

Midwest Research Institute

Solutions through science

and technology

Proposed Revisions to Fine Fraction Ratios Used for AP-42 Fugitive Dust Emission Factors

Chatten Cowherd

Midwest Research Institute

Duane Ono

Great Basin UAPCD

Fugitive Dust Emissions

- Highly fluctuating plume impacts at emission measurement site
- PM concentrations vary from background to plume core values
- Emissions depend on energy inputs and properties of emitting surface material

Road Dust Plume Concentrations

AP-42 Emission Factors

- Predictive equations with particle size multipliers
- Historically, particle size multipliers based on data from high-volume cyclone/cascade impactors
- Potential for particle size bias in overpredicting fine fractions

Discrepancy in Fine Fraction Data

- Emission data from the high-volume cyclone/impactor system have provided the basis for a PM_{2.5}/PM₁₀ of ~0.20 for many fugitive dust sources in EPA's AP-42
- Ambient air monitoring data suggest that $PM_{2.5}/PM_{10}$ may be less than 0.10

MRI Cyclone/Cascade Impactor System

Plume Characterization Options

- Field studies produce highly variable results because of wind variations
- Laboratory exposure chambers can produce nearly steady-state conditions
- Confounding factors can be reduced in controlled laboratory flow settings

EPA Field Study in 1990s

- Purpose to resolve fine fraction emission biases for paved and unpaved roads
- Geographic distribution of test sites
- Cyclone/Impactor biases evident
- New AP-42 fine fractions were averages between cyclone/impactor and dichotomous sampler results

C/I Biases from Prior Field Study

Revisions to AP-42 Fine Fractions

- PM2.5/PM10 ratio for unpaved roads (dominated by fugitive dust) was reduced from 0.26 to 0.15
- PM2.5/PM10 ratio for paved roads was reduced from 0.46 to 0.25
- Non-dust component of paved road emissions assigned a PM2.5/PM10 ratio of 0.76, accounting for vehicle exhaust and brake and tire wear

Purpose of Controlled Lab Study

- Collect new controlled data from collocated reference PM monitors with MRI high-volume cyclone/impactor system
- Determine extent of any bias in the PM_{2.5}/PM₁₀ ratio as determined by the cyclone/impactor system

Viewing Window with Continuous PM Mass Monitor

Ref. Method Sampling Equipment

Phase I Testing

- Purpose: Determine potential bias in PM-2.5 concentration as measured by cyclone/impactor system
- RFM: Partisol Model 2000 for PM-2.5
- Test materials: ISO 12103-1 Arizona Test Dusts—fine and coarse grades; Owens Dry Lake surface soil

Air Samplers: Phase I

Unit	Sampler	Manufacturer/ model	Flow rate	Particle size cutpoint
2	Cyclone pre- separators	Sierra Model 230 CP	20 acfm	10.2 μmA
2	Multistage impactor	Sierra Model 230	20 acfm	2.1 µmA
2	Partisol	R&P Model 2000	16.7 alpm	2.5 µmA
2	DustTRAK	TSI Model 8520	5 alpm	2.5 μmA and 10 μmA

MRI Cyclone for Sampling of PM-10 in Fugitive Dust

Exposure Chamber with Sampler Inlets

Phase II Testing

- Purpose: Determine PM-2.5/PM-10 ratios for a variety of western surface materials
- FRMs: Partisol Model 2000 for PM-2.5 and PM-10
- Test materials: Soils, aggregates, and unpaved road surface materials
- Aerosolization system: Constant flow
 energy

Air Samplers: Phase II

Unit	Sampler	Manufacturer/ model	Flow rate	Particle size cutpoint
2	Partisol	R&P Model 2000	16.7 alpm	2.5 µmA
2	Partisol	R&P Model 2000	16.7 alpm	10 µmA
2	DustTRAK	TSI Model 8520	5 alpm	2.5 μmA and 10 μmA.

Contributors of Test Samples

- Great Basin UAPCD—Owens Dry Lake
- CH2MHill—Salton Sea
- WY AQD—Thunder Basin mine
- NM AQB—South-Central New Mexico
- Alaska DEC—Matanuska Valley
- Arizona DEQ—Maricopa & Pima Counties

Properties of Test Soils/Surface Materials

	Code	State	Location	Type of material	Moisture content (%)	Dry silt content (%)	Dry Silt rank
	TF	Arizona	-	Standard Test Dust—Fine	-	-	-
_	тс	Arizona	-	Standard Test Dust—Coarse	0.60	87.6	1
	AK	Alaska	MAT-SU Knik River Bed	Sediments	0.80	8.69	6
	AZal	Arizona	Phoenix Area	Alluvial Channel	0.33	17.3	3
	AZag	Arizona	Phoenix Area	Agricultural Soil	1.06	21.6	2
	NMr	New Mexico	Las Cruces Landfill	Road Dust	1.27	12.2	4
	NMs	New Mexico	Radium Springs	Grazing Soil	0.47	10.9	5
c s v	OW	California	Owens Dry Lake	Lakebed Soil	0.27	3.14	9
	SS	California	Salton Sea	Shoreline Soils	5.46*	3.63	8
	WY	Wyoming	Thunder Basin Mine	Barrow Pit for Access Road Surface Material	2.47*	6.83	7

