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ABSTRACT 
Communities and infrastructure exposed to higher than normal ambient concentrations can only be seen 
through continuous monitoring of near-surface conditions.  These atmospheric observations are also an 
essential piece of information, which enables agencies and businesses to prepare for oncoming events 
and to respond in a timely manner.  Equally important is the knowledge of how anthropogenic activities 
are linked to frequency and duration of anomalies in the ambient air, their change over time, and how 
often it is necessary to update the inventories.  Over the next five years, Earth Networks will deploy 100 
cavity ring-down spectrometers (CRDS) continuously measuring CO2, CH4 and H2O.  It is planned to 
place sensors at 50 tall towers in the United States (20 instruments already deployed), plus 25 in Europe 
and 25 around the world.  Data from this network will be used for inverse receptor-oriented modeling to 
estimate natural and anthropogenic sources and sinks of CO2 and CH4.  Instruments are calibrated using 
a standard gas mixture from NOAA (National Oceanic and Atmospheric Administration).  Sampling rate 
of the raw data from spectrometers and collocated weather stations is at the sub-minute range, which is 
important both for short-duration accidents and for identification of very localized emission sources that 
are potentially missing in inventories, which could be at least a few weeks old.  Local weather 
information within urban and populated areas is also critical for receptor-oriented techniques.  
Observations provided by more than 8,000 Earth Networks' surface weather stations are available in 
real-time and used in our GHG monitoring system. 

INTRODUCTION 
 
Current estimates of air quality conditions and distribution of greenhouse gases at local and regional 
scales and  their long-term impact at nationwide and global scales, depends on the underlying 
assumptions about emission inventories.  Various uncertainties are associated with bottom-up 
inventories and often times they lack sufficient reliability and timeliness to be used for policy-making.  
EPA 74 FR 56260 rule on “Mandatory Reporting of Greenhouse Gases” [1] includes provisions to ensure 
the accuracy of emissions data through monitoring, recordkeeping and verification requirements.  Top-
down estimates of emissions that use atmospheric observations are being developed to validate the 
traditionally used bottom-up inventories and provide more timely information on trends in emission 
levels.  In a top-down approach, atmospheric mixing ratio observations are used in combination with 
inverse models to estimate geographically distributed sources and sinks of greenhouse gasses.  Until 
recently, the number of atmospheric observing sites was increasing slowly, and lacked enough density to 
resolve emissions at state level within a meaningful range of uncertainties.  
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Figure 1.  Sites providing observations for ESRL/NOAA global system CarbonTracker. Source: 
http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/goals.html 
 

 
 
For top-down estimates of anthropogenic sources to have sufficient accuracy at daily (or even hourly) 
granularity, which will facilitate adequate comparisons with bottom-up emissions, it is desirable to have 
high sampling frequency.  Many of the previously deployed GHG instruments used in national inversion 
systems are collecting data where sampling methodology is not continuous, so that a particular short 
duration event with anomalous levels of methane, for example, would be missed or smoothed with time.  
Locations of the sites used in national inversion systems are shown in Figure 1, where various types of 
instruments are indicated.  This paper describes Earth Network’s progress in the deployment of a 
Greenhouse Gas Monitoring network that will advance capabilities to better resolve dynamically 
changing emissions using top-down inversion methodologies at higher resolution regional scales. 

Global Greenhouse Gas Network 
 
In 2011, Earth Networks, Inc. launched a large scale initiative to deploy 100 cavity ring-down 
spectrometers (CRDS) continuously measuring CO2, CH4 and H2O.  Over the next five years, it is 
planned to place sensors at 50 tall towers in the United States, 25 in Europe and 25 around the world. 
Data from this network will be used for inverse receptor-oriented modeling to estimate natural and 
anthropogenic sources and sinks of CO2 and CH4. Instruments are calibrated using a standard gas 
mixture from the National Oceanic and Atmospheric Administration (NOAA). Sampling rate of the raw 
data from spectrometers and collocated weather stations is at the sub-minute range, which is important 
for identifying both short-duration releases and localized emission sources that are potentially missing in 
inventories. As of March 2012, Earth Networks, Inc. has deployed 20 instruments in the United States, 
shown in Figure 2.  
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Figure 2.  M

Deployed sites: 

1  GHG39

2  SNDGS

3  GHG09

4  GHG06

5  GHG08

6  GHG20

7  GHG16

8  GHG03

9  GHG10

10  GHG12

11  GHG15

12  GHG18

13  AWSHQ

14  GHG25

15  GHG01

16  GHG38

17  GHG19

18  GHG21

19  GHG35

20  GHG05
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Example GHG Data Sets 

Earth Networks has been operationally collecting data from 20 locations available since March of 2012. 
Figure 5 shows a “colorgram” of CH4 and CO2 data gathered in the month of June. Note the high levels 
of methane in the northeastern states later in the month of June. 
 
Figure 5.  Colorgram of CH4 (top) and CO2 (bottom) data in June 2012 from Earth Networks’ 
sites across the US. 

