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ABSTRACT 

The BlueSky smoke modeling framework and the Satellite Mapping Automatic 
Reanalysis Tool for Fire Incident Reconciliation (SMARTFIRE) were applied to facilitate the 
development of day-specific wildland fire emission inventories for the continental U.S.  
SMARTFIRE was used to generate activity data (acres burned).  The FCCS, CONSUME 3.0, 
and FEPS models were used within the BlueSky framework to model vegetation distribution, 
fuel consumption, and emission rates, respectively.  Emission inventories have been prepared 
with satellite data only and with human-observed fires only for comparison to the inventories 
prepared using SMARTFIRE (i.e., satellite data reconciled with human observations).  Different 
fire information sources can have significant impacts on the resulting estimated emissions.  
Uncertainty in the emission inventories is currently being explored by evaluating the sensitivity 
of the results to the fire information inputs. 
 
INTRODUCTION 

Globally, wildland fire (wildfire and prescribed burning of forests and rangelands) 
contributes significantly to atmospheric pollution.  Pollutants emitted from fires include 
particulate matter, carbon monoxide, nitrogen oxides, and acrolein (a regulated hazardous air 
pollutant [HAP]) (Andreae and Merlet, 2001).  In the United States, the U.S. Environmental 
Protection Agency (EPA) estimates that 22% of the primary emissions of non-dust particulate 
matter less than 2.5 microns in aerodynamic diameter (PM2.5) came from non-residential fires in 
2001 [970,000 tons, source:  AirData web site, http://www.epa.gov/air/data/].  Exposure to 
wildfire smoke has been associated with increased eye and respiratory symptoms, medication 
use, physician visits, and exacerbated asthma (Kuenzli et al., 2006).  Emissions of carbon 
monoxide and nitrogen oxides from fires contribute ozone formation in the troposphere (the key 
component of photochemical smog).  Estimates of the magnitude of tropospheric ozone from 
biomass burning range from less than 15% to 40% of the global total (Levine et al., 1995; 
Galanter et al., 2000).  Carbon particles from fires also contribute to climate forcing, both 



directly by increasing atmospheric reflectance, and indirectly by influencing the formation of 
clouds (Kaufman and Fraser, 1997).   

Accurately modeling wildland fire emissions requires many pieces of information, 
including fire location, ignition time and growth rate, fire intensity, and final size.  This 
information is needed at a daily or better temporal resolution to be useful for air quality modeling 
of smoke impacts.  Emissions from wildland fires can be modeled using the formula in 
Equation 1. 

Equation (1) ss EFcFAE **∗=  

where 
  

Es   = emissions of species s 
A    = area burned 
F    = fuel available for consumption 
c     = fraction of available fuel consumed 
EFs = emission factor (mass of species s emitted per mass of fuel consumed) 

There is uncertainty in each of the terms on the right-hand side used to predict emissions.  
Constraining the area burned is one of the most important uncertainties that can be constrained 
using available observations. 

Historically, for national scale emission inventories in the United States, area burned  
estimates have come from compilations of fire reporting systems from federal, state, tribal, and 
local agencies.  Given that data are originally collected in a variety of formats, compilation is 
costly.  Some fire reporting systems do not track individual fires, keeping only monthly statistics.  
To create a fire emission inventory with daily resolution in a timely matter requires a different 
data source. 

Satellites have been used to detect fires globally for several decades (Dozier, 1981).  The 
global climate community routinely uses satellite-based data to derive estimates of area burned 
(van der Werf et al., 2006).  Satellite data offer several advantages over ground reporting systems 
for estimating area burned over a large area (such as nationally).  Satellite data sets are available 
with global coverage in a single format, making them easy to work with.  Also, satellites detect 
fires that are often too small or too remote to be reported by human observation.   

There are, however, limitations in the use of satellite data for emission inventories.  
Satellite instruments that provide global daily coverage of fires do not yet routinely provide an 
estimate of area burned for each fire.  Instead, a thermal anomaly or “hot spot” is detected and 
reported.  The smallest fire that can be detected is instrument-, algorithm-, and condition-
specific.  Large fires will be detected as a cluster of several “hot spot” pixels.  To use this type of 
data in Equation 1, one must estimate the area burned per pixel.  Though algorithms exist for 
estimating total burned area (Li et al., 2004) directly from satellite observations of burn scars, 
these algorithms are not routinely available.  Also, burn scar algorithms may have trouble 
detecting burns that occur below the forest canopy (understory burns).  Understory burns are 



very common in the southeastern United States, where millions of acres of prescribed burning 
occur annually. 

