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ABSTRACT 
 
This paper discusses a revised framework for treating primary organic aerosol emissions in 

inventories and models.  Instead of using static aerosol emission factors, we represent the organic 
aerosol emissions using a volatility distribution.  Conceptually, this distribution can be derived from 
speciated emissions data by lumping species with similar saturation vapor pressures.  However, this is 
not possible in practice because less than 10% of the condensed and semivolatile mass has been 
speciated. We determine volatility distributions by fitting isothermal dilution data with absorptive 
partitioning theory, similar to well-established analyses of secondary organic aerosol.  Representing 
emissions with a volatility distribution allows explicit treatment of both gas-particle partitioning and 
photochemical aging of primary emissions.  We have implemented this approach using the chemical 
transport model PMCAMx, and present results from simulations conducted over the Eastern United 
States.  The results show a dramatically altered picture of ambient organic aerosol. 
 
INTRODUCTION 
 

Sources of primary organic aerosols such as motor vehicles, wood combustion, and industrial 
processes emit thousands of organic compounds (Schauer et al., 1999a; Schauer et al., 1999b; Schauer et 
al., 2001; Schauer et al., 2002b; Schauer et al., 2002a).  The gas-particle partitioning of these emissions 
change dramatically as they are rapidly cooled and diluted.  In order to account for these changes, 
primary organic aerosol (POA) emission factors are measured using dilution samplers (Hildemann et al., 
1989). Emission inventories and models currently treat POA emissions as non-reactive and non-volatile, 
implicitly assuming that the dilution sampler measurements represent the full range of atmospheric 
conditions. 

 
This paper discusses a revised framework for treating primary organic aerosol emissions in 

inventories and models.  The framework uses a volatility basis set to represent organic emissions and 
allows for explicit accounting of changes in gas-particle partitioning due to dilution, temperature 
changes and photochemical aging. 

 
BODY 
 
Gas-Particle Partitioning and Primary Organic Aerosol Emissions 
 
Recent measurements in our laboratory reveal that POA emission factors measured from diesel 

engine exhaust and wood combustion decrease with increasing dilution due to evaporation of 
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semivolatile organic compounds (Lipsky and Robinson, 2006; Shrivastava et al., 2006).  The 
semivolatile character of POA is illustrated in Figure 1a, which plots the fuel-based POA emission 
factor for wood combustion as a function of dilution (Lipsky and Robinson, 2006). The measured POA 
emission factor decreased as emissions were diluted to progressively higher dilution ratios at a constant 
temperature; this reduction is, due to the evaporation of semivolatile organics.  

 
Gas-particle partitioning occurs via absorption into an organic solution and adsorption onto soot and 

mineral surfaces (Pankow, 1987; Pankow, 1994).  The relative importance of these two mechanisms 
depends on the amount and type of each sorptive material.  For ambient aerosols, absorption into an 
organic solution is thought to be the dominant partitioning mechanism (Liang et al., 1997; Roth et al., 
2005b). 

 
Emissions from many combustion systems such as engines contain a mixture of organic and 

elemental carbon (OC/EC).  The relative amount of OC and EC vary widely depending on source type 
and combustion conditions.  For example, carbonaceous emissions from wood combustion and non-
catalyst-equipped gasoline-powered vehicles are dominated by organic material (Hildemann et al., 
1991a; Schauer et al., 2001; Schauer et al., 2002b) while emissions from diesel engines are generally 
dominated by EC (Hildemann et al., 1991a; Schauer et al., 1999b).  Although EC adsorbs organic 
material, other organic compounds can form a solution with the adsorbed organic layer (Sakurai et al., 
2003).  Therefore, absorptive partitioning is expected to be the dominant partitioning mechanism in 
emissions from gasoline vehicles, wood combustion, and other sources with OC/EC ratios greater than 2 
(Roth et al., 2005a). 

 
The changes in emission factor with dilution shown in Figure 1a follow well-established absorptive 

partitioning theory (Donahue et al., 2006; Shrivastava et al., 2006).  We express partitioning in terms of 
a particle fraction (Xp), which is the ratio of the organic particulate mass to the total (gas plus particle) 
semi-volatile organic mass in the emissions (Shrivastava et al., 2006).  Following partitioning theory, 
Figure 1b plots Xp as a function of mass concentration of the absorbing phase – the organic aerosol 
concentration (COA).  As expected, Xp monotonically increases towards one with increasing COA, 
reflecting changes in partitioning as organic material shifts from the gas to the particle phase at higher 
COA. 

