A detailed urban road traffic emissions inventory model using aerial photography and GPS surveys

InventAr, Estudos e Projectos Unip, Lda., Portugal.
Departamento de Ciências e Engenharia do Ambiente, Universidade Nova de Lisboa, Portugal.
Comissão de Coordenação e Desenvolvimento Regional de Lisboa e Vale do Tejo, Portugal.

vitorgois@mail.telepac.pt

EPA’s 16th Annual International Emission Inventory Conference
Overview

- Scope
- Case-study
- Problem Definition
- Principles
- Methodology
- Results and methodology validation
Scope

- EU law (Directive 96/62/CE) defines zones, where air quality must be assessed in detail, using:
 - Monitoring stations
 - Periodic campaigns (e.g. Passive sampling)
 - Modelling & Air emission inventories

- Air quality problems have been detected in Lisbon area in most recent years
 - Particulate matter (PM10): widespread
 - NO₂: confined to traffic hotspots
 - Ozone in summer

- Particulate levels (PM10) in Lisbon show the highest values in Europe as consequence of:
 - Importance of diesel vehicles
 - Specific meteorological conditions
 - Road re-suspension
 - Topographic conditions
 - Natural events (Saharan dust, forest fires)
Lisbon: Identification of “Zones” of Air Quality Management
Air Quality Problems in recent years
Lisbon area - PM10

PM10 (Daily and/or annual average)
only stations with efficiency >=85%

2005
- <LV
- [LV, LV+MT]
- >LV+MT
2004
- <LV
- [LV, LV+MT]
- >LV+MT
2003
- <LV
- [LV, LV+MT]
- >LV+MT
2002
- <LV
- [LV, LV+MT]
- >LV+MT
2001
- <LV
- [LV, LV+MT]
- >LV+MT

AML Norte
AML Sul
Setúbal

Vitor Gois - Raleigh, 16 May 2007
Air Quality Problems in recent years
Lisbon area - NO$_2$
Urban Transportation as major contributor to Air Quality

• Road Transport is the dominant factor of PM in Lisbon

 – Weekly variation, with maximum values at weekdays especially on Fridays when traffic levels tend to be the highest

 – Chemical analysis of particles collected in samplers (55 per cent of particulate matter are originated, directly or indirectly)

 – Natural events (Saharan dust outbreaks and forest fires)
Air Quality Management Tools under development in Lisbon Region

• Air Quality Management is under responsibility of the Commission for Coordination and Regional Development of Lisbon and Tagus Valley (CCDR-LVT)

• Policies
 – Improvement of the monitoring survey system:
 • Stationary stations
 • Extensive monitoring: period campaigns using Passive sampling (Diffusion tubes and portable PM samplers)
 – Plans and Programs (June, 2005)
 • Identification of measures and policies, mainly traffic related
 – Modelling tools
 • Regional level (TAPM from CSIRO)
 • European level (Chimere, CAMx, REM-3 under CAFE program)
Definition of the Inventory model

• The Air Emission Inventory Model has to consider that:
 – Urban road transport MUST be the major component
 – Air quality problems are very local
 – A high level of spatial detail is necessary
 • Suitable for the scale used in modelling
 • Considering the scale at which policies and measures are defined
 – Affordable costs and low investment
 • Relying in a small team
 • Using available data as much as possible
 • Unfeasible to extend the existing traffic monitoring system

• Main objectives were to gain knowledge:
 – How many vehicles are moving at a given place and time
 – What type of vehicles exist (in movement)
 – How fast are vehicles moving (time of travel)
 – How are they moving (topography)
Methodology: General Structure

Aerial Photography

GPS(i) (km/h)

Path Survey(i) (km/h)

Commuters (k,f) (vehic/day)

Fuel Sales (f) (ton)

Speed(i) (km/h)

Car Counting(i) (number of vehicles)

Car Density(i) (vehicles/km)

Length(i) (km)

TMH(i) (vehicles/h)

TMA(i,f) (vehicles/year)

Gertrude(i) (traffic data)

Temporal Correction Factor(i)

Fuel Consumption (f) (ton)

Vkm(i,k,f) vehic/km

FC Factor (i,k,f) (g/km)

EF(i,k,p) (g/km)

Emissions (i,p) (kg/road link)

Road Network GIS

i - road link
k - vehicle class
f - fuel type
p - pollutant

Vitor Gois - Raleigh, 16 May 2007
Definition of the Urban Structure in the area under study

- Definition of main roads and neighbourhoods should be done prior to data collection considering
 - Major road boundaries;
 - Road structure (density, width, intersections nb, slope)
 - Economic Activity
 - Commerce - frequent stoping/parking 2nd line
 - Institutional
 - Residential
 - Distance to city centre
Identification of moving vehicles

