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Abstract 
 
Emissions factors are important for estimating and characterizing emissions from sources 
of air pollution. An emission factor is a representative value that attempts to relate the 
quantity of a pollutant released into the atmosphere with an activity associated with the 
release of that pollutant. These factors are usually expressed as the weight of pollutant 
divided by a unit weight, volume, distance, or duration of the activity emitting the 
pollutant (e.g., kilograms of particulate emitted per megagram of coal burned, or lbs of 
NOx per ton of coal burned.  Such factors facilitate estimation of emissions from various 
sources of air pollution based on: pollutant class, type of combustion, and fuel source. In 
most cases, these factors are simply averages of all available data of acceptable quality, 
and are generally assumed to be representative of long-term averages for all facilities in 
the source category (i.e., an estimated population average). The objectives of this 
presentation are to: (1) Compare the current EPA emission factors from combustion 
sources from Electric Generating Units (EGUs) with currently available continuous 
emission monitoring data; (2) Develop quantitative uncertainty indicators for the EPA’s 
data quality rated emission factors on NOx emissions from combustion sources; and (3) 
Determine quantitative indicators that could possibly be applied to other pollutant and 
source types. The EPA’s current emission factor values were found to be accurate for 
some Source Classification Codes (SCC); however, in general, The EPA’s current 
emission factors were not accurate for over half of our SCCs. The uncertainty of the 
qualitative data letter grades were also quantified for NOx emissions. The letter grade 
uncertainties calculated for NOx emission factors were then compared to letter grade 
uncertainties for other pollutants to calculate quantitative uncertainty ranges for the data 
quality grades. These uncertainty ranges could potentially be applied to any pollutant and 
source category. 
.   
 
Introduction 
 
Emission factors are important for estimating and characterizing emission sources of air 
pollution.  Emissions are being released into the air everyday from different sources and 
are monitored in various ways. Emission factors are generally estimated from an average 
of all available data1. However, the majority of emissions factors are based on estimates 
created by the US Environmental Protection Agency (EPA) in years past. These estimates 
were calculated by taking emission data from source categories and using this to make 



inferences about all other units with the same Source Classification Code (SCC)2. In 
many cases, the sample size leads to uncertainty in the emission estimates. This 
uncertainty is described by data quality indicators—letter grades A through E. The 
qualitative nature of these indicators prevents the scientific community from making a 
quantitative assessment of uncertainty of emission inventories and air quality modeling 
applications. The objective of this study was to quantify the uncertainty of emission 
factors. The focus of this study was on nitrogen oxide (NOx) emissions from electric 
generating units.  
 
The EPA has compiled emission factors in a document entitled, Compilation of Air 
Pollutant Emission Factors, AP-421. These factors were basically averages from available 
source tests. In many cases, the available source test is from a very small sample set.  The 
ideal situation would be to have numerous tests from a variety of sources. The minimal 
numbers of tests performed leads to inherent uncertainty in the emission factors. 
. 
 
Database Development 
 
In order to analyze the variability of NOx emission factors from EGU sources, several 
databases of information needed to be combined. First, the Continuous Emission 
Monitoring System (CEMS) monitoring data from the EPA’s Clean Air Markets Division 
contains hourly NOx emission rates in lbs of NOx per million British thermal units 
(lbs/106Btu)3. Second, the DOE’s Energy Information Administration has monthly fuel 
information for selected EGUs4 . This set of data includes the quantity for fuel consumed 
per month at a given plant and the heat content of the fuel (MMBtu/ton of fuel). The 
National Emission Inventory contains plant information, including stack parameters and 
the Source Classification Codes2. The Office of Regulatory Information Systems 
Identification (ORIS ID) number is assigned by the Energy Information Agency (EIA) to 
each boiler at each plant.  All three databases use the Energy Information Administrations 
ORISID to uniquely identify specific EGU plants. By using this common identifier across 
all the databases, a NOx emission factor (in tons of NOx per ton of fuel consumed) were 
be calculated on an hourly basis for all plants that are common to the three databases. 
Hours in which the plant was operating for only a fraction of an hour (start-up and 
shutdown) were discarded. In addition, only CEMS records marked ‘measured’ were 
included and therefore all values in the CEMS database marked ‘estimated’ were 
discarded. Thus, a new database containing hourly computed NOx emission rates 
comparable to the AP-42 emission factors for all the facilities in the United States was 
created. Uncertainties may exist in the measurements in the CEMS database. However, 
the CEMS data is considered to be reliable, so this analysis did not take any possible 
uncertainties associated with the CEMS database into concern. The years of data were 
1997 to 2007. There were data for 52 different SCCs in the initial data.  
 
