SPECIATE – EPA's Database of Speciated Emission Profiles

Emission Inventory Conf 2008 Webcast Course

May 7, 2008

Lee Beck, Senior Project Engineer EPA/ORD/NRMRL/APPCD

Building a scientific foundation for sound environmental decisions

What is SPECIATE?

- Database Of Speciated Emissions
- Disaggregated Into PM And Gases (TOG/VOC)
- Compounds, Elements And PM Size (Species)
- Defined By Source (Profiles)

Building a scientific foundation for sound environmental decisions

Why Do We Need A Speciated Emissions Database?

- Modeling
 - Source-receptor
 - Atmospheric reactivity
- Source Apportionment
- Searchable Repository
- Tool For Data Processing
 - Can integrate with spreadsheets
 - Export to other programs (e.g., GIS)

Building a scientific foundation for sound environmental decisions

Brief History

- Paper Version Available In 1988
- First Computerized Version In 1993
- Speciate 3.2 Posted To EPA's CHIEF Website In November 2002
- 4.0 Posted to EPA's CHIEF Website January 2007
- Current Update (SPECIATE 4.2) Began In Spring 2007

Building a scientific foundation for sound environmental decisions

Development of SPECIATE 4.2

- Managed and Funded by 4 EPA
 Organizations
 - National Risk Management Research Laboratory (ORD)
 - National Exposure Research Laboratory (ORD)
 - Office of Air Quality Planning and Standards (OAR)
 - Office of Transportation and Air Quality (OAR)
- Priorities Established By EPA SPECIATE Workgroup

Building a scientific foundation for sound environmental decisions

Development of SPECIATE 4.2 (Cont.)

- Literature Search
- Comprehensive Spreadsheet Used To Prioritize Data For Inclusion
 - Source Category
 - Emissions, Vintage, Reference
 - Estimate Of Resources Needed
- Formal Quality Assurance Procedures

Building a scientific foundation for sound environmental decisions

Database Changes

• SPECIATE 3.2

- Has user friendly front-end
- 1503 PM profiles
- 565 gas profiles
- SPECIATE 4.0
 - Housed in MS Access[®]
 - 2,865 PM profiles
 - 1,215 gas profiles
 - 1,902 unique species

Building a scientific foundation for sound environmental decisions

Database Changes (Cont.)

- SPECIATE 4.1
 - Added Canadian Data
 - 100 new VOC profiles from EC NPRI Database
 - Still in peer review
- SPECIATE 4.2
 - Housed in MS Access[®]
 - 290 new VOC and 461 new PM profiles
 - New category "other gases" added to accommodate speciated Hg, speciated NOx, and SVOC
 - In final editing. Publication expected Fall '08

Building a scientific foundation for sound environmental decisions

Ancillary Activities

- Composite Profiles
- New SCC-to-profile Mapping
- PM-simplified Profiles
- VOC To TOG Conversion Factors
- Protocol For Database Expansion

Building a scientific foundation for sound environmental decisions

Composite Profiles

- 48 Source Categories
- A Single Number To Be Used For The Source
- Addresses Large Disparate Datasets (e.g., Solid Waste Combustion)
- Documentation Is Provided To Explain Rationale For The Number

Building a scientific foundation for sound environmental decisions

PM-Simplified Profiles

- 95 Simplified Profiles Added To Database
- Provides EC/OC, Sulfate, Nitrate, And PM-other
- Used By Air Quality Models (e.g., CMAQ)

Building a scientific foundation for sound environmental decisions

SCC-to-profile Mapping

- Separate From Database
- Allows Correlation Of Profiles To Individual Source Categories
- Covers 80% of 2002 NEI VOCs

Building a scientific foundation for sound environmental decisions

Example Fields in PM_Profile and Gas_Profile Tables

- Profile Number And Name
- Data Quality Rating
- Emission Controls
- Particle Size Information (PM)
- OC/EC, Speciated Organics
- Test Year, Notes

