Determination of Particulate Emission Rates from Leaf Blowers

Dennis Fitz, David Pankratz, Sally Pederson, James Bristow

College of Engineering-Center for Environmental Research and Technology University of California, Riverside

Gary Arcemont San Joaquin Valley Unified Air Pollution Control District

> 15th Annual Emission Inventory Conference Reinventing Inventories New Ideas in New Orleans May 16-8, 2006 New Orleans, LA – Wyndham Canal Place

Center for Environmental Research and Technology – www.cert.ucr.edu

Overview of Presentation

- Introduction and Objectives
- Approach
- Method Validation
- Results
- Conclusions
- Acknowledgements

Introduction

- PM is Responsible for Adverse Health Effects and Many Airsheds Exceed the Federal AQ Standards
- Accurate Inventories are Needed to Formulate Effective Mitigation Measures
- Leaf Blowers are an Obvious Source of PM Emissions
- Leaf Blow PM Emissions are of a Fugitive Nature and Difficult to Quantify
- No Emission Measurements of PM From Leaf Blowers Have Been Reported

Objectives

 Develop a Method to Measure Leaf Blower PM Emissions

Validate the Method

- Develop a surrogate debris for comparisons under controlled conditions

Measure PM Emissions from Different Types of Leaf Blowers

- Gasoline-powered
- Electric-Powered
- Rakes
- Brooms

Measure PM Emissions from Different Types of Substrates

- Asphalt
- Concrete
- Grass
- Soil

Approach

- Enclose the Emission Process
- Monitor PM with Real-Time Sensors Until PM Concentrations Stabilize
 - Compare Results from Real-Time Sensors with filter-based PM Measurements
- Calculate Emission from the Area Blown (Swept or Raked) of Debris, the Tent Volume, and the PM Concentration

- Large Enough to Conduct the Process
- Lightweight to Move Easily Within a Location
- Easily Disassembled to Move to Locations
- Low Cost

University of California, Riverside

Bourns College of Engineering Enclosure Design

Center for Environmental Research and Technology www.cert.ucr.edu

Monitoring Instrumentation

- Thermo Systems Inc. Model 8520 DustTrak for Real-Time PM Measurements
 - Based on light scattering
 - Inlets for TSP, $POM_{2.5}$, PM_{10}
 - 1ug/m³ Sensitivity
- Custom Filter Sampler
 - Greasby Andersen model 246B Inlet for PM₁₀ at 16.7 L/min
 - Sensidyne model 240 cyclone for PM_{2.5} at 115 L/min
 - Pall Teflo filters
- RAE Systems ppbRAE Hydrocarbon Analyzer for Tracer Gas Concentration Measurement
- PC-based Labview Data Collection

Surrogate Debris Development

- Follow UC Riverside Gardening Crew
- Select 1m² Collection Area
- Collect All Debris by Sweeping and Vacuuming
- Sieve Debris and Weigh
- 28 Samples Collected

Debris Collection Results

Size Range	Average Mass, g	Std Deviation, g
 Total Mass 	48	77
• > 3/8 in	5	6
• <3/8 in, >#4	5	6
• <#4, >#18	14	28
• <#18, >#4 0	10	17
• <#40, >#20 0	11	23
• < #200	3	7

