

Recent Improvements to the State Inventory Tool Land-Use Change and Forestry Module

16th Annual International Emission Inventory Conference May 15, 2007

Andrea Denny U.S. EPA State and Local Branch

Susan Asam, Victoria Thompson, Anne Choate, Lauren Pederson ICF International

Overview

- Introduction to the State Inventory Tool
- Overview of the Land-Use Change and Forestry (LUCF) Module
- Recent LUCF Improvements
- Future LUCF Improvements

State Inventory Tool - Land-Use Change and Forestry													
:0)	Ele Edit Module Options Type a question for												
	A		В	(>	D	E	F	G	Н	1	J	
1													
2	2 State Inventory Tool - Emissions and Sinks From Land-Use Change and Forestry												
3									-	· · ·			
4													
5									D 1 41 11				
ь	1. Choo	se a State	Colorado						Reset ALL!				
7	This i	s very importa	unt - it selects ti	he correct default v	rariables f	or your state.							
8													
10	2 Fare	st Corbon Fl											
11													
		C Click here	if you do not have	any data on forest ca	rbon flux a	nd would like to u	se			Golt	n Carbon		
12		default est	imates by the USD	A Forest Service.						Flu	x Sheet	\geq	
13	Click here if you would like to use your own data on forest carbon flux.												
14	14												
15	3 7.	Verify the v	ariables used fo	r each sector and	lyzed in tl	his tool and the	en proce	ed to the corr	esponding workshee	t to ente	r activity	data.	
16								г		-			
18	3. C 1	rom Limina of	f Aaricultural So	ils					Check/Uncheck All				
19		Emission Fac	tors			Default Values		Values Used	Use the Default?				
20		metric ton C/	metric ton limestor	ie		0.059		0.059	~	Go to	Liming		
21		metric ton C/i	metric ton dolomite	3		0.064		0.064	-	S	neet		
22	4.00		han Treas										
23	4.0.	Carbon Sequ	estration Facto			Default Value		Value Used		Golto	linhan		
25		metric ton C/	hectare/year	-		2.11		2.11	7	Tree	sheet >		
26										1100.	- GIIGOI		
27	5. N ₂	O from Settl	ement Soils							Coto	Cottlomont		
28	1	mission Factor	C.	Il an avaid Caille		Default Value	_	efault Value	_	5010	ils Sheet	>	
29		Direct N ₂ O E	mission Factor for	Manageu Sons		1%		1%	~		10 011001		
31													
32	6. No	n-CO ₂ From I	Forest Fires										
33		Emission Fac	tors			Default Value		Value Used					
34		Savanna, g Cl	1√kg dry matter o	ombusted		4.6		4.6	~	Go to	Burning		
35		Savanna, g N	20/kg dry matter o	ombusted		0.12		0.12	~	CH4	Sheet /		

Purpose of the State Inventory Tool (SIT)

- States typically address climate change following a three-phase approach:
 - Inventory development
 - Mitigation planning
 - Implementation of actions
- The SIT aims to increase efficiency of the inventory process to reduce the time and resources required to get states to the third phase

SIT Capabilities

- Cover all sources included in Emission Inventory Improvement Program (EIIP) guidance
- Utilize the U.S. national inventory report (NIR) methodologies, which follow international GHG inventory preparation guidelines
- Structured as Excel® workbooks that use macros and user-friendly displays to facilitate calculation
- Prompt users to input state-specific data or select default data and emission factors, where available
- Emphasize transparency in calculations, allowing modifications by states where appropriate
- Standardize estimation methodologies across states

SIT Modules

Energy Modules

- CO₂ from Fossil Fuel Combustion
- CH₄ and N₂O from Stationary Combustion
- CH₄ and N₂O from Mobile Combustion
- Natural Gas and Oil Systems
- Coal Mining

Other Modules

- Industrial Processes
- Agriculture
- LUCF
- Municipal Solid Waste
- Wastewater
- Synthesis Tool
- Projection Tool

Land-Use Change and Forestry (LUCF) Module

Sources Covered in LUCF Module	GHG Estimated			
Forest Carbon Flux	Carbon			
Liming of Agricultural Soils	CO ₂			
Urban Trees	Carbon			
Non-CO ₂ Emissions from Forest Fires	N ₂ O, CH ₄			
Landfilled Yard Trimmings and Food Scraps	Carbon			

Overview of LUCF Module Improvements

- Updated activity data
- Incorporated newly available state-level annualized forest carbon flux data from USFS
- Updated emission factors and methodologies
 - Liming of Agricultural Soils
 - ♦ Urban Trees
 - Landfilled Yard trimmings and Food Scraps
- Added new source category
 - N₂O from Settlement Soils

Forest Carbon Flux

- Incorporated state-level annualized data from USFS
- Covers 1990-2005 for all states except Alaska and Hawaii
- Includes estimates of carbon stock and flux for the 5 forest carbon pools included in the NIR:
 - Aboveground Biomass
 - Belowground Biomass
 - Dead Wood
 - Litter
 - Soil Organic Carbon