Though satellites are able to detect many fires, they do not detect all fires.  Fires that are 
too small or too cold, are not burning during the satellite overpass, or are obscured by clouds go 
undetected.  Satellite fire detections have not been used previously to estimate area burned for 
the National Emission Inventory. 

Using data from ground reporting systems in concert with satellite fire detects can help 
improve fire area burned estimates.  The Satellite Mapping Automatic Reanalysis Tool for Fire 
Incident Reconciliation (SMARTFIRE) is an algorithm and database system designed to 
reconcile these disparate fire information sources to produce daily fire location and size 
information (Sullivan et al., 2008). 

Using SMARTFIRE as the fire activity source, we prepared four years (2003-2006) of 
daily emission estimates for wildland fires for the lower 48 United States, including wildfire, 
wildland fire use (WFU), and prescribed burns.  The inventory was then reproduced twice using 
different fire information sources:  Incident Command Summary reports (known as ICS-209 
reports) and the Moderate Resolution Imaging Spectroradiometer (MODIS) anomalies.  The 
resulting intercomparison is presented below.  While agricultural fires were included in the 
inventory, they are excluded from the analyses in this paper. 

 
BODY 
 
Methods 
 
Fire Information Sources 
 
ICS-209s 

For large wildfires and WFU fires for which there is a federal response, ICS-209 reports 
are created on a near-daily basis.  ICS-209 reports contain useful information about particular 
fires or fire complexes from the incident command team on the ground, such as descriptions of 
the fuel loading, growth potential, and type of fire.  However, ICS-209 reports have several 
limitations as a data source for predicting daily emissions.  Daily estimates of actively burning 
areas are required, but ICS-209 reports provide only the ignition point of the fire and an estimate 
of the total area burned over the lifetime of the fire.  Also, ICS-209 reports are only created for a 
small subset of fires.  Fires that are not tracked with ICS-209 reports include prescribed burns, 
agricultural burns, and wildfires for which there is no federal response. 

To estimate daily area burned from ICS-209 cumulative area burned, we subtracted the 
previous day’s reported area from the current day.  Fires were modeled as a single point source 
located at the reported ignition point of the fire.  Historical ICS-209 reports are available at the 
Fire and Aviation Management Web Applications (FAMWEB) web site 
( Hhttp://fam.nwcg.gov/fam-web/famweb/index$.startupH). 
 



MODIS 

The MODIS instrument is onboard both the NASA Terra and Aqua satellites.  Each 
instrument provides daily global coverage, with Terra passing over the conterminous United 
States in the late morning and Aqua passing over in the mid afternoon.  One of the products 
available from MODIS is thermal anomalies, or “hot spots” (Justice et al., 2002).  MODIS hot 
spots are widely used to track actively burning fires globally.  Historical MODIS hot-spot data 
are available from the USDA Forest Service’s Remote Sensing Applications Center (RSAC; 
Hhttp://activefiremaps.fs.fed.us/H). 

MODIS hot spots detect when a given area is actively burning, but they do not directly 
provide an estimate of the area burned.  The MODIS hot-spot product (also known as MOD14) 
has a nominal pixel resolution of 1 square kilometer (about 450 acres).  However, MODIS can 
detect fires that are much smaller than that.  To estimate daily area burned using MODIS 
requires an estimate of the area burned that each hot-spot pixel represents.  We compared 
MODIS total pixel counts with final area burned for 30 fires ranging from 2,000 to 300,000 acres 
in size (Figure 1).  The area burned was derived from final helicopter-flown burn scar 
perimeters.  Total pixel count includes all hot-spot pixels within the burn scar over the entire life 
of the fire.  We used a final value of 100 acres per MODIS pixel. 



Figure 1.  Relationship between total MODIS pixel count and final burn perimeter area 
in linear (top) and logarithmic units (bottom). 
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SMARTFIRE 

SMARTFIRE uses both satellite-detected and ground-reported fires to produce daily fire 
information (locations and area burned).  SMARTFIRE currently reconciles ICS-209 ground 
reports and hot spots from the National Oceanic and Atmospheric Administration (NOAA) 
Hazard Mapping System (HMS) (Ruminski et al., 2006).  HMS data consist of compiled fire 
detection information from three different instruments onboard seven satellite platforms coupled 
with human quality control.  Individual detections are inspected by a trained analyst for false 
detects and inaccurate geolocation.  The HMS product relies on data from the MODIS, 
Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Earth Observing 
Satellite (GOES) instruments. 
 