_ 8 ×

_ 🗆 🗙 PM PROFILE : Table P NUMBE NAME QUALITY CONTROLS P DATE NOTES TOT MAST T METHOD NORM BASIS ORIG (+ 4362 Vegetative Burning A 6/30/2004 Composite of three profiles of open burning of cut mesquite shri 77 PM Ground-Based Source : Gravimetric Mass С None С + 4363 Vegetative Burning A None 6/30/2004 Composite of three profiles of open burning of cut tamarisk shru 68 PM Ground-Based Source § Gravimetric Mass С + 4364 Vegetative Burning A None 6/30/2004 Composite of three profiles of open burning of cut huisache shrue 81 PM Ground-Based Source : Gravimetric Mass + 4365 Vegetative Burning Α None 6/30/2004 Composite of five profiles of open burning of piles of dry grass to 74 PM Ground-Based Source § Gravimetric Mass С + 4366 Vegetative Burning A None 6/30/2004 Composite of 21 profiles of open burning of vegetative material t 100 PM Ground-Based Source & Sum of Species С Α С + 4367 Coal Combustion Baghouse, Wet [6/30/2004] Composite of five profiles of stack emissions from coal-fired boil 100 PM Diluted Exhaust Sampli Sum of Species С + 4368 Coal Combustion A Baghouse, Wet 16/30/2004 Composite of four profiles of stack emissions from coal-fired bo 100 PM Diluted Exhaust Sampli Sum of Species А Diluted Exhaust Sampli Sum of Species С + 4369 Coal Combustion Baghouse, Wet [6/30/2004] Composite of four profiles of stack emissions from coal-fired bo 100 PM С + 4370 А Dry Limestone S 6/30/2004 Composite of six profiles of stack emissions from coal-fired boil 100 PM Diluted Exhaust Sampli Sum of Species Coal Combustion C + 4371 Coal Combustion А Electrostatic Pre 6/30/2004 Composite of five profiles of stack emissions from coal-fired boi 100 PM Diluted Exhaust Sampli Sum of Species + 4373 Coal Combustion А 6/30/2004 Composite of 26 profiles of stack emissions from coal-fired boil 100 PM Diluted Exhaust Sampli Sum of Species С Composite А C + 4374 Fly Ash None 6/30/2004 Composite of three profiles of resuspended coal fly ash from co 52 PM Grab/Vacuum Samplinc Gravimetric Mass + 4375 Oil Catalytic Cracker A None 6/30/2004 Composite of five profiles of stack emissions from a Texas petri 100 PM Diluted Exhaust Sampli Sum of Species С + 4376 Cement Kiln А None 6/30/2004 Composite of six profiles of stack emissions from a Texas cem 100 PM Diluted Exhaust Sampli Sum of Species С + 4377 Cement Kiln А None 6/30/2004 Composite of four profiles of stack emissions from a Texas cen 100 PM Diluted Exhaust Sampli Sum of Species С А С + 4378 Cement Kiln None 6/30/2004 Composite of 11 profiles of cement kiln emissions (BVCEMT01 100 PM Diluted Exhaust Sampli Sum of Species + 4379 Cooking А None 6/30/2004 Composite of three profiles of emissions from smoking chicken 100 PM Diluted Exhaust Sampli Sum of Species С С + 4380 Cooking А None 6/30/2004 Composite of two profiles of emissions from cooking chicken or 100 PM Diluted Exhaust Sampli Sum of Species С + 4381 Cooking A None 6/30/2004 