E.H. Pechan & Associates, Inc.

Including the Emission Effects of Refinery Cases and Settlements in Projections for the EPA's CAAA Section 812 Analysis

James H. Wilson Jr. and Maureen Mullen

Acknowledgements

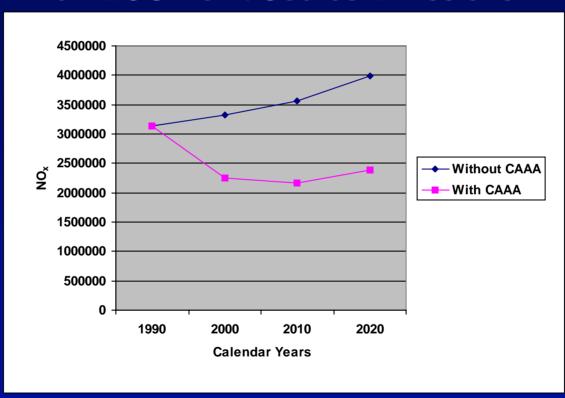
- EPA Contract No. EP-D-04-006
- Prime contractor is Industrial Economics, Inc.
- EPA sponsor: James Democker, Office of Policy Analysis and Review

Presentation Organization

- Section 812 Study Context
- Refinery Settlements What They Cover
- Modeling Approach
- Observations and Conclusions

Section 812 Study Context

- Periodic, comprehensive cost/benefit study
- 1990 Clean Air Act Amendments
- * Retrospective (1970-1990)
- First Prospective (1990-2010) completed in 1999
- Second Prospective (1990-2020) underway


Second Prospective

- Projection year work focuses on 2010 and 2020 from a 2002 base year
- All criteria pollutants except lead
- Ammonia (NH₃) included
- With and without CAAA scenarios

Example Emissions Display

Non-EGU Point Source Emissions

Refinery Settlements Analysis

- SO₂ and NO_x focus
- Prioritization by refinery company expected emission reductions
- Largest expected emission reductions included

Refinery Companies Included

- BP Amoco
- CITGO
- Conoco Philips
- Equilon
- Marathon Ashland

Refinery Companies Included (cont'd)

- Montana Refining
- Motiva
- Navajo Refining
- Premcor
- Sunoco

Major Affected Refinery Sources

- FCCUs/fluid coking units
- Process heaters and boilers
- Flare gas recovery
- Leak detection and repair
- Benzene/wastewater

FCCU/FCU Control Requirements

- ***** SO₂
 - » Option 1 Install wet gas scrubbers
 - » Option 2 Use catalyst additives
 - » Option 3 Use existing wet gas scrubber
- ♦ NO_x
 - » Option 1 Install SCR or SNCR
 - » Option 2 Use catalyst additives

Heaters/Boilers

- SO₂ Eliminate burning of solid and liquid fuels
- NO_x Install ULNB or the equivalent to heaters and boilers ≥ 40 MMBtu per hour

Issues in Modeling Associated Emission Reductions

- FCCU/FCU records in the 2002 NEI easy to locate
- One refinery had associated emissions at CO boiler

FCCU SO₂ Control Requirements

- ❖ New wet gas scrubber 90% SO₂ CE or the specified SO₂ CE
- Catalyst additives 70% SO₂ CE based on the literature
- Existing wet gas scrubber No additional CE applied or no requirement

Heater/Boiler Control Requirements

- SO₂ None applied: few fuel oil burners in the NEI
- NO_x equivalent to meeting 0.04 lbs/MMBtu NO_x rate average
 50 percent reduction to affected units
 - > 40 MMBtu/hour or
 - 10 tons/year NO_x

Other Sources (Flare Gas Recovery, LDAR, Benzene/Wastewater)

- Less significant criteria pollutant reductions
- 2002 NEI emission estimates uncertain

Observations/Conclusions

- Emission limit application
 - » NO_x constraint company-wide
 - » Discretion in application to units
- Issue in areas considering further NO_x controls
 - » OTC example
 - » Sensitivity tests suggested

Observations/Conclusions (cont'd)

- Consider settlement-requirements in BART determinations
 - » Effective BART?
 - » BART floor?
- Emission inventory improvements
 - » Report boiler/heater design capacities
 - » Track/report control device installations
 - » Compare base year emissions inventory with refining reporting to OECA

Observations/Conclusions (cont'd)

- Alternative ways to express emission changes
 - » Percentage reductions (preferred)
 - » Emission totals by facility
- Limitations
 - » Settlements that occurred by September 2005
- National emission reductions
 - » 60 thousand tons NO_x
 - 210 thousand tons SO₂

For more information www.epa.gov/oar/sect812

