurement
of HLC or by estimating y from other measurable quantity or from correla-
tions or predictive procedures.

In summary, for solid or liquid chemicals which display little mutual
miscibility with water, H is conveniently estimated as P*/C? or PY/CE, or it
can be measured as P/C. For appreciably water miscible systems it is best to
measure i as P{C, although an estimate of /7 can be made as B}(1 — x,,)/C}.
For water miscible systems H can only be estimated as P/C oras vy P provided
that data for y can be located.

A rigorous procedure is to measure P%, C%, and H and perform a consistency
check. Obviously the data must be at the same temperature since all three
quantities are temperature dependent, especially P* and H.

I1I. Experimental Determination
A, From Solubility and Vapor Pressure

As discussed earlier, if the mutual miscibility of water and the chemical is less
than a few mole percent, H can be estimated from experimentally determined
solubilities and vapor pressures. The preferred methods involve flow of air or
water through “‘generator columns,” as described by May et al. (1978a,b) for
water and Spencer and Cliath (1969, 1983) for air. Gas chromatographic
methods can also be used for determining vapor pressure (Bidleman, 1984).

B. From Equilibrium Closed Conditions

Lincoff and Gossett (1984), and Gossett (1987) have developed a *“Equilib-
rium Partitioning in Closed System” (EPICS) method that is very suitable for
chemicals of high HLC, i.e., H is > 100 Pa m?/mol. Essentially it involves
measurement of gas headspace concentration ratio from pairs of sealed
bottles containing differing liquid volumes after equilibrium is reached.

C. From Equilibrium Flow Conditions

Mackay et al. (1979) devised a flow system in which the concentration of the
chemical in water is measured as a function of time as it is stripped with a
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steady stream of gas, This avoids the need for gas phase analysis. Hassett and
Millicic (1985), and Yin and Hassett (1986) have developed a similar system
which is suitable for measuring the HLCs in natural waters.

D. Distillation

A very simple, approximate method of estimating # is to distill a solution of
the chemical in water, possibly under reduced pressure to obtain environ-
mental temperature conditions. The ratio of water to chemical in the vapor
and in the liquid can be used to estimate the relative volatility of water and
the chemical, which can be shown to be the ratio of their HLCs. If the
concentration of the chemical is enhanced in the vapor or distillate (and
depleted in the liquid) the HLC of the chemical exceeds that of water (which
is the vapor pressure of water divided by the concentration of water in water
i.e., 55,000 mol/m*), and vice versa. This is useful as a simple screen of
potential for volatilization loss.

IV. Data Analysis

Table 1 gives the chemical name, synonym, and other physical data for 96
pesticides. Molar velume was calculated using the Le Bas method (Reid
et al., 1979) which is a group additive method. Fugacity ratio was cal-
culated with equation 9 using an average entropy of fusion AS = 56 J/mol K
(Yalkowsky, 1979).

Table 2 gives the aqueous solubility at specific temperature and octanol/
water partition coeflicient (log Koy ). The selected value of solubility is also
given and then converted to subcooled liquid solubility €, (mol/m?) with the
fugacity ratio when the chemical is a solid at room temperature, A plot of
log C; versus molar volume (Fig. 1) shows a decrease in solubility as molar
volume increase in a linear relationship as reported earlier by Miller et al,
(1984), Shiu and Mackay (1986) for aromatic hydrocarbons and PCBs.

Table 3 gives the vapor pressures and their methods of determination.
As discussed by Spencer and Cliath {1983), the reported vapor pressures often
exhibit wide discrepancies between different authors, ¢.g., vapor pressure of
dieldrin at 20° varies from 2.37 x 1073 Pa (Martin, 1971) to 3.87 x 107* Pa
(Atkins and Eggleton, 1971). The selected vapor pressure value was usually
chosen from data on the gas chromatographic retention time on a nonpolar
column (Hamilton 1980; Ripley 1983; Westcott and Bidleman 1981; Bidleman
1984; Kim et al. 1984) with respect to a structurally similar compound with
known reliable vapor pressure. All vapor pressures were also converted to
subcooled liquid vapor pressures P (Pa). There are very few reported experi-
mentally determined Henry’s law constants for pesticides as indicated in
Table 3. Therefore, Henry's law constants were calculated from the selected
C's and F’s. Table 4 gives complete summarized selected physical-chemical
properties of 96 pesticides.
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The user is cautioned that while every effort has been made to avoid errors
in tabulating and processing the data, there is an ever-present possibility that
the data may contain error of experimental determination, temperature ad-
justment, change of units or transcription. The primary reference should be
consulted to verify values.