Phase I: Calculation of Emission Factors from Continuous Emission 
Monitors and Comparison with AP-42 Factors 
 
Method 



To create a database where emission factors from different SCCs could be compared, all 
AP-42 values were standardized to lbs of NOx per million British thermal units 
(lbs/106Btu). This standardization was done in order to ensure that values of the same 
units were being compared during the analysis. Once the data were properly formatted, 
SAS programming was used throughout the duration of the project for most of the 
analyses. 
  
After careful inspection of the data, it appeared there were issues with the quality as a 
result of some EGUs having multiple SCCs (e.g., multiple fuels). When this was the case, 
the most dominant SCC was kept and the others were thrown out of the analysis. 
Deciding which SCC was dominant was based on whether it had the most hours of 
operation and if it had an order of magnitude greater in emissions than any other SCC for 
a particular boiler. In the process of cleaning up the data set, the influence of starter fuels 
and duplicate values were removed. As a result, a total of 13 SCCs were entirely removed 
from the database.  
 
Boxplots of all the SCCs revealed that some individual plants in each SCC clearly had 
very extraneous emission factor values. To resolve this problem and to reduce variability 
in the data, the dataset was trimmed.  The top 2% of NOx emission factor values from 
each SCC were removed. The choice to remove this data was based on a previous study 
of volatile organic compounds emissions from petrochemical plants, in which the 
researchers attributed extraneous ambient air quality emission factor values to emission 
monitoring equipment malfunctions or some abnormal operation5. It is assumed that the 
original emission test data used in the AP-42 document did not use data that was the 
result of equipment malfunctions or another abnormal event.   The top 2% of emission 
factor values from each SCC were removed rather than the top 2% of values from each 
plant, because only a few plants in each SCC appeared to have extraneous values. The 
bottom 2% of emission factor values was also removed from the database because of a 
large number of 0 values, which were attributed to errors or plant shutdowns.  
 
Between the years 2002 and 2007, some plants phased in controls between May 1st and 
September 30th through the various control strategies. For this reason, data from these 
plants were removed from the analysis since only uncontrolled emission factors were of 
interest. To determine which plants were in fact phasing in controls, time plots of every 
plant of every SCC were produced using SAS programming and were carefully observed.  
 
Upon looking through each individual plant of each SCC, some plants appeared to have 
controls in during every month of the year starting around the year 2000. Plants that 
exhibited this trend had data removed starting at the dates in which controls clearly 
looked present. These screening techniques eliminated data from units with post 
combustion control technology (e.g  Selective Catalytic Reduction of NOx with 
Ammonia).  
  
 Although some SCCs had over 100 plants, others had as few as 1 or 2 plants. SCCs with 
only 1 or 2 plants were removed from the analysis due to insufficient amounts of data. 
With this removal of SCCs from the analysis as well as SCCs previously being removed 



due to starter fuels and other issues, the final analysis only consisted of 21 different 
SCCs. However, the number of observations for the 21 SCCs used in this analysis 
accounted for about 77% of the total number of observations in the original database. 
After the data were properly formatted and appropriate dates were removed from each 
plant, SAS programming was used to compute the mean emission factor for each SCC. 
The percent difference between the mean emission factor and AP-42 value were then 
computed to determine how well the values in AP-42 compared to the continuous 
emissions data.  
 
Results and Discussion 
After looking at the percent difference between the AP-42 emission factor and the mean 
NOx emission factor for each SCC, based on this analysis of CEMS data, it is clear that 
many of the AP-42 values were significantly different from the CEMS values. Although 
13 of the 21 SCCs in this study received AP-42 letter grades of A, the majority of the 
percent differences between the AP-42 emission factor values and the means were 
substantially large, as shown in table 1. The discrepancy between the two is likely due to 
the fact that most of the AP-42 emission factors were calculated before the CEM 
monitors were installed on the units. In addition technology changes over time may have 
contributed to some of the differences.  
Table 1. Summary statistics of the 21 different SCCs.  