Surrogate Composition

- 120g Soil Sieved Through a #40 screen
- 60 g Leaves
- 60 g Clippings

Method Validation

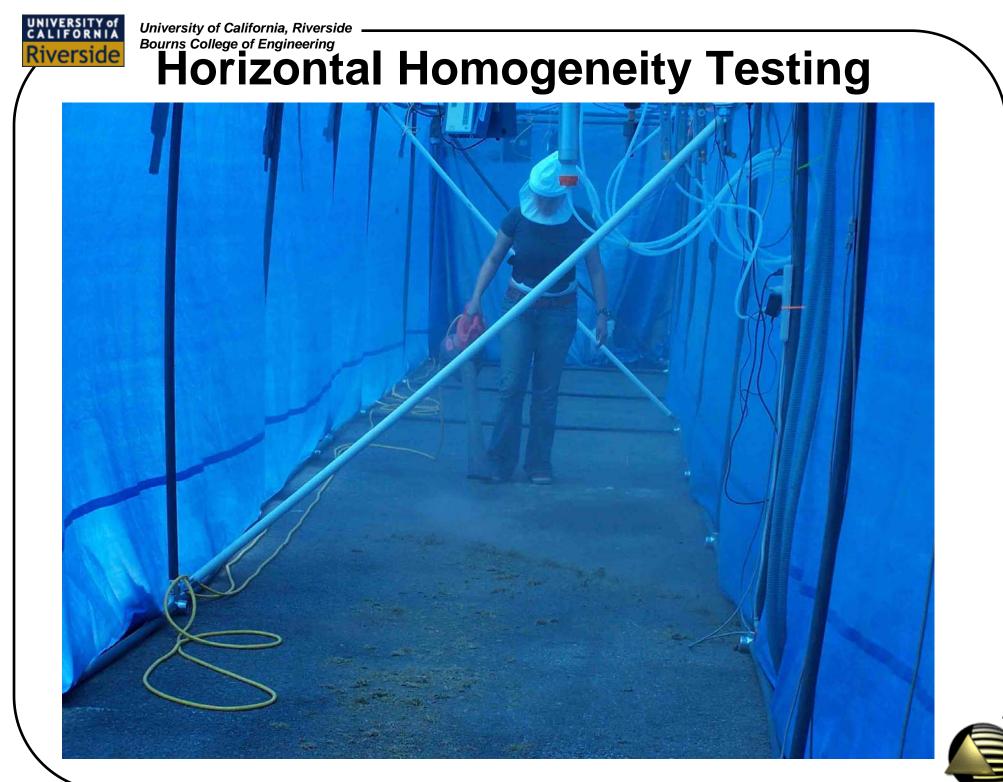
• Determine Homogeneity

- Horizontal
- Vertical

• Determine Mixing Time

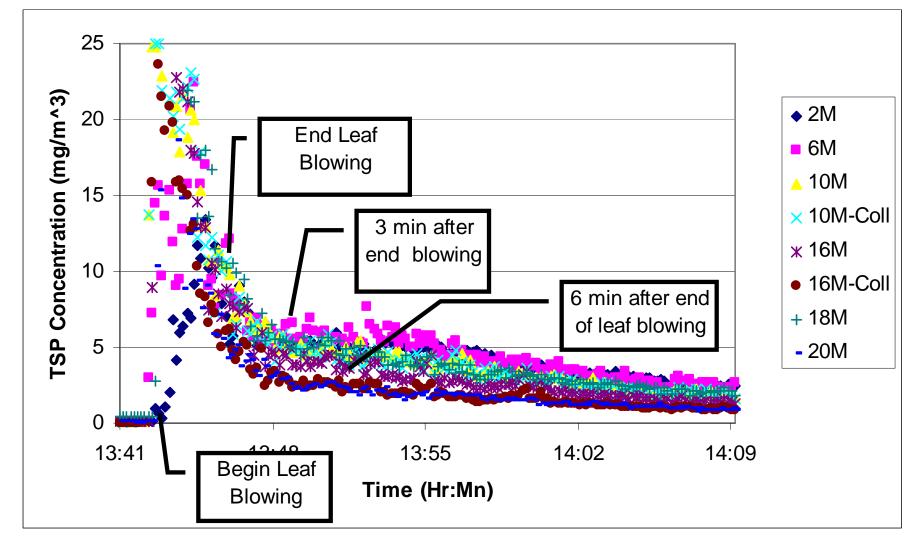
- Measure Exchange Rate (with tracer gas)
- Determine Variability

- **Horizontal Homogeneity Evaluation**
- DustTrak Height 2m
- DustTrak at Distances of 2, 6, 10, 16, and 20m from Enclosure Entrance
- Collocated DustTraks at 10 and 16m
- Separate Tests for TSP, PM_{2.5}, PM₁₀



