EPA's Multipollutant Modeling with the 2002 NEI: Integrating Criteria and Toxics

> Emission Inventory Conference New Orleans, May 18, 2006 Madeleine Strum, USEPA/OAQPS

Co authors: Marc Houyoux (OAQPS), Rich Mason* Allan Beidler and Cliff Stanley (Computer Sciences Corporation), Deborah Luecken (USEPA/ORD)

*Atmospheric Sciences Modeling Division, Air Resources Laboratory, NOAA, (On Assignment to OAQPS)

Why multipollutant modeling and assessment capability? It is the future of the Air Quality Management system Responsive to AQM Recommendations Strengthen scientific and technical capacity 1.5 Framework for Accountability - Develop an integrated program for criteria pollutants and hazardous air pollutants 4.1 Multi-pollutant SIPS 4.2 Multi-pollutant benefits and disbenefits in standard setting

"One-Atmosphere" Management and Modeling

Multipollutant Modeling Capability For Strategy Analysis: Illustrative Example

Possible Strategy: Pulp and Paper

Flue gas desulfurization (wet scrubber) limit SO2 to 2 lb/ ODTP (oven-dried tons pulp production) Resulting reductions (industry average)

Pollutant	Reduction	
SO2	78%	
PM25	99%	
Organic HAP	89 to 94%	
non-hg metal HAP	70 to 99%	
HCI	100%	
Hg	70-90%	

Nationwide CMAQ Predicted Change in Pollutant (ozone/PM/toxic)

Philadelphia county

What has been done?

Added toxics to CMAQ

- 20 VOC HAPs added through development of CB4tx, SAPRCtx mechanisms
- Updated SMOKE to process HAPs and combine HAP/CAP inventories
- Modeled HAPs in CMAQ (1999 NEI)
- Made NEI more consistent across CAPs and HAPs

What are we doing now?

 Adding even more toxics to CMAQ
 – Nearly 40 HAPs being added through CB05tx mechanism

Preparing 2002 NEI and ancillary files needed to implement HAP/CAP combination approach

A Look at Selected* (Organic Gas-phase) CB05 Model Species

Description	Active HAP?
formaldehyde (explicit)	yes
acetaldehyde (explicit)	yes
lumped C3+ aldehydes	
methane (explicit)	
Ethane (explicit)	
1-carbon paraffin	
Ethene (explict)	
terminal olefins	
internal olefins	
toluene (7 carbons) KOH=8.8E3	
xylenes (8-carbons) KOH=3.7E4	
Isoprene (explicit)	
Methanol (explicit)	yes
Ethanol (explicit)	
lumped terpene species	
	 Description formaldehyde (explicit) acetaldehyde (explicit) acetaldehyde (explicit) lumped C3+ aldehydes methane (explicit) Ethane (explicit) 1-carbon paraffin Ethene (explict) terminal olefins internal olefins internal olefins toluene (7 carbons) KOH=8.8E3 xylenes (8-carbons) KOH=3.7E4 Isoprene (explicit) Methanol (explicit) Ethanol (explicit) Iumped terpene species

* See paper for full list

A Look at Selected* CB05tx "Tracer" HAPs

Organic and other gases

CB05tx Tracer Toxics	Name
Cl2	molecular chlorine
HCL	hydrochloric acid
BUTADIENE13	1,3-butadiene
ACROLEIN	acrolein
NAPTHALENE	naphthalene
BENZENE	benzene
PROPDICHLORIDE	1,2-dichloropropane
CL4_ETHE	Tetrachloroethylene (perc)
CARBONTET	carbon tetrachloride
CL2_ME	methylene chloride
CHCL3	chloroform
TRIETHYLAMINE	Triethylamine

* See paper for full list

Diesel PM & metals

CB05tx Tracer Toxics	Name
diesel_pec	Diesel PM - elemental carbon
diesel_poa	Diesel PM - organic carbon
diesel_pso4	Diesel PM - sulfates
diesel_pno3	Diesel PM - nitrate
diesel_pmfine	Diesel PM - other fine particulate
diesel_pmc	Diesel PM - coarse particulate
beryllium_coarse	Beryllium compounds - fine particulate
beryllium_fine	Beryllium compounds - coarse particulate
cadmium_coarse	Cadmium compounds - coarse particulate
cadmium_fine	Cadmium compounds - fine particulate

PLUS: Lead, manganese, nickel, hexavalent chromium, trivalent chromium

Two Ways to Combine HAP/CAP Using the HAP inventory

Integrate Case

No-Integrate Case

Determining Sources in 2002 NEI that could use the Integrate case

- 1) All VOC HAPs and VOC are uniformly submitted by the State or are computed by EPA;
- 2) The sum of VOC HAPs is less than or equal to the VOC.
- 3) The particular VOC HAPs can be mapped to model species.

Inventory Analysis Covered Largest VOC sources

Analyzed:

– Nonpoint (8 million)

- Onroad (4.6 million)

- Nonroad* (3 million)

Did yet not analyze

- Point (1.7 million)
- Point fires wild & prescribed
- aircraft, locomotives commercial marine (.1 million)

* excluding aircraft, locomotives commercial marine)

Nonpoint

Contains nearly 400 SCCs covering a wide range of emission processes

Pie chart shows % of VOC by "tier 1" grouping

Nonpoint –Integration status

■ % VOC that can be integrated ■ % HAP that can be integrated ■ % CAP to be replaced

Variability in the Nonpoint %VOC in the "Integrate" Case Across States

Mobile

Onroad: "Integrate" sources require consistent methodology across VOC and each VOC HAP

- NMIM with EPA default inputs
- NMIM with State supplied inputs
- State data replacing NMIM based on EPA default inputs
- State data replacing NMIM based on state supplied inputs

Nonroad (excluding aircraft/CMV/locomotives): 100% "Integrate"

Mobile –Integration status

% VOC that can be integrated
 % HAP that can be integrated
 % CAP to be replaced

Variability in the Onroad %VOC in the "Integrate" Case Across States

Particular HAPs that Can be Integrated

Onroad/Nonroad: ~ 30 HAPs Nonpoint: ~100 HAPs

Key HAPs: toluene, xylenes, benzene, methanol

Limitations

- We assume HAP estimates are better than speciating VOC
- We assume we can subtract HAP from VOC when they're both from the same data source

Could lead to geographic inconsistencies in speciation (HAP reporting inconsistencies)

Conclusions

- We plan to combine HAP/CAP inventories for multipollutant modeling using an updated chemical mechanism in CMAQ
- Analyzed much of the 2002 NEI to determine extent to which HAP/CAP sources can be integrated
- Found a large amount of VOC mass will be using the "integrate" case, allowing us to maximize the use of the HAP inventory