Emission Factors for New Certified Residential Wood Heaters

James E. Houck and Lyrik Y. Pitzman OMNI Environmental Services, Inc.

> Paul Tiegs OMNI-Test Laboratories, Inc.

Presentation Outline

- Importance and Background
- Issues with:
 - Baseline Studies (AP-42)
 - Appliances in General
 - Standards and Reporting (NSPS)
- Recommendations

Importance of Certified Wood Heaters Emission Factors

- Emission Inventories 4 Million Certified Wood Heaters
- Woodstove Change Outs Programs

Background of Certified Wood Heaters

- 705 models (March 12, 2008)
- Heaters = Freestanding Stoves + Fireplace Inserts
- Three appliance groups in NSPS (1988) :
 - Oregon "Grandfathered"
 - Phase 1
 - Phase 2 (July 1, 1992)
- Majority Phase 2 Cordwood
- Cordwood and Pellet

AP-42 Issues

- Particulate Data Prior to 1991
- NSPS Certification (Phase 2 after July 1, 1992)
- Reported as "5H Equivalent" (over prediction)
- Assumes Total PM is Equivalent to PM_{10} (no consideration for PM _{2.5})
- Data from Field Sampling Methods (imperfect correlation to 5H equivalency)
- Studies Not Representatively Distributed (field studies from predominately cold climates only, upstate NY, VT, Crested Butte, CO, Klamath Falls, OR and a few in Portland, OR)
- Variability in Emissions among Models
- Emissions Have Become Lower with Newer Models

NSPS Issues

- Benchmark Method Not Predictive of Real-World Emissions
- Reports a Weighted Emission Rate (g/hr) Not an Emission Factor (g/kg)
- Hot Start Only (no start-up or kindling phase)
- Burn Rate Scenarios and Weighting Not Representative of Real-World
- Method 5H Equivalent Reporting (over prediction and high uncertainty)
- Softwood Only (no hardwood)
- Dimensional Lumber Cribs (reproducible but not representative and perhaps produce lower emissions)

Appliance Issues

•Variability among Models More than a Factor of Ten

-Low of 0.6 g/hr to emission limit of 7.5 g/hr

•Heater Degradation – Increased Emissions

-Both Cat. and Non-cat.

-Typical Catalyst Lifetime 5 Years

-Catalyst Bypass Moving Parts, Non-cat Baffle/Secondary Air System

-All Heaters Doors Warp, Gasket Deterioration

Newer Models Have Lower Emissions than Older Models

	Woodstova	Number	Average emission	Percent	
Time period	woodslove	of	rate	reduction	
	type	heaters	(g/h, 5H equivalent)	(%)	
First five	Non-	115	5 1		
years of	catalytic	113	5.1	-	
certification		110	2.0		
(1988-1992)	Catalytic	110	2.9	-	
Wood heaters	Non-	127	1 1	10.6	
certified or	catalytic	157	4.1	19.0	
renewed					
between 2000	Cotolytic	23	2.7	6.9	
and 2005	Catalytic				

Standards and Reporting Issues

Particulate Size Distribution

- AP-42 "PM-10 is defined as equivalent to total catch by EPA method 5H train"
- Certified non-cat. heater 94% of PM is PM_{10} and 92% $PM_{2.5}$ (EPA study)
- Certified cat. heater -88% of PM is PM_{10} and 80% $PM_{2.5}$ (EPA study)

Standards and Reporting Issues (cont.)

Particulate Sampling Methods

- In-Home Sampling Methods Converted to 5H Equivalency for AP-42, Two Exponential Equations, High Uncertainty
- NSPS Method 5H Over Predicts Real-World Emissions
- Uncertainty in converting Method 5G to Reporting Requirement of "5H Equivalent", Method 5G used More Frequently than 5H

Comparison of 5H and 5G Emission Rates

$5U(\alpha/b)$	Equivalent 5G (g/h)	Equivalent 5G (g/h)	
3H (g/ll)	NSPS conversion*	AP-42 conversion**	
1	0.48	0.59	
4.1 (cat. limit)	2.7	2.8	
5	3.4	3.5	
7.5 (non-cat. limit)	5.5	5.4	
10	7.8	7.5	
20	18.0	16.1	

* $5H = (1.82) X (5G)^{0.83}$ ** $5H = (1.619) X (5G)^{0.905}$

Emissions During Start-up

- Cold Start vs. Hot Start
- Emissions High During Kindling Phase and Initial Part of Fire
- Products of Incomplete Combustion High before Main (hot)
 Fire Achieved
- Catalyst By-passed
- Secondary Combustion not Initiated
- NSPS Uses Hot Start
- AP-42 Data from Cold Climates which Over Represents Hotstarts

HPBA 2004 National Survey

Length of use per occasion (hours)	Percent of total freestanding stoves owned (n = 539)		
Never burned	10%		
1 hour or less	3%		
1 to 3 hours	12%		
3 to 5 hours	15%		
5 to 7 hours	16%		
8 or more hours	44%		

Cold vs. Hot Starts

- Heaters Used More than 8 Hours per Occasion
 - Possible Hot Start
- Heaters Used Less than 8 Hours per Occasion
 - Clearly Mostly Cold Start

Burn Rates

- Higher Burn Rates Have <u>Dramatically</u> Lower Emission Factors
- AP-42 Data are from Predominantly Cold Climates Causing High Burn Rates to be Over Represented
- NSPS Burn Rate Categories and Weighting Scheme for Emissions Based on Burn Rates Are Seriously Flawed. "Apples and Oranges" between In-Home Data Base on which is was based and Method 28 Procedures