🛿 State Inventory Tool - Land-Use Change and Forestry											PX			
🗐 Ele Edit Module Options Type a question for help 👻 🗖												- Ø >		
	A B C D	E	F	G	Н	1	J	K	L	M	N	0	Р	(/
A B C D E F G H J K L M O P 2. Forest Carbon Flux in Colorado Two methodology are used to calculate carbon ensistens/storage (fux) from forest carbon using USDA Forest Service estimates of each state's forest carbon stocks. (1) The first methodology applies to adoveground biomass, belowground biomass, dead wood, forest flor itter and sol organic carbon. USDA Forest Service estimates of each state's forest carbon stocks. 1 (1) The first methodology applies to adoveground biomass, belowground biomass, dead wood, forest flor itter and sol organic carbon. USDA Forest Service estimates of each state's forest carbon stocks. Two methodology applies to adoveground biomass, belowground biomass, dead wood, forest flor itter and sol organic carbon. USDA Forest Service estimates of each state's forest carbon stocks. Two methodology applies to adoveground biomass, dead wood, forest flor itter and sol organic carbon. USDA Forest Service estimates of each state's forest carbon stocks. 2 state's toreat carbon stocks are provided for 1930-2005. These estimates of the carbon stocks. Two methodology used applies to wood products and lendifilis (i.e. harvested wood products). Since the CCT does not produce estimates for the entire time series, default carbon 1937-1932 and from 1932-1937 are cach worded by 5 (the number of intervening versit) to determine the average annual change. This average annual change is then applied for each verset, word products the verse of 1932-1937 is used applies to model. This average the verse of 1932-1937 is used applies to modelin. The verse sethowest detore the verset rela											(« Return : htrol Sk			
4 5 6	 change and rootstry changer of the User's Guae. 5 Default data for Aboveground and Belowground Biomass, Dead Wood, Litter, and Soil Organic Carbon Total Carbon Storage 													
7									million metri	c tons carbor	1)			
8		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	20
9	Aboveground Biomass	419.19	422.13	425.07	428.01	430.95	433.89	436.83	439.78	443.09	446.64	450.18	453.72	45
10	Belowground Biomass	84.46	85.23	85.99	86.75	87.51	88.27	89.03	89.79	90.63	91.51	92.39	93.27	
11	Dead Wood	89.53	90.14	90.74	91.35	91.96	92.57	93.18	93.79	94.43	95.10	95.77	96.44	1
12	Litter	246.96	247.79	248.61	249.44	250.27	251.09	251.92	252.75	253.95	255.37	256.79	258.22	25
13	Soil Organic Carbon	274.43	275.65	276.87	278.08	279.30	280.52	281.73	282.95	284.61	286.54	288.46	290.39	2!
14	Total	1,114.57	1,120.92	1,127.28	1,133.63	1,139.99	1,146.34	1,152.70	1,159.05	1,166.71	1,175.16	1,183.60	1,192.04	1,20
15								(h)	maar in C	nahan Ctar				
17								Ch	million motei	arbon Stor	nge N			
19		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	20
20	Abovearound Biomass	2.94	2.94	2.94	2.94	2.94	2.94	2.94	2.94	3.32	3.54	3.54	3.54	
21	Belowaround Biomass	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.84	0.88	0.88	0.88	
22	Dead Wood	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.65	0.67	0.67	0.67	
23	Litter	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	1.20	1.42	1.42	1.42	
24	Soil Organic Carbon	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.22	1.66	1.92	1.92	1.92	
25	Total	4 15	4 15	4 15	1 15	4 15	4 15	4.95	4 15	7 44	8 44	8 44	8 44	×
5			Ш											2

Liming of Agricultural Soils

- Updated emission factors based on recent research (West and McBride 2005) on the fate of carbon in limestone (CaCO₃) and dolomite (CaMg(CO₃)₂)
- Updated activity data

	IPCC Default Emission Factor	New Emission Factor used in SIT and NIR
Limestone (metric ton C/metric ton limestone)	0.120	0.059
Dolomite (metric ton C/metric ton dolomite)	0.130	0.064

West, T.O.; McBride, A.C. "The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions," *Agricultural Ecosystems & Environment*. 2005, 108, 145-154.

Methodological Changes

Landfilled Yard Trimmings & Food Scraps

- Revised methodology to make it consistent with the NIR
 - Adjusted carbon storage factors to attain a perfect mass balance on total carbon
- Included newly available generation and disposal data

Urban Trees

- Included 2000 U.S. Census data on urban area
- Annualized estimates of carbon storage across the entire inventory time series from 1990 through 2005 now available

N₂O Emissions from Settlement Soils

- Newly added to the SIT LUCF module
- Follows methodology used in the NIR
- Assumes about 10 percent of the fertilizers applied to soils in the US are applied to lawns, golf courses, and other landscaping occurring within settled areas
- Estimates emissions based on the amount of fertilizer applied to settlement soils multiplied by an emission factor and conversion factors

Future Improvements

- 2006 IPCC Guidelines for National Greenhouse Gas Inventories
 - Possible reorganization of SIT to include agriculture and LUCF sources in a combined Agriculture, Forestry and Other Land Use (AFOLU) module
 - Methodological changes as necessary to comply with international inventory guidelines and national inventory practices
- State-level estimates of carbon flux and N₂O emissions resulting from management of agricultural (cropland and grassland) soils

For More Information

Andrea Denny

State & Local Branch U.S. Environmental Protection Agency 1200 Pennsylvania Avenue (6202 J) Washington, DC 20460 Phone: 202-343-9268; Fax: 202-343-2337 Email: Denny.Andrea@epa.gov