 
Continuous changes in partitioning of POA with dilution (or alternately, with temperature) should 

not be surprising.  It simply reflects the fact that primary emissions are comprised of a wide range of 
compounds with up to thirty-or-more carbon atoms (Schauer et al., 1999b; Schauer et al., 2001; Schauer 
et al., 2002b).  Although speciated data are available for only a small fraction of the emissions, non-
compound specific gas chromatography has achieved good mass recovery.  This approach separates 
material on a volatility/carbon number basis and reveals that the unresolved material is spread across a 
wide range of volatilities (Hildemann et al., 1991b). 

 
The semivolatile character of primary emissions creates two challenges.  First, emission factors are 

often measured at low dilution ratios (20:1 to 200:1).  This level of dilution generally reduces the 
temperature of the exhaust to atmospheric levels; however, the aerosol concentrations in the diluted 
exhaust can be orders of magnitude higher than typical atmospheric conditions (Shrivastava et al., 
2006). Measurements under these conditions can create large biases in measured emission factors 
relative to highly diluted background atmosphere (Shrivastava et al., 2006).  Second, gas-particle 
partitioning varies continuously with background aerosol concentration and temperature, preventing the 
definition of a static primary organic aerosol emission factor (Shrivastava et al., 2006). 

 



 

 3

Unfortunately, emission inventories and models currently treat primary organic aerosol emissions as 
non-volatile, implicitly assuming that dilution sampler measurements represent the full range of 
atmospheric conditions.  In the atmosphere, background aerosol concentrations and temperature vary in 
space and time.  Since these parameters strongly influence partitioning, a single value for POA emission 
factor cannot accurately represent the atmospheric behavior of POA emissions.. 

 
Semivolatile Emissions and Secondary Organic Aerosol 
 
We have recently proposed that oxidation of semivolatile emissions is an important, but largely 

unaccounted for source of secondary organic aerosol (SOA) in the atmosphere (Robinson et al., 2007).  
This proposal is motivated by laboratory results showing  an unexpectedly large amount of SOA 
formation during the photo-oxidization of diluted exhaust from a diesel engine (Robinson et al., 2007).  
Figure 2 plots results from a smog chamber experiment in which diluted diesel exhaust was exposed to 
UV light, initiating photochemistry similar to what occurs in summertime in an urban area.. After 3 
hours of aging, SOA had almost doubled the initial (wall-loss corrected) aerosol mass, and more than 
doubled the OA concentrations.  Decay of gas phase organics indicate roughly one generation of 
processing and ~ 3 x 106 molec cm-3 OH -- typical of a summer day (Heard and Pilling, 2003).  
Substantial SOA production from photo-oxidation of diesel exhaust has also been reported by Lee et al. 
(2004). 

 
To assess the contribution of known SOA sources, we spiked the chamber with light aromatics and 

calculated traditional SOA production using measured precursor consumption and the published SOA 
yield curves used in the chemical transport model PMCAMx (Koo et al., 2003).  Calculations with this 
model accounted for the contribution from 58 precursors but could explain only 15% of the SOA formed 
during this experiment.  This gap is much too large to be closed by simply increasing the yields for 
existing precursors, indicating a major unaccounted-for source of SOA. Recent model evaluations 
(Heald et al., 2005; Johnson et al., 2006) and field studies (de Gouw et al., 2005; Volkamer et al., 2006) 
also suggest a large missing source of SOA. 

 
We hypothesize that oxidation of low-volatility species explains the unpredicted SOA observed in 

our experiments (Robinson et al., 2007).  Diesel exhaust is a complex mixture of thousands of 
compounds that span a wide range of volatilities (Schauer et al., 1999b).  Partitioning data similar to that 
shown in Figure 1 (Shrivastava et al., 2006; Robinson et al., 2007) and speciation measurements 
(Schauer et al., 1999b; Schauer et al., 2001; Schauer et al., 2002b) indicate that a significant fraction of 
the emissions have saturation concentrations between 102 and 106 µg m−3 and therefore exist primarily in 
the gas phase at atmospheric conditions.  However, these emissions are not accounted for in current 
emission inventories which have largely been developed to simulate tropospheric ozone. 