University of California, Riverside Bourns College of Engineering

Horizontal Homogeneity Testing



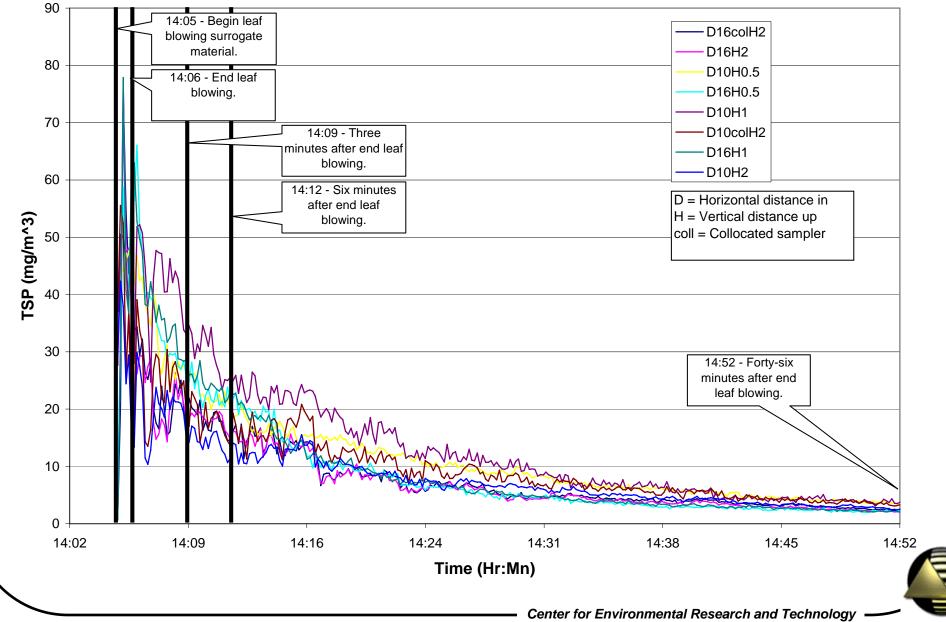
University of California, Riverside Bourns College of Engineering

Time Series of DustTrak TSP For Horizontal Homogeneity Evaluation

Horizontal PM Concentrations at 6 Minutes	3
--	---

		21976	21975	85200674	21569	85200677	21955	21668	21667
Run	Size	2 Meters	6 Meters	10 Meters	10 Meters	16 Meters	16 Meters	18 Meters	20 Meters
0819_1	PM2.5	1.7	1.9	2.4	2.6	2.8	2.2	3.4	3.7
0819_2	PM2.5	2.5	1.7	2.3	2.6	4.1	3.0	5.1	5.2
0819_3	PM2.5	1.7	1.3	1.6	1.5	2.0	1.7	2.6	3.6
0817_1	TSP	2.9	3.7	2.5	2.4	2.8	3.7	2.0	1.6
0817_2	TSP	4.5	5.3	3.9	3.6	3.6	4.4	2.7	1.9
0817_3	TSP	5.6	6.8	4.4	4.2	4.3	4.1	3.6	2.6
0818_1	PM10	7.1	9.9	5.6	8.9	6.9	6.5	4.8	9.4
0818_2	PM10	5.1	7.5		8.0	6.1	5.2	6.1	4.9
0818_3	PM10	5.7	6.4	4.7	7.4	6.3	5.9	5.7	5.0

Conclusion: Less than 12% Error if sampled at 10 and 16m


- DustTrak Heights of 0.5, 1.0 and 2.0 m
- DustTrak at Distances of 10 and 16m from Enclosure Entrance
- Collocated DustTraks at 2m height, 10m Distance
- Separate Tests for TSP, PM_{2.5}, PM₁₀

University of California, Riverside Bourns College of Engineering

Time Series of DustTrak TSP For Vertical Homogeneity Evaluation

www.cert.ucr.edu

Vertical PM Concentrations at 6 Minutes

		Distance 6			Distance 16					
		Height			Height					
Run	Size	0.5M	Height 1M	Height 2M	0.5M	Height 1M	Height 2M	Height 2M	Height 2M	
0902_1	PM10	6.0	6.9	4.9	18.6	18.4	20.0	20.6	17.2	
0902_2	PM10	4.7	5.8	4.1	22.0	22.9	25.7	24.1	20.0	
0903_3	PM10	9.5	11.1	9.0	12.6	12.0	11.1	11.1	9.9	
0902_4	PM2.5	2.3	3.9	3.4	1.4	1.9	3.2	3.2	2.1	
0902_5	PM2.5	1.6	3.3	2.7	0.9	1.8	2.5	2.9	2.0	
0902_6	PM2.5	1.9	2.2	2.3	1.9	1.9	2.0	2.5	1.8	
0902_7	TSP	9.6	11.7	11.8	13.3	9.1	7.5	8.1	7.9	
0902_8	TSP	7.8	11.5	11.6	11.3	8.5	8.6	9.8	9.3	
0902_9	TSP	7.7	9.6	9.5	13.5	7.3	8.1	9.0	8.9	