Composite of four profiles of emissions from cooking chicken of 100 PM Diluted Exhaust Sampli Sum of Species С + 4382 Cooking A Diluted Exhaust Sampli Sum of Species None 6/30/2004 Composite of two profiles of emissions from cooking hamburger 100 PM С А + 4383 Cooking None 6/30/2004 Composite of 12 profiles of cooking emissions (SMOCKN01, SI 100 PM Diluted Exhaust Sampli Sum of Species + 4384 Residential Wood Burnin B 0 None 6/30/2004 California hardwood, oak (1oak40901), Fireplace, ventilated, op 74 PM Diluted Exhaust Sampli Gravimetric Mass 6/30/2004 California hardwood, oak repeat (2oak41001), Fireplace, ventilal 130 PM Ο + 4385 Residential Wood Burnin B None Diluted Exhaust Sampli Gravimetric Mass + 4386 Residential Wood Burnin B None 6/30/2004 California hardwood, almond (3almond41101), Fireplace, ventila 67 PM Diluted Exhaust Sampli Gravimetric Mass 0 + 4387 Residential Wood Burnin B None 6/30/2004 California softwood, pine (tamarak) (4tamarak41101) Fireplace, 71 PM Diluted Exhaust Sampli Gravimetric Mass 0 + 4388 Residential Wood Burnin B None 6/30/2004 California (exotic) hardwood, eucalyptus (Seucalyptus41201) Fi 82 PM Diluted Exhaust Sampli Gravimetric Mass 0 0 + 4389 Residential Wood Burnin B None 6/30/2004 California hardwood, cedar (6cedar41301) Fireplace, ventilated, 170 PM Diluted Exhaust Sampli Gravimetric Mass + 4390 Residential Vegetative BIB None 6/30/2004 Wheat straw (8wheat41401) Fireplace, ventilated, open fire, witl 69 PM Diluted Exhaust Sampli Gravimetric Mass 0 0 + 4391 Residential Vegetative B/B None 6/30/2004 Rice straw (9rice41401) Fireplace, ventilated, open fire, with gra 220 PM Diluted Exhaust Sampli Gravimetric Mass + 4392 Residential Vegetative BIB Diluted Exhaust Sampli Gravimetric Mass 0 None 6/30/2004 Rice straw repeat (10rice41401) Fireplace, ventilated, open fire, 110 PM 0 + 4393 Residential Wood Burnin B None 6/30/2004 California hardwood, cedar (6cedar41301) Fireplace, ventilated, 60 PM Diluted Exhaust Sampli Gravimetric Mass 0 + 4394 Oil Refinery В Unknown Diluted Exhaust Sampli Gravimetric Mass 6/30/2004 Dilution tunnel sampling of a refinery gas-fired process heater a 220 PM 0 В + 4395 Oil Refinery Unknown 6/30/2004 Dilution tunnel sampling of a refinery gas-fired process heater a 180 PM Diluted Exhaust Sampli Gravimetric Mass ± 4396 Oil Refinery В Unknown 6/30/2004 Dilution tunnel sampling of a refinery gas-fired process heater a 100 PM Diluted Exhaust Sampli Sum of Species 0 + 4397 Oil Refinerv В Unknown 6/30/2004 Dilution tunnel sampling of a refinery gas-fired process heater a 300 PM Diluted Exhaust Sampli Gravimetric Mass 0 ± 4398 Oil Refinery В Unknown 6/30/2004 Average of HEAT_D1 and HEAT_D2. 200 PM Diluted Exhaust Sampli Gravimetric Mass С + 4399 В Unknown 0 Oil Refinerv 6/30/2004 Dilution tunnel sampling of a combined-cycle generating unit er 130 PM Diluted Exhaust Sampli Gravimetric Mass 1 ▶ ▶ ▶ ₩ of 2865 Þ Record: I