 
We expect that oxidation of low volatility vapors is an important source of SOA because oxidation 

of large saturated compounds produces acids, nitrates, and carbonyls with lower vapor pressures than 
the parent compounds (Lim and Ziemann, 2005).  Only C-C bond cleavage typically increases the 
volatility of the reaction products, however this cleavage is uncommon for the relatively unsubstituted 
compounds typical of primary emissions (Lim and Ziemann, 2005; Reisen et al., 2005).  Therefore, the 
first few generations of oxidation likely reduce the volatility of these species by several orders of 
magnitude, causing a large fraction of the organic mass to partition to the condensed phase. 

 
Another important consideration is the low initial volatility of these vapors.  Lim and Ziemann 

(2005) report that SOA yields more or less increase monotonically with decreasing precursor vapor 
pressure.  The light aromatics and monoterpenes that dominate SOA production in current models have 



 

 4

effective saturation concentrations between 107 and 109 µg m-3 and therefore produce SOA with low 
efficiency (typical yields are <10%).  In comparison, oxidation of semivolatile vapors should produce 
SOA with much higher efficiency. 

 
The available data indicate that emissions of low-volatility vapors are several times those of POA 

emissions.  Therefore, these vapors have potential to produce substantial SOA, exceeding the 
contribution of POA.  SOA formed from oxidation of low-volatility vapors may explain the 
unexpectedly rapid and substantial formation of SOA observed off the coast of New England (de Gouw 
et al., 2005) and in Mexico City (Volkamer et al., 2006).  SOA formed from oxidation of low-volatility 
vapors likely contributes to the persistent underprediction of OA levels, especially during photochemical 
episodes (Held et al., 2005; Vutukuru et al., 2006). 

 
Although current SOA models do account for some SOA production from low-volatility vapors, 

such as large alkanes and cycloparaffins, oxidation products of these vapors are predicted to contribute 
little SOA compared to those of light aromatics and biogenic species (Koo et al., 2003; Pun et al., 2003; 
Vutukuru et al., 2006).  A major problem is that little attention has been paid to including low-volatility 
vapor emissions in inventories because they only constitute a small fraction of the total VOC emissions, 
which are dominated by high volatility species. 

 
Basis-Set Approach 
 
Updating our conceptual model of primary organic aerosol emission requires a framework that 

efficiently represents both gas-particle partitioning and photochemical aging in regional and global 
chemical transport models (CTMs).  We have recently developed such a framework, which we call the 
volatility basis set (Donahue et al., 2006).  The approach lumps low volatility organics into a set of 
“volatility bins” that span a basis set of effective saturation concentrations (Ci*) separated by powers of 
10, typically ranging from 0.01 to 106 µg m−3 at 298 K.  If this volatility distribution is known, one can 
calculate the OA mass from partitioning theory (Pankow, 1994; Odum et al., 1996; Donahue et al., 
2006).  The basis-set approach uses a volatility operator to treat SOA production by photochemical 
aging; the operator represents how the volatility distribution evolves with aging. 

 
The major advantages of the basis set approach include: 1) it provides a single framework for 

describing gas-particle partitioning of both POA and SOA; 2) it allows for multiple generations of SOA 
chemistry without increasing the number of tracked SOA products beyond what can be handled 
efficiently in a CTM; and 3) the required inputs – the volatility distribution of emissions and volatility 
operator – can be derived from experimental data.  Fitting to a fixed basis set also minimizes an artifact 
of the two-product fitting procedure in which the two products tend to have volatilities on either end of 
the concentration range explored in the particular experiment. 