SCC Fuel Type Mechanism AP-42 
Grade 

Subj. 
Grade AP-42 EF Mean Diff. % Diff. 

10100201 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Wet Bottom 
(Bituminous Coal) D C 31 15.43 15.57 101.0% 

10100202 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom 
(Bituminous Coal) A A 12 11.46 0.54 4.7% 

10100203 Bituminous/ Subbituminous 
Coal 

Cyclone Furnace (Bituminous 
Coal) A A 33 22.28 10.72 48.1% 

10100204 Bituminous/ Subbituminous 
Coal Spreader Stoker C D 11 8.68 2.32 26.8% 

10100212 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom, 
Tangential (Bituminous Coal) A A 10 10.27 -0.27 -2.7% 

10100221 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Wet Bottom 
(Subbituminous Coal) E A 24 7.49 16.51 220.6% 

10100222 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom 
(Bituminous Coal) A B 7.4 7.30 0.10 1.4% 

10100223 Bituminous/ Subbituminous 
Coal 

Cyclone Furnace 
(Subbituminous Coal) C B 17 13.13 3.87 29.5% 

10100226 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom, 
Tangential (Subbituminous 

Coal) 
A B 7.2 5.66 1.54 27.2% 

10100301 Lignite Pulverized Coal: Dry Bottom, 
Wall Fired C C 6.3 4.57 1.73 37.8% 

10100302 Lignite Pulverized Coal: Dry Bottom, 
Tangential Fired A A 7.1 4.46 2.64 59.0% 

10100303 Lignite Cyclone Furnace C C 15 9.46 5.54 58.6% 
10100401 Residual Oil Grade 6 Oil: Normal Firing A A 1.97 1.51 0.46 30.1% 
10100404 Residual Oil Grade 6 Oil: Tangential Firing A A 1.34 1.79 -0.45 -24.9% 
10100501 Distillate Oil Grades 1 and 2 Oil D B 1.01 2.02 -1.01 -50.0% 

10100601 Natural Gas 
Electric Generation, Boilers > 

100 Million Btu/hr except 
Tangential 

A A 0.19 0.20 -0.01 -6.9% 

10100602 Natural Gas Boilers < 100 Million Btu/hr 
except Tangential B D 0.1 0.30 -0.20 -66.2% 

10100604 Natural Gas Tangentially Fired Units A A 0.17 0.14 0.03 18.9% 

10200601 Natural Gas Industrial, Boilers > 100 Million 
Btu/hr A A 0.19 0.17 0.02 10.9% 



20100201 Natural Gas Electric Generation, Turbine A D 0.32 0.08 0.24 286.8% 
20200201 Natural Gas Industrial, Turbine A D 0.32 0.32 0.00 0.5% 

 
Note: Diff. = AP-42 emission factor value minus the mean emission factor value; AP-42 Grade = 

the letter grade found in the AP-42; Subj. Grade = subjective letter grade based on observing the 

shape of the histogram of emission factor values for that SCC; EF = emission factor. 

 
Although many of the AP-42 emission factors did not match the CEMS emission factors, 
many of the subjectively ranked letter grades matched the actual letter grades found in the 
AP-42. 62% of SCCs had a percent difference between EPA’s AP-42 emission factor and 
mean of continuous emissions data greater than ±25%. 29% of SCCs had a percent 
difference between EPA’s AP-42 emission factor and mean of continuous emissions data 
greater than ±50%. 14% of SCCs had a percent difference between EPA’s AP-42 
emission factor and mean of continuous emissions data greater ±100%. Based on the 
analysis of Phase I, most of the AP-42 emission factor values for the 21 SCCs in this 
study likely need to be updated to reflect the currently available continuous NOx 
emissions data.  
 