Building a scientific foundation for sound environmental decisions

Example Fields in PM_Specie and Gas_Specie Tables

- Analytical Method
- Weight Percent
- Uncertainty

Building a scientific foundation for sound environmental decisions

Example of a Profile Query

- Following Slide from PM_Profile Query
 - Profile Number 1120430
 - Coal-fired Power Plant with ESP
 - Sampled using SASS; XRF Analysis
 - 0-30 Micron Size
 - Weight Percents of Species as Shown
- Reference Provided on Reference Table

Eile Edit View Insert Format Records Tools Window Help

। 🔜 🔍 । 🛃 🖾 🖤 । 🔉 🛍 🛍 । 🤊 । 🧶 । 🛃 । 🍞 🛅 🝸 । 🔠 🕨 । 🎯 🃮

_ & ×

Π	P_NUMBE	PM_PROFILE.NAME	QUALITY	CONTROLS	P_DATE	NOTES		TOTAL	MASTE	LOWEI UI	PPER WE	IGHT_P	SPECIE_F 🔺
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	i a SASS train. Analyzed using XRF	, INAA, and FAA	55.57	PM	0	2.5	0.002	Scandium
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	, INAA, and FAA	55.57	PM	0	2.5	0.002	Thorium
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	, INAA, and FAA	55.57	PM	0	2.5	0.001	Tungsten
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA, and FAA	55.57	PM	0	2.5	0.015	Cerium
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA, and FAA	55.57	PM	0	2.5	0.001	Cesium
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA, and FAA	55.57	PM	0	2.5	0.018	Germaniur
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA, and FAA	55.57	PM	0	2.5	0	Hafnium
	112042.5	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	55.57	PM	- 0	2.5	0.001	Ytterhium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	. INAA, and FAA	57.918	PM	0	30	11.579	Aluminum
÷	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA, and FAA	57.918	PM	0	30	0.002	Antimony
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0	Arsenic
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	n 434	Barium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	n	Cadmium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	8 273	Calcium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.019	Chromium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.003	Cohalt
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.000	Conner
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XR	INAA and FAA	57 918	PM	n	30	0.000	Gallium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	10 731	Iron
_	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.008	Lanthanun
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XR	INAA and FAA	57 918	PM	n	30	0.000	Lead
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.078	Manganes
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.012	Nickel
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	1 756	Potassium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.01	Ruhidium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.01	Selenium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	21.683	Silicon
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.864	Sodium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.004	Strontium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	1 339	Sulfur
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.002	Tin
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.002	Titanium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.001	Uranium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XR	INAA and FAA	57 918	DM	0	30	0.001	Zinc
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0	30	0.143	Samarium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.001	Scandium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.002	Thorium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	0 0	30	0.002	Tungsten
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.0013	Cerium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	57 918	PM	n	30	0.010	Cesium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XR	INAA and FAA	57 918	PM	n	30	0.001	Germaniur
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRE	INAA and FAA	57 918	PM	n	30	0.01	Hafnium
	1120430	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRE	INAA and FAA	57 918	PM	n .	30	0.001	Ytterhium
	11204C	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XPF	INAA and EAA	58 132	PM	25	10	11 597	Aluminum
	112040	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XPF	INAA and FAA	58 132	PM	2.5	10	0,002	Antimony
	112040	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XPF	INAA and FAA	58 132	PM	2.5	10	0.002	Arsenic
	112040	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	58 132	PM	2.5	10	0.000	Barium
	11204C	Coal-Fired Power Plant	3	Electrostatic Precipitator	1/5/1989 Sampled with	a SASS train. Analyzed using XRF	INAA and FAA	58 132	PM	2.5	10	0.001	Cadmium
	112040	Cool Fired Dower Plant	3	Electroctatic Precipitator	1/5/1080 Sampled with	a SASS train. Analyzed using ART	INIAA and EAA	59,132	DM	2.5	10	9.419	Calcium 💌
Re	cord: 🚺	4 627 ▶ ▶1	▶ 米 of 109	802 🔹									•