Emissions Modeling Pathway 

The emissions for all three fire information cases were processed in the same way using 
the BlueSky smoke modeling framework (Larkin et al., 2008).  The BlueSky framework is 
designed to facilitate the operation of predictive models that simulate cumulative smoke impacts, 
air quality, and emissions from forest, agricultural, and range fires.  The BlueSky framework 



allows users to combine state-of-the-science emissions, and meteorological and dispersion 
models to generate results based on the best available models.  In other words, the BlueSky 
framework connects models that provide values for the terms in Equation 1.  BlueSky allows the 
user to choose one of several models at each step in the smoke modeling process.  The models 
used for this study are shown in Table 1. 

 
Table 1.  Model chain within the BlueSky Framework used to estimate emissions. 
 

Process Model Used 

Fuel Loading Fuel Characteristic Classification System (FCCS) 

Fuel Consumption Consume 3.0 

Emissions Fire Emission Production Simulator (FEPS) 

In addition to the standard emission products produced by FEPS (PM2.5, CO, etc.), 
29 HAP species emissions were estimated based on emission factors provided by Tom Pace of 
EPA.  Fires were assigned fuel moisture values based on the nearest weather station from the 
USDA-FS Wildland Fire Assessment System.  
 
Results 
 
Emissions from SMARTFIRE 

Though emission estimates were calculated for many species, this paper focuses on the 
primary PM2.5 results.  All other pollutants were modeled with similar spatiotemporal patterns.  
Aerosol formed secondarily in the atmosphere was not estimated.  Figure 2 shows the estimated 
primary PM2.5 emissions by month for each modeled year.  Wildland fire emissions in the lower 
48 states exhibit a bimodal yearly pattern, with peaks in the spring and late summer/early fall.  
Over the four years modeled, emissions in the spring season were fairly consistent year to year.  
The summer/fall season, however, showed much more variability. 
 
Figure 2.  Modeled yearly primary PM2.5 wildland fire emissions by month for the lower 48 
states. 

0

50

100

150

200

250

300

350

400

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PM
2.

5
(k

to
ns

) 2003 2004 2005 2006

0

50

100

150

200

250

300

350

400

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PM
2.

5
(k

to
ns

) 2003 2004 2005 2006

 



The bulk of emissions come from two regions:  the West and the Southeast.  This 
concentration can be seen in the emissions density plot shown in Figure 3A, which shows the 
average annual tons of PM2.5 emitted per square mile, smoothed for display clarity.  The national 
spatiotemporal pattern is shown in more detail in Figure 3B, which depicts the monthly average 
PM2.5 emissions for each state.  The springtime emissions are mostly from the southeastern 
states, where prescribed burning is a common management practice in spring.  The summer/fall 
emissions are driven by the West, particularly the northwest and California.  The largest single 
state monthly contribution is Idaho in August. 

Figure 4 shows the modeled daily area burned and PM2.5 emitted for the entire modeled 
time period (August 2002 through December 2006).  Note that the area burned in the spring is 
similar in quantity to the area burned in the summer/fall, but the PM2.5 emitted is greater in the 
summer/fall.  The summer/fall burning is dominated by large wildfires in the West, while the 
spring burning is largely prescribed burning in the Southeast, which results in less PM2.5 per area 
burned than the western wildfires.  Note also the relatively calm wildfire season in 2004. 



Figure 3.  (A) Average yearly PM2.5 emission density.  (B) Average monthly PM2.5 emissions by 
state. 
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Figure 4.  Daily area burned and PM2.5 emitted (August 2002 through December 2006). 
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Fire Information Source Comparison 

Emissions for 2003-2006 were modeled using two other information sources to compare 
with SMARTFIRE, ICS-209 reports, and MODIS fire detects.  Neither of these data sets is 
independent from SMARTFIRE because both are used as inputs to the SMARTFIRE algorithm, 
so this is not a validation.  Rather, it is an intercomparison. 

Figure 5 shows the annual average area burned by state for the three fire information 
sources.  In the West, the totals are similar for all three data sources, with the exception of 
Nevada, where the ICS-209 value is much larger than the others.  The large ICS-209 value is 
caused by a typographical error in a single daily report:  an extra zero was added to the area of a 
large wildfire.  The error was corrected on subsequent daily reports, but highlights the type of 
errors that occur in the ICS-209 data, which are created by human data entry. 

Note that total burned area in the West is dominated by wildfires, which is captured well 
both by ground reports (ICS-209s) and satellite (MODIS).  SMARTFIRE combines both ground 
reports and satellite data, but seems to be successfully avoiding double counting.  The fires in the 
southeastern United States are largely prescribed burning.  ICS-209 reports are not created for 
the vast majority of prescribed burns, so that data set reports little acreage in the southeastern 



states.  Both MODIS and SMARTFIRE report area burned for the Southeast, but SMARTFIRE 
estimates over twice the total area throughout the region. 