Source: Lisbon Municipality
Density of moving vehicles

- 80,000 vehicles identified
 - 15% total licenses (Insurance data) in the area
Speed:
Method 1 - Predefined paths

- **Path definition**
 - Pre-defined objective points
 - 3 random paths at 3 different periods
 - (Morning, noon, evening)

- **Advantages**
 - No special equipment needed
 - Possible to use in all conditions
 - Suitable for areas with low car density

- **Problems**
 - Low detail
 - Restricted knowledge of speed variations
Speed: Method 1

1 - Largo do Rato
2 - EPAL
3 - Cemitério dos Prazeres
4 - Cruzamento de Alcântara
5 - Palácio das Necessidades
6 - Basílica da Estrela
Speed: Method 2 - GPS

- GPS in vehicle
- Rules for test driver
 - Keep with main flow
 - but copy driver behaviour -> objective oriented travel
 - E.g. Service Stations, Museums
- Data acquisition problems in narrow roads with tall buildings
Speed Histograms
Urban and Sub-urban areas

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Main roads</th>
<th>Secondary roads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascais</td>
<td>39.4</td>
<td>28.2</td>
</tr>
<tr>
<td>Oeiras</td>
<td>49.2</td>
<td>28.3</td>
</tr>
<tr>
<td>Lisboa</td>
<td>25.1</td>
<td>28.1</td>
</tr>
<tr>
<td>Amadora</td>
<td>48.6</td>
<td>24.4</td>
</tr>
<tr>
<td>Odivelas</td>
<td>33.9</td>
<td>27.5</td>
</tr>
<tr>
<td>Loures</td>
<td>52.7</td>
<td>39.8</td>
</tr>
</tbody>
</table>

Vitor Gois - Raleigh, 16 May 2007
Emission Factors

• Base - > EMEP/CORINAIR (EEA, 2002)
 – Based on extensive monitoring and database
 – Variables
 • Vehicle type, age, fuel, technology, engine size
 • Vehicle speed per link
 • Road gradient
 • Vehicle wear
 • Non-exhaust emissions
Characterization of the Fleet (Moving Vehicles)

- Methodology (Torres et al, 2006)
 - Survey/questionnaire in
 - Traffic lights
 - Parking
 - Questions
 - Age (license date)
 - Vehicle type: PC, LDV, HDV, Bus, 2w, mopeds
 - Fuel type: gasoline, diesel, LPG, Natural Gas
 - Engine size (c.c.)
 - Mileage (km)
 - Mobile Air Conditioner
- 17 800 results (5.6% vehicles registered in insurance companies)
Fleet: Results
Emission Factors for a normalized vehicle

\[y = 0.0000000041991x^6 - 0.00000172276x^5 + 0.0002769847078x^4 - 0.0220572694394x^3 + 0.9163300293065x^2 - 19.6391104069688x + 253.8422015941410 \]

\[R^2 = 0.9912804495488 \]

\[y = 0.00000000000189745x^6 - 0.000000000079325611x^5 + 0.00000013102685701x^4 - 0.00001087088226117x^3 + 0.00049295664148669x^2 - 0.01275310043676920x + 0.20095104605219900 \]

\[R^2 = 0.99866235527923600 \]
Time Variation

- t_{FAC} - Hourly to daily traffic volume
 - 11h-14 h -> Annual Daily Average
 - 10 representative GERTRUDE traffic monitoring stations
 - Working Days + Weekends
 - $TFac = \frac{TMDA}{TMDA_w} \times \frac{TMDA_w}{TMD_{11h-14h}}$
 - $TFac = 0.88 \times 16 = 14.6$
Top-down approach

Consumption = Sales + Import in commuters * FC * Length
Consumption = Sales + (Vehicle Inflow - Vehicle Outflow) * FC * Length
Results: NOx
Evaluation: traffic

- **GERTRUDE**

 (Gestion Electronique de Régulation en Temps Réel pour L’Urbanisme, les Déplacements et l’Environnement)

 - Lisbon Municipality
 - local groups: 10
 - 110 counters (2000)
 - Restricted to central/busy areas
 - Objective: Traffic Control

\[
y = 0.5068x + 3867.6 \\
R^2 = 0.3386
\]

\[
y = 1.3114x + 9989.5 \\
R^2 = 0.3386
\]
Model Validation
Comparison with air quality surveys

2001 and 2002 average (ug/m3)

\[y = 0.6851x + 9.5829 \]

\[R^2 = 0.6851 \]
Final Results: Air Quality Mapping
Conclusions

- Methodology is feasible
- Comparison to air quality surveys shows good possibilities
- Relatively inexpensive
 - Main costs are GPS survey and characterization of the fleet
- Appropriate for diverse media
 - Central urban areas and sub-urban areas
- Several potential uses beyond air emission inventories
Thank you