Conclusion: Some Variation but Within Measurement
 Uncertainty

Results

- 85 Tests Using Surrogate Material
- 35 Tests on Indigenous Surfaces
- 6 Devices Used
- Two Locations
- Emissions Calculated Using the Following Equation:

$$EF = [(C_{10ave,t=6} + C16_{ave,t=6})/2) \times V_{chamber}] / A_{debris}$$

Summary of PM Emission Results

			Emission Factors			
Cleaning Action and Surface Cleaned	Number of Tests Performed	Type of Emission Factor Obtained from Tests	PM 2.5 (mg/m^2)	PM10 (mg/m^2)	TSP (mg/m^2	
Power Blowing or Vacuuming over concrete surfaces	12	Average emissions from leaf blowing	30	80	100	
Power Blowing or Vacuuming over asphalt surfaces	21	Average emissions from leaf blowing	20	60	80	
Push Broom on Asphalt Surface	3	Average emissions from sweeping	0	20	30	
Push Broom on Concrete Surface	3	Average emissions from sweeping	20	80	110	
Raking on Asphalt Surface	1	Average emissions from raking	0	0	0	
Raking on Concrete Surface	3	Average emissions from raking	0	0	10	
Raking Lawn	1	Average emissions from raking	0	1	1	
Power Blowing Lawn	3	Average emissions from leaf blowing	1	2	3	
Power Blowing Gutters	3	Average emissions from leaf blowing	9	30	50	
Power Blowing Packed Dirt	1	Average emissions from leaf blowing	80	120	160	
Power Blowing Cut Grass on Walkway	2	Average emissions from leaf blowing	2	6	9	
akdown of Emissions by Power Blower Type on Asphalt a	and Concrete Surf	aces				
Elec.Blower	4	Asphalt/CECERT	20	60	80	
Gas Hand Held	3	Asphalt/CECERT	10	40	50	
Gas Backpack	4	Asphalt/CECERT	20	60	80	
Elec.Blower-Vac Mode	3	Asphalt/CECERT	40	120	150	
Elec.Blower-Vac Mode - bag full	3	Asphalt/CECERT	20	70	90	
Elec.Blower	4	Asphalt/Kearney	0	20	30	
Elec.Blower	3	Concrete/CECERT	40	130	170	
Gas Hand Held	3	Concrete/CECERT	10	40	50	
Gas Backpack	3	Concrete/CECERT	30	70	70	
Elec.Blower-Vac Mode	3	Concrete/CECERT	30	80	90	

Conclusions

- Soil Origin Made Little Difference in PM Emissions
- Leaf Blower Types All Produced Similar PM Emissions
- Leaf Blower PM Emissions Were Somewhat Lower on Asphalt Than on Concrete Surfaces
- Raking Produced Negligible PM Emissions
- Broom Sweeping PM Emissions on Concrete Were Similar to Leaf Blower PM Emissions
- Broom Sweeping on Asphalt Produced Lower PM Emission Than on Concrete
- Precision is Approximately 19% for PM_{2.5} and 27% for PM₁₀

Conclusions

- Filter-Based Measurements Agreed to With 50%
- This Approach Could be Adapted to Many Types of Fugitive Dust Generating Devices

Acknowledgements

- University of California Kearney Research and Extension Center
- UC Riverside Grounds Maintenance
- UC Riverside Environmental Health and Safety
- Bourns Inc.
- Professors Mark Matsumoto, Arthur Winer and Marko Princevac

Disclaimer

 The statement and conclusions in the Report are those of the contractor and not necessarily those of the San Joaquin Valley Unified Air Pollution Control District. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products.