 
Figure 5.  Annual average area burned by state for ICS-209 reports, MODIS fire detects, and 
SMARTFIRE. 

 

The primary reason for the differences between MODIS and SMARTFIRE in the 
Southeast is shown in Figure 6.  SMARTFIRE uses NOAA HMS as its source of satellite-
derived fire detects.  HMS gathers fire detects from several instruments, including MODIS.  
Although MODIS is the most sensitive and sophisticated instrument that HMS relies on for fire 
information, MODIS data are typically only available twice per day over the lower 48 states.  
Thus, small, short-lived fires, burning during cloudy conditions (such as many prescribed fires in 
the southeastern US) are easily missed by the MODIS instrument.  HMS incorporates fire detects 
from GOES and AVHRR in addition to MODIS.  GOES in particular is useful for detecting 
these short-lived fires because, as a geostationary instrument, it detects fire every 30 minutes.  
Figure 6 shows the density of fire hot-spot pixels detected by MODIS and HMS for 2004 in the 
Southeast. 

 



Figure 6.  Fire pixel hot-spot density for MODIS and HMS for 2004. 

 
 

Another key advantage of HMS over other satellite-derived data products is the human 
quality control that is applied to the data set.  The results of this can be seen in Figure 6.  Certain 
very hot industrial sources often result in false positives in fire detection algorithms.  The 
standard MODIS product, for example, often shows fires in Detroit, Michigan; Cleveland, Ohio; 
and the northern tip of West Virginia, which are known industrial sources.  These false fires are 
not as common in the HMS data. 

For large fires, the spatial resolution of satellite data is finer than most ground reporting 
systems.  For example, an ICS-209 report describes the location of a fire of any size by a single 
latitude/longitude pair that represents the ignition point of the fire.  Large fires are often detected 
as a large number of satellite pixels, which can lead to more refined emission estimates.  Figure 7 
shows the B&B Complex fire, which burned in Oregon in 2003, as detected by several sources.  



The black outline is the final perimeter of the fire as determined by helicopter over-flights after 
the fire had stopped growing.  The MODIS hot-spot fire pixels and SMARTFIRE fire points for 
the entire time period of the fire are plotted along with the ICS-209 report location.  Although the 
final fire perimeter is over 20 miles wide, the ICS-209 location is only reported as the ignition 
point.  For modeling emissions, this means that the fuel loading, and subsequent consumption 
and emissions, does not vary throughout the life of the fire.  The background of Figure 7 shows 
the total fuel loading from the FCCS fuel map.  The fire ignited in a region of relatively low fuel 
loading, but then spread to areas with heavier fuel loadings.  The satellite-based data are able to 
capture and model that difference.  In the case of the B&B Complex fire, the modeled emissions 
from SMARTFIRE are about four times greater than the emissions using ICS-209s only, despite 
a similar estimate in the total area burned. 

 
Figure 7.  B&B Complex fire, Oregon, 2003. 

 
 
 
CONCLUSIONS 

The BlueSky framework was used to produce wildland fire emission inventories for the 
conterminous United States for August 2002 to December 2006 using SMARTFIRE as the fire 



information source and the most recent models for emission processing (FCCS, Consume 3.0, 
and FEPS).  The emission inventory processing for 2003-2006 was repeated using ICS-209 
reports as the fire information source and repeated again using MODIS fire detection hot spots.   

All fire information sources produce similar estimates of area burned in the wildfire-
driven western United States.  In the southeastern United States, which has significant prescribed 
burning, ICS-209 reports provide little information on area burned.  SMARTFIRE reports more 
burning than MODIS because it incorporates information from more satellite instruments, 
particularly the GOES satellites, which are able to detect many short-lived fires that MODIS may 
miss.  Previous emission inventory work has treated prescribed burning as an area source, with 
county-level spatial resolution and monthly temporal resolution.  Satellite data may provide a 
more accurate spatio-temporal pattern, but more analysis of the detection rates for different 
instruments is warranted.   

For specific fires, emission estimates may be very different between the different fire 
information sources even if the area burned estimates are similar.  This is because ICS-209 
reports only report the ignition point of the fire and the fuel loading at that point may be very 
different from the areas that the fire eventually burns into.  Individual fire burned area estimates 
are still difficult to pin down, but SMARTFIRE appears better than ICS-209 reports or MODIS 
fire detects alone.  

There is significant spatio-temporal variability in wildland fire emissions, and especially 
wildfires.  An annual emission inventory needs to be year-, day-, and location-specific to 
accurately account for these emissions.  Using one year’s emissions for another year may result 
in poor emission estimates for modeling purposes. 
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