  
Phase II: Determining a Quantitative Measure of Uncertainty for NOx 
Emission Factors 
  
 
Calculating Uncertainty Values.   
The goal of phase II of this research was to develop a quantitative measure of uncertainty 
for each of the EPA’s qualitative letter grades currently being used as data quality 
indicators. In order to do this, a few assumptions had to be made about what 
characterized an AP-42 emission factor as either an A, B, C, D, or E data quality rating. 
Table 2 shows the assumed sample sizes associated with each of the data quality ratings6. 
(Note that many other considerations contribute to a data quality rating, but this analysis 
assumed sample size was the key attribute since this is an easily quantifiable attribute. 
 
Table 2. Letter grades and assumed associated sample sizes. 

Letter Grade Sample Size (n) 
A 25 
B 10 
C 5 
D 3 
E 1 

 
 
The level of uncertainty for each of the 5 sample sizes, n, for each SCC was calculated to 
be the probability that a sample mean of a sample of size n will not be within 10% of the 
population mean: 
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where μ is the population mean; σ is the population standard deviation; and Z represents 
the z score for a standard normal distribution. The population mean and standard 
deviation for each SCC was assumed to be the calculated emission factor mean and 
standard deviation of the entire SCC, since the CEMS data consisted of a large number of 
representative observations. SAS programming was used to compute the probabilities 
from Equation (1) for each SCC.  This approach, however, does depend on normality. 
Calculating probabilities about sample means from the standard normal distribution 
assumes the sampling distribution is normal. A sampling distribution for the sample mean 
will be normal if the population distribution is normal, or if the sample size is large, no 
matter what the population distribution is. An A rating is assumed to have a sample size 
of 25, which can be considered large enough. However, D and E ratings are assumed to 
have sample sizes of 3 and 1, respectively. These small sample sizes pose some 
problems, since not all of the SCCs were normally distributed. To check the theoretical 
calculations, bootstrap methods were used for some of the very non-normal SCCs. 10,000 
samples for each of the 5 sample sizes were simulated for the selected SCCs and the 
means were calculated. For each sample size for these SCCs, the level of uncertainty was 
calculated to be the percentage of sample means out of 10,000 that did not fall within 
10% of the population mean (the mean of the entire SCC). These uncertainty values 
matched up extremely well with the theoretically calculated uncertainty values, even for 
very small sample sizes. It was concluded that using the theoretically calculated 
uncertainties as opposed to using bootstrap methods for every SCC would make no 
difference in this study, particularly since rounding was to be done. The letter grade 
uncertainties for each SCC were then averaged to create overall uncertainties for the five 
letter grades and then rounded. 
 
Coefficient of Variation.   
Creating a standardized way of ranking an SCC by letter grade was also of interest. 
Before establishing a standardized ranking variable, histograms of each SCC were 
observed and were subjectively ranked by letter grade. Very normal looking histograms 
received As. Those that were very scattered and not normal looking received lower 
grades. For most SCCs, these subjective letter grades were not far off from the actual 
letter grades found in the AP-42. The standardized ranking variable chosen was the 
coefficient of variation (CV). 

                                                     
μ
σ

=CV                   (2) 

The CV is a normalized measure of dispersion of a probability distribution compared to 
the mean. The CV statistic is unitless, and therefore is typically useful for comparing 
different sets of data. In a previous research study on emissions uncertainty by RTI 
International7, CV values were found to correlate very well with the uncertainty ratios 
they calculated. In the RTI study, it was found through exploratory analysis of emission 
factor data that datasets with similar skewness and CV values resulted in similar emission 



factor uncertainty ratios7. Histograms of each SCC were then observed along with their 
corresponding CV statistic. CV intervals were determined to correspond to either an A, 
B, C, or D rating based on what the CV values were for histograms that were normal 
looking versus histograms that were very non-normal.  
 
Results and Discussion 
Uncertainty was defined as the probability that a sample mean of a sample of size n, 
where n is 25, 10, 5, 3, or 1, will not be within 10% of the true mean. Table 3 shows the 
rounded average uncertainty for each letter grade from the 21 SCCs. The rounded 
average uncertainty for an A rating is 25%. This means that if an SCC received an A 
rating (assuming an A rating means a sample of size 25 was taken to compute the AP-42 
emission factor), there is about a 25% chance the sample mean will not be within 10% of 
the true emission factor mean. On the other hand, if an SCC receives an E rating 
(assuming an E rating means a sample size of only 1 was taken), there is about an 80% 
chance the sample mean will not be within 10% of the true emission factor mean.  
 