 

 
 

 
 
Figure 6 shows a single day of data gathered from the site in Lewisburg, PA. The graph shows periods 
of where a well-mixed atmosphere is giving similar readings from all three heights as well as periods 
that are not well mixed where the readings have a high variance between the different heights. 
 
Figure 6.  One day of GHG data from Lewisburg, PA . 
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Figure 7 shows methane data at 100 meter height over a 15 day period in March 2012 from multiple 
network sites in Maryland, Pennsylvania, New York and New Jersey.  Note the large spikes of methane 
for the Pennsylvania location which is not seen in the other sites data.  These large spikes indicate the 
presence of large local sources of methane. 

 
Figure 7.  CH4 data from multiple GHG network sites.

 

Supporting Data Sets	

It is critical to get an accurate analysis of the state of the atmosphere at a high time resolution in order to 
understand sources and sinks of methane and carbon dioxide when using a receptor-oriented approach  
and inverse modeling methods that rely on winds and boundary layer information. Earth Networks 
operates several networks of instruments which provide input for our inverse modeling efforts and 
analysis: 1) a professional grade surface meteorological observation network that provides real time 
temperature, humidity, winds, pressure and rainfall data for more than 8,000 locations in the United 
States; 2) a network of microwave radiometers which measure temperature and water vapor to 10 
kilometers and 3) a network of total lightning sensors which is critical for identifying turbulent air 
masses. Figure 8 shows a map of Earth Networks surface observation network, with daily wind gusts (in 
mph) indicated at various sites. Data are also ingested from other publicly available surface observation 
networks. 
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Figure 8.  Map of the dense network of surface stations. 

Application and Use of GHG Network Data 
 
One potential application of dense GHG network observations would be in relevance to monitoring 
emissions from gas and oil production in Pennsylvania. Earth Networks is utilizing an inverse modeling 
approach to determine methane emissions from the wells. Figure 10 shows a map of permitted oil and 
gas wells in Pennsylvania. The purple star indicates the location of an Earth Networks GHG tower. 
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integrating these critical data resources with socio-economic indicators will provide a more holistic and 
detailed perspective not only for scientists, but for policymakers and society at large. 

References  
 

1. USEPA. “EPA Mandatory Reporting of Greenhouse Gases Rule (74 FR 56260).” 
http://www.gpo.gov/fdsys/pkg/FR-2009-10-30/pdf/E9-23315.pdf 

2. Welp L.R., R. F. Keeling, R. F. Weiss, W. Paplawsky, and S. Heckman.  “Design and 
performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites”. 
Submitted to Atmospheric Measurement Techniques, 2012.  

3. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W.Wang, and J. G. Powers. 
“A description of the advanced research WRF version 2, Tech. Note 468+STR”. 2005, 88 pp., 
MMM Division, NCAR, Boulder, Colo. 

4. Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B. Stephens, P. S. Bakwin, 
and C. A. Grainger. 2003a. “Toward constraining regional-scale fluxes of CO2 with atmospheric 
observations over a continent: 1. Observed spatial variability from airborne platforms”, J. 
Geophys. Res., 108(D24), 4756, doi:10.1029/2002JD003018. 

5. Gerbig, C., J. C. Lin, S. C. Wofsy, B. C. Daube, A. E. Andrews, B. B. Stephens, P. S. Bakwin, 
and C. A. Grainger. 2003b. “Toward constraining regional-scale fluxes of CO2 with atmospheric 
observations over a continent: 2. Analysis of COBRA data using a receptor-oriented 
framework”. J. Geophys. Res., 108(D24), 4757, doi:10.1029/2003JD003770. 

6. Lin, J. C., and C. Gerbig. 2005. “Accounting for the effect of transport errors on tracer 
inversions”. Geophys. Res. Lett., 32, L01802, doi:10.1029/2004GL021127. 

7. Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J.Davis, and C. A. Grainger. 
2003. “A near-field tool for simulating the upstream influence of atmospheric observations: The 
Stochastic Time-Inverted Lagrangian Transport (STILT) model”. J. Geophys. Res., 108(D16), 
4493, doi:10.1029/2002JD003161. 

8. Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, C. A. Brainger, B. B. Stephens, 
P. S. Bakwin, and D. Y. Hollinger. 2004. “Measuring fluxes of trace gases at regional scales by 
Lagrangian observations: Application to the CO2 Budget and Rectification Airborne (COBRA) 
study”. J. Geophys. Res., 109, D15304, doi:10.1029/2004JD004754. 

9. USEPA. “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990– 2002”. U.S. 
Environmental Protection Agency, Washington, D. C., April 15, 2004. 

10. European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment 
Agency. 2011. “Emission Database for Global Atmospheric Research (EDGAR), release version 
4.2.” (http://edgar.jrc.ec.europa.eu) 

 
 
  



11 
 

 
KEY WORDS 
 
Earth Networks 
Greenhouse Gas 
GHG 
Atmospheric Observations 
Ambient Concentrations 
CO2 
CH4 
Inverse Modeling 
GHG Network 
Calibration System 
Calibrated 
NOAA 
Spectrometers 
Weather Observations 
GHG Monitoring 
Greenhouse Gases 
GHG Observation 
Enviornmental Observation 
Continuous Measurement 
 
 
 