PM Profile Number

। 🔛 📲 🔁 🖾 🦈 । 🔉 🗈 🏝 🔊 । 🎭 🕺 i 🍞 🏹 🖓 🖓 🖓 🖓 🖓 🛤 🕨 🚧 📲 🖉 🥊

	ID	P_TYPE	P_NUMBER	DATA_ORIGN	PRIMARY	DESCRIF	DOCUMENT			
	5014	Ρ	1120330		V		Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Davison, R. L., et. al. Environ. Sci. Technol. 13:1107-1113. (1974).			
	5015	Ρ	11203C				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Davison, R. L., et. al. Environ. Sci. Technol. 13:1107-1113. (1974).			
	5016	Ρ	1120410				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Norton, G. A., E. L. Dekalb, and K. L. Malaby. Environ. Sci. Technol. 20:604- 609. (1986).			
	5017	Ρ	112042.5				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □ □ Norton, G. A., E. L. Dekalb, and K. L. Malaby. Environ. Sci. Technol. 20:604- 609. (1986).			
•	5018	P	1120430				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Norton, G. A., E. L. Dekalb, and K. L. Malaby. Environ. Sci. Technol. 20:604- 609. (1986).			
	5019	Ρ	11204C				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Norton, G. A., E. L. Dekalb, and K. L. Malaby. Environ. Sci. Technol. 20:604- 609. (1986).			
	5020	P	1120510				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5021	Ρ	112052.5				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5022	Ρ	1120530				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5023	Ρ	11205C				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5024	Ρ	1120610				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5025	Ρ	112062.5				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5026	Ρ	1120630				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College Park, MD. April 27, 1987. □□Baker, G., et. al. Emission Characterization of Major Fossil Fuel Power Plants in the Ohio River Valley. Prepared f			
	5027	Р	11206C				Gordon, G. E. and A. E. Sheffield, University of Maryland. University of Maryland Source Library. College			
Re	cord:		217 🕨	▶ ► ► ★ of 40)98					

Type a qu

Building a scientific foundation for sound environmental decisions

SPECIATE Data Browser

- Web-based application
- Viewed in and works similar to Internet browser
- Simplifies data searches
- No need to purchase or use MS Access[®]

Building a scientific foundation for sound environmental decisions

Browse PM by Pollutant

U.S. ENVIRONMENTAL PROTEC

SPECIATE Data Browser

Recent Additions | Contact Us Search: O All EPA O This Area Go You are here: EPA Home » SPECIATE Data Browser » Browse Particulate Matter (PM) Profiles by Pollutant

Browse Particulate Matter (PM) Profiles by Pollutant

Currently Filtered by HAPS [Remove]

Filter by: [PAMS]

 $[# A B \subseteq \mathbf{D} \perp M N \bigcirc P \le]$

Name	Symbol	HAPS	PAMS
Di(2-ethylhexyl)phthalate		Yes	No
Dibenzofuran , also noted as "DBZFUR"	DBZF	Yes	No
Dibutyl phthalate		Yes	No
Dimethyl phthalate		Yes	No

[# A B C D L M N O P S]

EPA Home Privacy and Security Notice Contact Us

Last updated on Wednesday, April 2nd, 2008.

http://projects.pechan.com/ttn/speciate/ehpa_speciate_browse_pollutant.cfm?pType=P&bHAPS=1&strBrowseFilter=D

Building a scientific foundation for sound environmental decisions

Results for Dibenzofuran

<u>View [4400]</u>	Oil Refinery	Unknown	employing a General Electric Frame 7FA gas turbine with steam augmentation at Site E. The unit is a single shaft design, with the single generator driven by a shaft common to both the gas and the steam turbine. Hot exhaust gases from the turbine pass through a heat recovery steam generator (HRSG) before venting into the atmosphere via the stack. The total nominal capacity of the cogeneration facility is 240 MW. The unit fired natural gas for these tests. #2 run (9/7/01).	Add to Cart
<u>View [4401]</u>	Oil Refinery	Unknown	Dilution tunnel sampling of a combined-cycle generating unit employing a General Electric Frame 7FA gas turbine with steam augmentation at Site E. The unit is a single shaft design, with the single generator driven by a shaft common to both the gas and the steam turbine. Hot exhaust gases from the turbine pass through a heat recovery steam generator (HRSG) before venting into the atmosphere via the stack. The total nominal capacity of the cogeneration facility is 240 MW. The unit fired natural gas for these tests. #3 run (9/8/01).	Add to Cart
<u>View [4403]</u>	Oil Refinery	Unknown	Average of CCGU_E1, CCGU_E2 and CCGU_E3.	Add to Cart
<u>View [4558]</u>	Vehicle exhaust - gasoline - Catalyst	Catalytic converter	Weight percentages are from the undenuded sampling train. Downstream of the organics denuder, OC = 31.8% of the fine particle mass.	Add to Cart
<u>View [4559]</u>	Vehicle exhaust - gasoline - Noncatalyst	None	Weight percentages are from the undenuded sampling train. Downstream of the organics denuder, OC = 58.3% of the fine particle mass.	Add to Cart
<u>View [4675]</u>	Medium duty trucks - diesel	Catalytic converter	Weight percentages are from the filter downstream of an organics denuder. On the undenuded filter, OC = 30.4% of the fine particle mass.	Add to Cart