 
We express gas-particle partitioning in terms of a particle fraction (Xp), which is the ratio of the 

organic particulate mass to the total (gas plus particle) semi-volatile organic mass in the emissions 
(Shrivastava et al., 2006), 
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where fi is the mass fraction in bin i relative to the total (gas plus particle) semi-volatile organic material 
in the emissions, Ci* is the effective saturation concentration of each volatility bin [0.01, 0.1, 1, 10, 100, 
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103, 104, 105, 106] µg m-3, COA is the mass concentration of the absorbing organic phase, and n is the 
number of bins.  The set of fi represents the volatility distribution of the organic mixture, and the total 
OA mass is Xp times the concentration of semivolatile organics.  

 
In order to employ the basis set approach, one must know the volatility distribution of the emissions 

(the set of fi’s in eq. 1) for each source.  A volatility distribution can be constructed from speciated 
emissions data by lumping species with similar saturation vapor pressures.  In practice, this is not 
possible because less than 10% of the condensed and semivolatile mass has been identified on a 
compound-by-compound basis (Schauer et al., 1999b; Schauer et al., 2001; Schauer et al., 2002b).  Our 
approach has been to experimentally measure gas-particle partitioning (Xp and COA) and then fit the data 
using eqn (1) to determine the volatility distribution.  The amount of each lumped compound is 
determined by fitting partitioning theory to the experimental data.  These lumped compounds then 
provide an empirical representation of the volatility distribution of the emissions.  This approach has 
been recently applied to emissions data (Shrivastava et al., 2006) and is essentially the same as that 
commonly used to describe the partitioning of SOA formed in smog chambers (Odum et al., 1996). 

 
We have measured partitioning data for diesel exhaust and wood smoke using multiple dilution 

samplers.  The procedures are described in detail in Lipsky and Robinson (2006).  The derivation of Xp 
and COA values from the experimental measurements is explained in Shrivastava et al. (2006). 

 
To illustrate the approach, we have fit the wood smoke measurements shown in Figure 1b using 

partitioning theory.  Since the number of experimental measurements significantly exceeds the number 
of unknowns, the solution is over-constrained and a non-linear fitting algorithm is used to determine the 
optimum fit by minimizing sum-squared residuals between measured and predicted values of Xp.  
Additional details on fitting partitioning data with a volatility basis set are provided by Presto and 
Donahue (2006). 

 
The best fit is indicated by the solid line in Figure 1b.  The volatility distribution determined by this 

fit expressed as fuel-based emission factors is shown in Figure 3 (details of the fitting procedure are 
described below).  The key point is that the fitting distributes the emissions into volatility bins to 
reproduce the observed partitioning behavior.  Furthermore, the distribution shown in Figure 3 
represents the volatility distribution of the material measured as POA on a quartz filter at low dilution 
ratios.  Therefore, these lumped compounds represent volatility profiles that can be applied to existing 
primary organic aerosol emission factors. 

 
Effects of gas-particle partitioning and aging on organic aerosol concentrations 
 
To illustrate the effects of gas-particle partitioning and semivolatile aging of primary emissions on 

organic aerosol concentrations, the three-dimensional chemical transport model PMCAMx was used to 
simulate pollutant concentrations across the eastern half of the United States (Robinson et al., 2007).  
The simulations employ the basis-set approach and provide a qualitative picture of how these conceptual 
updates change our picture of atmospheric OA.  The modeling domain covered a 3492 x 3240 km region 
in the eastern United States with 36 x 36 km grid resolution with 14 different levels up to 6 km (Gaydos 
et al., 2006).  The calculations were performed for a 16-day period in July 2001, but we only present 
averages for the last eight simulation days to allow time for model spin-up. 

 
Details on PMCAMx and its basic application are described elsewhere (ENVIRON, 2005; Gaydos et 

al., 2006).  Here we provide a few details on the standard version of PMCAMx and then discuss how the 
model was modified to account for gas-particle partitioning of primary emissions and SOA production 
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from low volatility organic vapors. 
 