Table 3.  Rounded average uncertainty for each letter grade from the 21 SCCs  

 
 
 
 

 
Besides calculating uncertainty values for each of the letter grades, developing a 
standardized way of ranking an emission factor by letter grade was also of interest. The 
coefficient of variation is what was used. Table 4 shows the letter grades A through D 
and what CV intervals they could possibly correspond to. E ratings were not included in 
this part of the analysis. According to this ranking system, if a sample’s CV (computed 
from the sample mean and sample standard deviation) is between 0 and 0.4, then the 
emission factor computed from that sample would be given an A rating. If a sample’s CV 
is greater than 0.44, then the emission factor computed from that sample would receive a 
D rating.  
 
Table 4.  Letter grades and possible corresponding CV intervals. 

 A B  C D 
CV Ranking 0 ≤ CV < 0.4 0.4 ≤ CV < 0.42 0.42 ≤ CV < 0.44 0.44 ≤ CV  

 
In general, the CV rankings for the SCCs were not very consistent with the subjective 
letter grades and the AP-42 letter grades, as shown in table 5. The CV rankings were 
consistent with the subjective letter grades for about 57% of the SCCs. The CV rankings 
were consistent with the AP-42 letter grades for about 48% of the SCCs. However, the 
CV is affected by whether a distribution is skewed left or skewed right. If a distribution is 
left skewed, the bulk of the data and the mean will be around a higher value, leading to a 
smaller CV. This is because the CV is equal to the standard deviation divided by the 
mean, so having a larger denominator leads to a smaller fraction.  If a distribution is right 
skewed, the bulk of the data and the mean will be around a smaller value, leading to a 
larger CV. This discrepancy has led to some distributions receiving Ds through the CV 

 A 
(n=25) 

B 
(n=10) 

C 
(n=5) 

D 
(n=3) 

E 
(n=1) 

Rounded Average: 25% 45% 60% 65% 80% 



grading system that may not necessarily look like they deserve Ds. In spite of this, the 
CV values correlate very well with the uncertainty values, which is because the equation 
used to calculate the uncertainty values is actually a function of the coefficient of 
variation. SCCs with high CV values (and lower CV grades as a result) also have higher 
uncertainty values. This consistency makes sense since uncertainty was calculated as the 
probability of a sample mean not being within 10% of the true mean. If a distribution is 
right skewed and the true mean is small, 10% of the mean will also be small, making it 
more unlikely to obtain a sample with a mean within the small range of ±10% of the true 
mean.  
 
Table 5. Subjective, AP-42, and CV letter grades. 

SCC Fuel Type Mechanism AP-42 
Grade 

Subj. 
Grade 

CV 
Grade CV 

10100201 Bituminous/ Subbituminous 
Coal Pulvarized Coal: Wet Bottom D C D 0.482 

10100202 Bituminous/ Subbituminous 
Coal Pulvarized Coal: Wet Bottom A A A 0.398 

10100203 Bituminous/ Subbituminous 
Coal Cyclone Furnace A A A 0.355 

10100204 Bituminous/ Subbituminous 
Coal Spreader Stoker C D C 0.439 

10100212 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom, 
Tangential A A A 0.333 

10100221 Bituminous/ Subbituminous 
Coal Pulverized Coal: Wet Bottom E A A 0.235 

10100222 Bituminous/ Subbituminous 
Coal Pulverized Coal: Dry Bottom A B C 0.432 

10100223 Bituminous/ Subbituminous 
Coal Cyclone Furnace C B A 0.322 

10100226 Bituminous/ Subbituminous 
Coal 

Pulverized Coal: Dry Bottom, 
Tangential A B B 0.413 

10100301 Lignite Pulverized Coal: Dry Bottom, Wall 
Fired C C C 0.420 

10100302 Lignite Pulverized Coal: Dry Bottom, 
Tangential A A A 0.259 

10100303 Lignite Cyclone Furnace C C A 0.286 
10100401 Residual Oil Grade 6 Oil: Normal Firing A A A 0.378 
10100404 Residual Oil Grade 6 Oil: Tangential Firing A A A 0.363 
10100501 Distillate Oil Grades 1 and 2 Oil D B D 0.480 