EPA Home Privacy and Security Notice Contact Us

Last updated on Wednesday, April 2nd, 2008. http://projects.pechan.com/ttn/speciate/ehpa_speciate_browse.cfm?ptype=P&pollutant=873 <u>Print As-Is</u>

Building a scientific foundation for sound environmental decisions

Results for Profile 4400

U.S. ENVIRONMENTAL PROTECTION AGENCY

SPECIATE Data Browser								
Recent Additions Contact Us	Search:	O All EPA @	This Area		Go			
You are here: EPA Home >> SPEC	IATE Data Brow	ser » Browse D	etails					

Browse Details

	Profile Information							
Number	4400 Add to Cart							
Name	Oil Refinery							
Master Pollutant	PM							
Region	United States							
Controls	Unknown							
Notes	Dilution tunnel sampling of a combined-cycle generating unit employing a General Electric Frame 7FA gas turbine with steam augmentation at Site E. The unit is a single shaft design, with the single generator driven by a shaft common to both the gas and the steam turbine. Hot exhaust gases from the turbine pass through a heat recovery steam generator (HRSG) before venting into the atmosphere via the stack. The total nominal capacity of the cogeneration facility is 240 MW. The unit fired natural gas for these tests. #2 run (9/7/01).							
Test Year	2001							
Entry Date	Jun 30, 2004							
Version	SPECIATE 4.0							
Particle Size Range	0 μm to 2.5 μm							

Name	Weight %	Uncertainty %	Analytical Method	Uncertainty Method
<u>1&2-ethylnaphthalene</u> (ENAP)	0.146150023	0.007767115	Filter/PUF/XAD/PUF Cartridges; GC/MS	Standard

139 Additional Compounds

Building a scientific foundation for sound environmental decisions

Profile Rating Criteria

- V-rating (Profile Vintage)
 - Score of 1-5 based on date of measurements
 - Reflects measurement technology and methodology
- D-rating (Number of Samples)
 - Score of 1-4 based on number of samples
 - Can be used for statistical analysis and precision

Building a scientific foundation for sound environmental decisions

Profile Rating Criteria (Cont.)

- Total Score = (V-rating)x(D-rating)
 - 17-20 = A
 - 13-16 = B
 - 9-12 = C
 - 5-8 = D
 - <5 = E
- J (Judgment) Rating Also Provided To Account For e.g.
 - Suspect profile composition
 - Ratios of species within profile
 - Sum of speciated mass fractions
 - Supporting documentation
- J-rating Not Used In Profile Quality Rating Score Due To Subjectivity

Building a scientific foundation for sound environmental decisions

- Database available at http://www.epa.gov/ttn/chief/software/speciate/index.html
- Requires MS Access[®]
- Website also has PDF Documentation and other pertinent information
 - VOC-to-TOG Conversion Factors
 - SCC-Profile Cross Reference Table
 - Protocol for Expansion of the SPECIATE Database

Building a scientific foundation for sound environmental decisions

Future Plans

- SPECIATE 4.1 Includes Canadian Data
 - Assisted by Environment Canada
 - Currently in EPA peer review
 - Probably available Fall, 2008
- Additional Periodic Updates
 - 4.2 available Fall, 2008
 - Future updates depend on client interest (you)

Building a scientific foundation for sound environmental decisions

Future Plans (Cont.)

- New Profiles Will Be Added In Future Revisions
- You Can Help By Supplying Data
 - Full References Are Needed
 - Electronic Data Preferred
 - Send to beck.lee@epa.gov