Like all chemical transport models, PMCAMx assumes that POA is non-volatile and non-reactive; 

therefore POA concentrations only decrease due to dispersion and deposition.  The emission inventories 
used here are the LADCO BaseE inventory generated using EMS-2003 (LADCO, 2003).  This 
inventory is derived primarily from the U.S. EPA’s National Emission Inventory (NEI) 1999 Version 
2.0 (EPA, 2002a) with the following changes: on-road transportation sources are from U.S. EPA’s 
MOBILE6 (EPA, 2002c); non-road sources are from U.S. EPA’s NONROAD (EPA, 2002b).  The 
temporal profiles for electric power utility point sources are from an analysis of Continuous Emission 
Monitor data (EPA, 2003; Janssen, 2003).  Ammonia emissions are from the Carnegie Mellon 
University Ammonia Emission Inventory (Goebes et al., 2003; Pinder et al., 2004).  Biogenic emissions 
are from BIOME3 (Wilkinson and Janssen, 2001).  A different emission inventory is used for weekdays, 
Saturdays, and Sundays. 

 
The standard version of PMCAMx accounts for SOA production from the oxidation products of 

aromatics, paraffins, anthropogenic olefins, cresols and biogenic olefins using the Secondary Organic 
Aerosol Model (SOAM) II as implemented by Koo et al. (2003).  The chemical mechanism is based on 
the Carbon Bond 4 Mechanism.  Equilibrium is assumed between the gas and aerosol phase. 
 

In order to treat gas-particle partitioning of the primary emissions, we modified both the PMCAMx 
model and the POA emission inventories.  For the simulations shown in Figs. 4b, 4c, and 4d, the POA 
was represented using nine condensable species, for which the model tracks both gas and particle phase 
concentrations.  The effective saturation concentrations (Ci*), molecular weights, and enthalpies of 
vaporization of these nine species are listed in Table 1, which are based on fits of diesel partitioning data 
(Robinson et al., 2007).  The gridded emissions of each condensable species were calculated by 
applying this volatility distribution to all of the POA emissions in the BaseE inventory; the existing 
POA emissions were multiplied by the mass fractions listed in Table 1.  The gas-particle partitioning of 
the nine condensable species was calculated in the same way as for the traditional SOA, using the 
existing PMCAMx partitioning module (Koo et al., 2003).  We assume that the bulk gas and particle 
phases are in equilibrium and that all condensable organics form an ideal solution.  The Clausius-
Clapeyron equation is used to account for changes in Ci* with temperature. 

 
The volatility distribution listed in Table 1 was applied to all POA emissions (fossil and modern).  

The limited available data suggest that emissions from most important sources have similar volatility 
distributions.  For example, diesel exhaust and wood smoke exhibit similar partitioning behavior 
(Shrivastava et al., 2006).  Also, non-specific carbon-number-based gas chromatography indicates that 
many different sources have similar carbon-number distributions (Hildemann et al., 1991b).  
Intermediate volatility organic compounds (IVOC), with effective saturation concentrations between 103 
and 106 µg m-3, also contribute a significant fraction of emissions from all high-temperature sources 
(Schauer et al., 1999b; Schauer et al., 2001; Schauer et al., 2002b). 

 
The effects of explicitly treating gas-particle partitioning and aging of primary emissions are 

illustrated in Figure 4, which presents maps of ground-level OA concentrations from four simulations. 
The “traditional” model with nonvolatile POA (Figure 4a) and “traditional SOA” predicts high POA 
concentrations (> 3 µg m-3) in heavily urbanized areas and substantial urban-to-regional concentration 
gradients.  Allowing primary emissions to partition but not react (Figure 4b) dramatically reduces OA 
levels throughout the modeling domain, suggesting that the majority of the traditional POA emissions 
actually evaporate at ambient OA levels. Photochemical aging of low-volatility vapors creates 
significant regional SOA (Figs. 4c and 4d).  If one accounts only for aging of the existing primary 
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emissions (Figure 4c), predicted OA levels are lower than the traditional model.  The most 
comprehensive simulation (Figure 4d) adds additional emissions of low volatility organics to the model, 
producing large amounts of regional SOA.  The net result is that regional OA levels exceed the 
traditional model, the urban-rural OA concentration gradient is greatly reduced, and resulting OA field 
is dominated by SOA, even in urban areas (Robinson et al., 2007). Figure 5 indicates that the spatial 
distribution of OA in the revised model is in much better agreement with observations than the 
traditional model.  