10100601 Natural Gas Boilers > 100 Million Btu/hr except 
Tangential A A D 0.619 

10100602 Natural Gas Boilers < 100 Million Btu/hr except 
Tangential B D D 0.461 

10100604 Natural Gas Tangentially Fired Units A A C 0.437 
10200601 Natural Gas Boilers > 100 Million Btu/hr A A D 0.580 
20100201 Natural Gas Turbine A D D 1.236 
20200201 Natural Gas Turbine A D D 0.562 

 
 
PHASE III: Application to Other Pollutants and Processes 
Method 
To determine the possibility of applying the uncertainties associated with the different 
letter grades for NOx emissions to other pollutants, another data set consisting of various 
pollutants was analyzed. This new data set is from the study by RTI International and 
included emission factor data for 44 different pollutant and source category 
combinations7. The uncertainty values for the five letter grades were calculated for each 



of these pollutant and source category combinations as described under Phase II. The 
uncertainties for each of the letter grades were averaged across pollutant and source 
category combination. These letter grade uncertainty averages were then combined with 
the uncertainties calculated in Phase II to construct overall uncertainty ranges for each of 
the five letter grades that could possibly be applied to any pollutant.    
 
Results and Discussion 
Table 6 shows the average calculated uncertainty for each letter grade from the 44 
different pollutant and source category combinations used in the RTI study. These sets of 
data yielded higher uncertainty values than the previous data set, which is due to most of 
the pollutant and source category combination distributions being log-normal. The 
uncertainties for each pollutant and source category combination were averaged and then 
rounded. These rounded averages were then combined with the NOx emission factor 
uncertainties to create uncertainty ranges for each letter grade that could possibly be 
applied to any pollutant, as shown in table 7. According to these calculated uncertainty 
ranges, an A rated sample of emission factors, assuming the sample size was 25, would 
have between 25% and 50% uncertainty associated with it. In other words, if a sample of 
size 25 emission factors for any pollutant is taken, the probability that the sample mean is 
not within 10% of the true mean is between 25% and 50%. 
 
Table 6. Average Emission factor data quality rating uncertainties for the RTI dataset. 

Source Category/Pollutant A  
(n=25) 

B  
(n=10) 

C  
(n=5) 

D  
(n=3) 

E  
(n=1) 

Rounded Average: 50% 65% 75% 80% 90% 

. 
 
Table 7. Uncertainty ranges for emission factor data quality indicators. 

A Uncertainty 
(n=25) 

B Uncertainty 
(n=10) 

C Uncertainty 
(n=5) 

D Uncertainty 
(n=3) 

E Uncertainty 
(n=1) 

25 – 50%  45 – 65%  60 – 75% 65 – 80% 80 – 90% 
 
 
Conclusions 
The inconsistency between the CEMS data and the AP-42 for most SCCS suggests the 
AP-42 needs to be updated to reflect the continuous emissions data now available. Even 
though the AP-42 emission factor values did not match well with the CEMS data, the 
letter grades for each SCC found in the AP-42 were generally appropriate for the 
distribution shapes of the CEMS data and matched fairly well with subjective letter 
grades. Uncertainty values were calculated for each letter grade for each SCC, under the 
assumption that certain sample sizes were associated with the letter grades. Uncertainty 
was calculated as the probability that a sample mean was within 10% of the true emission 
factor mean. The letter grade uncertainties were then averaged across SCC to calculate 
overall letter grade uncertainties for NOx emissions. Using the CV was a way to possibly 
rank a sample of emission factors as either A, B, C, or D. For the majority of SCCs, the 
CV letter grades matched reasonably well with the AP-42 letter grades and the subjective 
letter grades. To determine the possibility of applying the letter grade uncertainties 
computed for NOx emissions to other pollutants, another data set with various 



combinations of pollutants and firing methods was analyzed. Uncertainties for each letter 
grade were calculated for the new data set and compared to those calculated from the 
continuous NOx emissions data. Uncertainty ranges were then computed based on the 
NOx emissions uncertainties and the uncertainty values from the second data set. These 
uncertainty ranges could possibly be applied to many different types of pollutants and 
source categories. 
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