The Figures are included to convey an impression of the dependence of
these properties on molar volume. As expected, increases in molar volume
generally cause a decrease in solubility {Fig. 1), an increase in Ky (Fig. 2),
a decrease in vapor pressure (Fig. 3), and no trend in HLC (Fig. 4). There
is a tendency for the “pseudosolubility” of liquid chemical in octanol, 0, i.e.,
the product of Kgw and Cf, to fall (Miller et al. 1985, Shiv and Mackay, 1986)
with increase in molar volume, but the effect is slight (Fig. 5). Most @ values
fall between 102 and 10%. Finally, Fig. 6 shows the often reported inverse
relationship between octanol-water partition coefficient and subcooled liquid
solubility.

When a water solubility in excess of 10000 g/m> (i.e., 1%) is used to
calculate the HLC the value should be treated with caution for reasons
discussed earlier.

V. Discussion

It 1s convenient to group these chemicals into several classes depending on
the values of H. For the eight chemicals for which H exceeds 100 Pa m3/mol
or K,w exceeds 0.04, the chemical is highly volatile and is expected to be lost
rapidly to the atmosphere under normal environmental conditions. The rate
of volatilization will normally be controlled by diffusional resistances in the
water phase. Analysis by head space techniques is satisfactory.

For another 8 chemicals A lies in the range 25-100 Pa m3/mol (K, is
0.01-0.04) volatilization will be appreciable but slower, some gas phase
resistance occurring. Head space analysis is still possible but prolonged purg-
ing may be required.

In the range 1-25 Pa m?/mol, volatilization is slower still and may or may
not be significant depending on the rates of competitive processes. Head space
analysis is rarely feasible. Below 1 Pa m3/mol the chemical (and this includes
most pesticides) is only slightly volatile and the rate of evaporation falls as H
decreases. At this HLC the equilibrium concentration in air is only approxi-
mately /2500 of that of water. Volatilization from water can often be ignored
as a significant environmental process except where there is the potential to
expose a small volume of water (e.g., a thin layer on flooded soil) to a large
volume of air.

When using these data care must be taken to note the following:

i, HLCs are very temperature sensitive, thus values change diurnally and
seasonally. A rule of thumb of a factor of 2 increase for an 8°C temperature
rise gives the order of magnitude variation.
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ii. Only the dissolved chemical exerts a partial pressure, thus if the water
containing organic or mineral matter which appreciably sorbs or binds the
chemical, the “apparent” HLC will be lower if the total concentration in
water, rather than the truly dissolved concentration is used.

iii. The presence of dissolved electrolytes, organic matter, detergent and
emulsified materials will affect the “solubility” of the chemical in water
(or more strictly ¥) and thus alter the HLC.

Finally, it should be emphasized that the volatilization of these chemicals
from water or their air—water partitioning is controlled by A. It is only
indirectly influenced by vapor pressure in combination with solubility. A low
vapor pressure is no guarantee of a low HLC and thus of a low volatilizing
tendency. Chemicals such as DDT which have very low vapor pressures also
have very low solubility, thus they maintain appreciable HLCs and are subject
to evaporative loss. The critical determinant of volatilization is thus H.

VI. List of Symbols

C,  concentration in air, molfm?*

Cw  solute concentration in water, molfm?

w  solubility in water, mol/m?

s solid solute solubility in water, mol/m?®

¢ subcooled liquid solubility in water, mol/m?

F fugacity ratio

H Henry’s Law constant, Pa m?/mol

H Henry's Law constant, Pa

K,w dimensionless Henry's Law constant or the air/water partition coefficient
Kow  octanol/water partition coefficient

K,  precipitation rate, mm/hr
N flux g/m?/hr
P partial pressure of solute, Pa
Pr total pressure, i.e., 101,325 Pa
s solid vapor pressure, Pa
P subcooled liquid vapor pressure, Pa
Q “pseudosolubility” of liquid chemical in octanol (Kgyw * €.), mol/m?
R gas constant, 8.314 Pa m?/mol K
AS  entropy of fusion, J/mol K
T system temperature, K
7w  melting point, K
v molar volume of the solution, m? fmol
W,  vapor phase washous coefficient, (g/m?),,;./(g/m3),;,
x solute mole fraction in the liquid phase
x,  mole fraction solubility of water in solute
x* mole fraction solubility of solute in water
¥ solute mole fraction in vapor phase

Henr

v activity coefficient in t
7 fugacity coefficient
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