In-home data base	Burn over at 100° F
Example Method 28 non-cat. heater	Temperature at end of burn
run, high burn rate (3.7 kg/h)	739° F
Example Method 28 non-cat. heater	Temperature at end of burn
run, medium high burn rate (1.6 g/h)	418° F

Tree Species

- Hardwood and Softwood Burn Differently
- NSPS Uses Softwood (Douglas fir) Only
- Hardwood Dominate in East and Midwest
- Hardwood and Softwood both Common in West

Hardwood	Softwood
Higher Density	Lower Density
Higher Energy per Unit Volume	Lower Energy per Unit Volume
Lower Energy per Unit Mass	Higher Energy per Unit Mass
Higher Moisture Content	Lower Moisture Content

Efficiency

Higher Efficiency Means an Effective Lower Emission Factor as Less Wood is Used to Provide the Same Heat Output

Cordwood	AP-42	NSPS	OMNI
Heater Type	Efficiency	Efficiency	Efficiency*
	(Lower Heating	(? Heating Value)	(Lower Heating
	Value)		Value)
Conventional	54%	-	54%
Non-catalytic	68%	63%	63%
Catalytic	68%	72%	63%

*Based on best professional judgment after review of all significant efficiency-related reports and publications

5G Emission Factors for Modern Certified Wood Heaters

- 5G Most Representative and Highest Precession Among Methods
- Credible Emission Factors Span Almost Two Orders of Magnitude

Start	Burn rate	Fuel	N	Description	5G emission	Reference
scenario	(kg/h) †				factor (g/kg)	
	Avg. ±				Avg. \pm S.D.	
	S.D.					
Hot	$2.05 \pm$	Doug	12	certified	3.41 ± 2.38	Tiegs &
	1.35			non-cat		Houck 2000
		fir dl				
Hot	$0.75 \pm$	Doug	3	certification	2.32 ± 0.50	OMNI-Test
	0.03].		tests on 26		Lab. 3/06 to
	$0.99 \pm$	fir dl	49	non-cat.	3.23 ± 2.32	1/08 tests
	0.13			models		
	$1.50 \pm$		33		1.86 ± 1.19	
	0.17					
	2.51 ±		26		1.55 ± 0.84	
	0.44					

5G Emission Factors for Modern Certified Wood Heaters (Cont.)

Start	Burn rate	Fuel	N	Description	5G E.F.	Reference
scenario						
Cold	not	one run	2	certified cat.	1.7 (avg.)	Fine, et.
	provided,	oak cw,				al, 2004
	estimated	one run				
	as	Doug.				
	1.1 to 2.2	fir cw				
Hot	$3.52 \pm$	white	5	high tech.	2.86 ± 1.60	Jordan &
	0.71	gum cw		Australian		Seen,
	2.15 ±		3	stove similar	12.9 ± 7.3	2005
	0.22			in design to		
	$1.42 \pm$		5	a U.S.	35.7 ± 9.6	
	0.44			certified		
				heater		

5G Emission Factors for Modern Certified Wood Heaters (Cont.)

Start	Burn rate	Fuel	N	Desc.	5G E.F.	Reference
scenario						
Hot	not	3 runs	6	certified	0.64 ± 0.17	Environment
	provided,	spruce		non-cat		Canada,
	estimated	cw, 3 runs				2000, Intertek
	as 2.4	maple cw				2000
Cold	not	oak cw	3	certified	8.2 (avg.	Gullett et al.,
	provided,			non-cat	estimated	2003, Crouch
	estimated				from data in	and Houck
	as 2.3				publication)	2004
Cold	1.97 ±	oak cw	11	certified	7.73 ± 5.95	U.S. EPA,
(one run	0.68			cat.		2000
was hot	1.94 ±		7	certified	22.9 ± 10.7	
start)	0.99			non-cat		

Recommendations:

 Revise Certification Method to Provide Emission Factors Representative of Real-World Usage and to Allow for Data to be Related to Different Regions of the Country with Different Climates and Sociodemographic Makeups

Specific Recommendations

- 5-G-like Dilution Tunnel with Tunnel and Filter Temperature Cooled to 65°F
- Adjustment Factors for Other Temperatures Developed with an Independent Study so that Regional Emission Factors Can Be Estimated
- Emission Factors for Different Burn Rates Reported Separately to Accommodate Regional Differences Unlike the Single Weighted Value Now Reported
- Burn Rates for Different Regions Assessed with a Survey, Burn Rates Defined in the Certification Method Analogously as the Survey
- Certification Method Should Include Both Hot and Cold Starts
- Both Hardwood and Softwood Fuel Should be Used with an Option for Manufactured Biofuels

Specific Recommendations (Cont.)

- Emissions Reported as Emission Factors (g/kg) rather than Emission Rates (g/h)
- Efficiency Measurement and an Efficiency Rating as Part of the Certification Test
- An Independent Study of Typical Size Distribution of Particulate Emissions to Provide an Adjustment Factor to apply to PM for PM₁₀ and PM_{2.5} Emission Factors
- An Independent Study Relating Dimensional Lumber (Reproducible) Emission Factors to Real-World Cordwood Emission Factors to Provide Correction Factors
- An Independent Study of Real World Wood Moisture. Certification at Different Moisture Levels for Different Regions and/or Using Hardwood and Softwood at Different Moisture Levels May Be Appropriate

The Bottom Line

• The NSPS Needs Revision to Make Standards More Predictive of "Real-World" Emissions

As a Result:

- Emission Inventories Would Benefit by Providing a Realistic Emission Factor
- Manufactures Will Make Appliances which Reduce Emissions From Realistic Fires