Wind Erodibility Groups

- WEG values developed by USDA/NRCS to indicate the susceptibility of surface soil to blowing (Nine WEG values)
- Soil blowing correlated with:
 - Soil texture
 - Organic matter content
 - Effervescence due to carbonate reaction with HCI
 - Rock and pararock fragment content
 - Mineralogy
 - Soil moisture and frozen soil

PM-10 Emission Categories vs. Wind Erodibility Groups

- 1 Silty Sand & Clay (WEG 4 and 5)
- 2 Sandy Silt (WEG 2 and 3)
- 3 Loam (WEG 4L)
- 4 Sand (WEG 1)
- 5 Silt (WEG 6 and 7)

Note: USDA provides national soil database (SSURGO) with WEG values for GIS analysis.

Soil Texture Triangle

Results of Controlled Wind Tunnel Study

- PM2.5 concentrations measured by the high-volume cyclone/impactor were factor-of-2 higher than measured by reference-method samplers.
- Geometric mean bias of 2.01
- Arithmetic mean bias of 2.15

Comparability of Field and Laboratory Test Results

- PM2.5 bias of cyclone/impactor system
 - Measured under controlled laboratory conditions
 - Closely replicated by the bias observed in the prior EPA-funded field study
 - Both studies used reference method samplers for comparison

Reporting Process

- Test Plan--with opportunity to observe laboratory wind tunnel facility
- Draft Test Report--with independent peer reviewers
- Comment/Response Log--for each review comment
- Revised Test Report

C/I Biases from Lab Study

Recommended AP-42 Fine Fractions

- Paved Roads [13.2.1]
- Unpaved Roads (Public & Industrial) [13.2.2]
- Construction & Demolition [13.2.3]
- Aggregate Handling & Storage Piles [13.2.4]
- Industrial Wind Erosion [13.2.5]
- Agricultural Tilling
- Open Area Wind Erosion

Paved Roads

- Current PM2.5/PM10 Ratios
 - Dust component: 0.25
 - Non-dust component: 0.76
- Proposed Change
 - Dust component: 0.15
- Justification
 - Factor of 2 bias in cyclone/impactor data

Unpaved Roads

- Current PM2.5/PM10 ratio: 0.15
- Proposed PM2.5/PM10 ratio: 0.1
- Justification
 - Controlled wind tunnel test results
 - Field test results

Construction & Demolition

- AP-42 recommends referring to other sections (e.g., unpaved roads)
- Category emissions normally dominated by travel over unpaved surfaces
- Proposed PM2.5/PM10 ratio: 0.1 (ref. earlier justification)
- Large cleared areas possible significant source of wind erosion (ref. section on open area wind erosion)

Aggregate Handling and Storage Piles

- Open storage pile emissions usually dominated by traffic on unpaved surfaces around piles
- Proposed PM2.5/PM10 ratio: 0.1 (ref. earlier justification)
- Proposed PM2.5/PM10 ratio for transfer operations: 0.15 (justification based on factor-of-two bias in cyclone/impactor system)

Industrial Wind Erosion

- Examples include open tailings piles or raw material storage piles
- Proposed PM2.5/PM10 ratio: 0.15
- Justification based on
 - Controlled wind tunnel test results
 - Prior tests with portable wind tunnel

Agricultural Tilling

- Original AP-42 section "under review"
- WRAP Handbook recommends
 PM2.5/PM10 ratio of 0.2
- Ratio of 0.2 consistent with controlled wind tunnel results, considering lower plume concentrations generated by slow moving implements

Open Area Wind Erosion

- Examples are disturbed soils such as agricultural fields
- Prior portable wind tunnel tests show ratios in the range of 0.3
- Proposed PM2.5/PM10 ratio: 0.15
- Justification:
 - Factor-of-two bias in C/I system
 - Owens Lake plume data

Summary of Proposed Fine Fractions

	AP-42	PM _{2.5} /PM ₁₀ Ratio		
Fugitive dust source category	section	Current	Proposed	
Paved Roads	13.2.1	0.25	0.15	
Unpaved Roads (Public & Industrial)	13.2.2	0.15	0.1	
Construction & Demolition	13.2.3	0.208	0.1	
Aggregate Handling & Storage Piles	13.2.4	0.314 (transfer)	0.1 (traffic) 0.15 (transfer)	
Industrial Wind Erosion	13.2.5	0.40	0.15	
Agricultural Tilling	-	0.222	0.2 (no change)	
Open Area Wind Erosion	-	-	0.15	

- Tested materials showed consistent particle size characteristics under constant energy input
- Tests results consistent with prior field study
- Sound basis for proposed revisions to PM2.5/PM10 ratios in AP-42