Exploration of Emissions Factor Adjustments for Using Emissions Factors in Noninventory Applications

Roy Neulicht, Breda Muñoz, Karen Schaffner RTI International Barrett Parker, US EPA May 2006

Acknowledgments

This work was funded by the U.S. EPA Office of Air Quality Planning and Standards.

Overview

- Background
- Objective
- Technical Approach
- Results
- Next Steps

Background

- Originally, Emissions Factors (EF) Used for Nationwide Inventories
- EF = Mean Value (Typically)
- Other Noninventory Applications, e.g.,
 - Permit Applicability Determination/Limits
 - Model inputs
 - Plant-wide Applicability Limits (PAL)

Objective

 Explore adjustments to EFs to address uncertainty when using EFs for noninventory applications

General Approach

- Focus on single source:
 - Random sample from population
 - "Boundary statistics" of population distribution;
 e.g., 95th percentile
 - Variability of the sample provides estimates of uncertainty (between and within facility)
- Develop default adjustments
- Did not focus on uncertainty about the mean value

Approach

- Select EF data sets for analysis
- Statistical procedure
 - 1. Visualize data
 - 2. Fit Probability Density Functions to model the data; Use Monte Carlo Techniques to simulate the hypothetical population
 - 3. Calculate statistics for each population: e.g., median, 90th percentile, 95th percentile

Approach (continued)

- 4. Select 10,000 random samples from each population for sample size n=1, 3, 5 ...25
- 5. For each of the 10,000 samples, calculate an adjustment to estimate the selected target statistic of the hypothetical population
- 6. Calculate composite adjustments by pollutant and sample size

Emissions Factor Data

- Criteria for selection:
 - data quality (A-rated)
 - data quantity > 15 emissions tests
 - number/type of pollutants
 - accessibility of supporting emissions data

Emissions Factor Data

- 44 A-rated Data Sets
- Wood Residue Combustion
- Refuse Combustion
- Waferboard/Oriented Strandboard
- Hot Mix Asphalt
- Particulate Matter, Sulfur Dioxide, Nitrogen Oxides, Carbon Monoxide, Hazardous Air Pollutants

Distribution of AP-42 Carbon Monoxide EF Data

Sample from Hypothetical Carbon Monoxide Population

10,000 samples

Distribution of Adjustments for Selected Target Statistics

Target statistic = 10th percentile

Target statistic = 90th percentile

Monte Carlo Distribution of Adjustments:

Target Statistic = 90th percentile EF with n = 3 Tests

Example of Adjustments

	Target Statistic						
	Percentile			Percentile			
n	5th	10th	Mean	90th	95th		
1	0.19	0.30	1.2	2.2	2.7		
3	0.17	0.27	1.0	<u>2.0</u>	2.4		
5	0.16	0.26	1.0	1.9	2.3		
25	0.16	0.26	1.0	<u>1.9</u>	2.3		

n= 3

Estimate 90th percentile of true population:

EF x ADJ = 0.6 x **2.0** = 1.2

n= 25

Estimate 90th percentile of true population:

EF x ADJ = 0.6 x **1.9** = 1.1

Example of Adjustments

Wood Residue CO emission factor =0.6 lb/mmbtu n=128

	Target Statistic						
	Percentile			Percentile			
n	5th	10th	Mean	90th	95th		
1	0.19	0.30	1.2	2.2	2.7		
3	0.17	0.27	1.0	2.0	2.4		
5	0.16	0.26	1.0	1.9	2.3		
25	0.16	0.26	1.0	<u>1.9</u>	<u>2.3</u>		

n=25

Estimate 90th percentile of true population:

EF x ADJ = 0.6 x **1.9** = 1.1

Estimate 95th percentile of true population:

EF x ADJ = 0.6 x **2.3** = 1.4

Comparison of Selected Adjustments: PM-Filterable, uncontrolled Emissions Factors Target Statistic: 95th Percentile

	n =1	n =3	n = 10	n =25
Refuse Comb., RDF	1.8	1.7	1.7	1.7
Wood Comb., Dry Wood	1.9	1.9	1.8	1.8
Refuse Comb., Mass burn	2.3	2.1	2.0	2.0
Wood Comb., Wet Wood	2.5	2.3	2.2	2.2
OSB, Hot Press	5.1	3.8	3.4	3.2
Average (Comp, Default Adjustment)	2.7	2.3	2.2	2.2

Composite Default Adjustments

- For n<3, 3<n<10, 10<n<25, n>25
- HAP, Controlled
- HAP, Uncontrolled
- PM-Condensible
- PM-filterable, controlled
- PM-filterable, uncontrolled
- Gaseous Criteria Pollutants

Other Analyses

- Other analyses were conducted
- Estimates of uncertainty about the mean of the normalized distribution of emissions factors (n=1, n=3, n=5,...n=25)
 - confidence intervals about mean
 - yields smaller adjustment values
- See paper for discussion and results

Summary and Conclusions

- All EF's examined are Weibull or lognormally distributed
- Adjustments decrease as n increases; begin to stabilize at n>10
- Uncontrolled HAPS have largest variability (and adjustments):

- For 95th percentile: 19 for n=1; 4.5 for n>25

Additional Information

- Complete report is expected to be available for public review in June 2006
- parker.barrett@epa.gov
- rmneulicht@rti.org