 
CONCLUSIONS 
 
The semivolatile character of primary organic aerosol has important implications for measuring and 

simulating emissions.  Dilution sampler measurements have traditionally been made at low levels of 
dilution, sufficient to reduce exhaust temperature to ambient levels. However, COA inside the sampler 
can be orders of magnitude higher than atmospheric levels.  Under high COA conditions, Figure 1 
indicates a larger fraction of emissions partitioning to the condensed phase relative to cleaner 
atmospheric conditions (Shrivastava et al., 2006).  Therefore, some emissions are misclassified as 
primary organic aerosol, causing models and inventories to overestimate the primary emissions’ 
contributions to organic aerosol concentrations.  For key sources such as smoking gasoline vehicle or 
wood combustion, this bias may be as large as a factor of five (Shrivastava et al., 2006).  In reality, 
much of these emissions evaporate as the exhaust is diluted to background levels.  Unfortunately, most 
primary emissions measurements conducted until now have not considered semivolatile partitioning, 
and so reported data lack key values such as COA. 

 
Semivolatile vapors may be an important source of secondary organic aerosol.  Currently emissions 

of semivolatile organics are poorly represented in emission inventory and models.  
 
Chemical transport modeling reveals that gas-particle partitioning and photochemical aging 

dramatically alter the predicted organic aerosol concentrations.  The net effect of these two revisions is 
to replace the current static representation of POA emissions with a far more dynamic picture in which 
low-volatility organics evaporate, oxidize and recondense over time. 

 
The basis set approach provides a more physically realistic framework for accounting for primary 

organic aerosol emissions in emission inventories.  This framework also enables regional and global 
chemical transport models to explicitly represent gas-particle partitioning and aging of primary 
emissions.  Implementing this framework requires updating the way we measure emissions.  Instead of 
measuring a fixed organic aerosol emission factor, we need to measure the volatility distribution of the 
emissions.  We have done this by measuring the changes in partitioning of emissions using dilution 
samplers operating at different levels of dilution.  Using this approach we have measured the volatility 
distribution of emissions from a diesel engine and a woodstove. Clearly data are needed for a larger 
number of sources. 
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Figure 1. Measured gas-particle partitioning of POA in wood smoke.  (a) Fuel-based POA emission 

factor as a function of dilution (Lipsky and Robinson, 2006).  (b) Data from multiple experiments 
plotted according to partitioning theory (Shrivastava et al., 2006). 
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Figure 2. Wall-loss corrected aerosol mass measured during photochemical oxidation of diluted 

diesel exhaust in a smog chamber (Robinson et al., 2007). 



 

 13

 

10 100 1000 10000
0.0

0.2

0.4

0.6

0.8
Em

is
si

on
 F

ac
to

r
(g

/k
g-

fu
el

)

C* (µg/m3)
 

 
Figure 3.  Volatility distribution for wood smoke derived by fitting the emissions data shown in 

Figure 1b. 
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Figure 4.  Maps of predicted ground-level organic aerosol (OA) concentrations for four PMCAMx 

simulations: a “traditional” model with nonvolatile POA emissions (A) and three simulations that 
account for partitioning of primary emissions - one assuming non-reactive emissions (B) and two 
considering photochemical aging (C & D). 
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Figure 5. Comparison of average measured urban-to-regional OA ratios indicated by the bars to 

model predictions for four large cities. 
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Table 1: Parameters used to treat partitioning of POA emissions 
 

Parameter Lumped Species 
C* 
(µg m-3) 0.01 0.1 1 10 100 1000 10000 100000 1000000 

fSVOC 0.03 0.06 0.09 0.14 0.18 0.30 0.20 0.00 0.00 
fSVOC+IVOC 0.03 0.06 0.09 0.14 0.18 0.30 0.40 0.50 0.80 
MW       
(g mol-1) 250 250 250 250 250 250 250 250 250 

∆H        
(kJ mol-1) 112 106 100 94 88 82 76 70 64 

 
• C*: Effective saturation concentration at 300K (basis set) 
• fSVOC: mass fractions of the POA emissions in each volatility bins used for the simulations shown in 

Figs. 4b and 4c 
• fSVOC+IVOC: mass fractions of POA emissions in each volatility bins used for the simulation shown in 

Figure 4d 
• MW: molecular weight 
• ∆H: Enthalpy of vaporization 
 


