
 1

SATELLITE-DERIVED PM2.5 EMISSIONS FROM WILDFIRES FOR AIR 
QULAITY FORECAST 

 
Xiaoyang Zhang1, Shobha Kondragunta, Felix Kogan, Jerald D. Tarpley  

Wei Guo2   
NOAA/NESDIS/STAR, 5200 Auth Road, Camp Springs, MD 20746  

1Earth Resources Technology, Inc., 8106 Stayton Drive, Jessup, MD 20794 
2I.M. System Group, Inc 

Shobha.Kondragunta@noaa.gov, Xiaoyang.Zhang@noaa.gov 
Christopher Schmidt 

Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, Madison, WI 
 
 
ABSTRACT 
 NOAA/NESDIS developed a new algorithm to derive biomass burning emissions of PM2.5 from 
remotely sensed fire products in near real time for regional and global air quality applications. The 
algorithm for deriving emissions from wildfires depends on several key inputs such as fuel loading, 
fraction of fuel consumed and emission factor in addition to fire locations and sizes. The algorithm 
involved in this study are developing (a) a new fuel load database using maximum monthly MODIS 
Leaf Area Index (LAI) and allometric models that relate leaf foliage biomass with other biomass 
components in forests, shrubs, and grasses, (b) a fuel moisture category using AVHRR Normalized 
Vegetation Index (NDVI) product for the determination of combustion and emission factor database. 
The algorithm was applied to derive PM2.5 emissions from half hourly observations of GOES fire 
events from 2002-2004 over the Contiguous United States (CONUS). The resultant PM2.5 emissions in 
2002 were compared to those available from EPA’s National Emissions Inventory.  
  
INTRODUCTION 
 Biomass burning releases trace gaseous (such as CO, CO2 and CH4) and aerosol emissions which 
play a significant role in atmospheric chemistry. These emissions and their transportations contribute 
significantly to the uncertainty in climate change1, and affect both local and global air quality which 
impacts on human health and environmental pollution2,3,4,5. Currently, the aerosol emissions, particularly 
smoke particulates, from biomass burning are one of the major sources in uncertainty of air quality 
forecast using models such as the Community Multi-scale Air Quality (CMAQ)6, and are critical air 
pollutants subject to the National Ambient Air Quality Standards (NAAQS) established by the US 
Environmental Protection Agency (EPA) 7.  
 The emissions from biomass burning, therefore, have recently emerged as an important research 
topic. To estimate the emissions, two main approaches are generally applied. A recently developed 
approach is the direct measurement of emissions from satellite observations of Fire Radiative Power 
(FRP)8,9,10. In this method, temporal FRP over a fire event is integrated to measure the total Fire 
Radiative Energy (FRE), which is then converted into the estimates of the rate and total biomass 
combusted. This method provides a great potential to directly estimate emissions although the 
uncertainty is currently high10.  
 Alternatively, emissions from biomass burning are modeled from various parameters, particularly, 
fuel loading and fire. Fuel loading is a very complex parameter, which is the main source of uncertainty 
in emission estimates11. Because of the difficulty in parameterizing fuel loading, various different values 
have been used in emission modeling. The commonly used fuel loadings include static values in large 
scales12,13,14, field measurements in local areas, ecoregions-based representatives in regional areas 15. 
The most widely used fuel data in the Continuous United States (CONUS) are derived from National 
Fire Danger Rating System (NFDRS)16,17, which are associated with fuel models using in a lookup table. 
A similar fuel dataset called the Fuel Characteristic Classification System (FCCS) has recently been 
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developed18 (http://faculty.washington.edu/dmck/feradata/FCCS-lower48.zip), and provides much 
detailed types of ecosystems and fuel types. The quality of such fuel data depends greatly on the class 
schemes of ecoregions and the representatives of fuel values. 
 Burned area is another major parameter in emission modeling. In investigating historical fire 
emissions, the burned areas from wildland fires are usually derived from potential natural vegetation and 
ecological fire regime information19 and from local and national fire services or agencies20,21,22. 
Recently, satellite observations have provided a means to more accurately monitor burned areas. As a 
result, fire-counts from various satellites, such as the Along Track Scanning Radiometer (ATSR), the 
Advanced Very High Resolution Radiometer (AVHRR), and the Moderate Resolution Imaging 
Spectroradiometer (MODIS) have been used as a proxy for the investigation in biomass burning23,24. 
The counts of fire (hot spot) pixels generally overestimate burned areas because satellite can usually 
detects the fire occurrences in much small size than the pixel in the moderate and coarse resolution data. 
For example, MODIS can detect a fire with a size of approximately 100 m2 but its spatial resolution in a 
pixel is 106 m2 25 . On the other hand, the instantaneous observations for twice (AVHRR) or four times 
(Terra plus Aqua MODIS) within a day and cloud cover often result in missing detections of some 
temporal fire events. Consequently, this may underestimate real burned areas. The burned areas (or burn 
scars) detected from satellites (such as MODIS) demonstrate great potential for emission calculations; 
however, they are not available until the fires are over26. Such data can not be applied to calculate real 
(near-real) time burning emissions. Alternatively, Geostationary Operational Environmental Satellites 
(GOES) are demonstrated to be able to estimate smoke aerosol emissions in nearly real time for forecast 
because of the high temporal observations27,28.  

To reduce the uncertainties in air quality forecast, NOAA Air Quality program has requested 
NESDIS (National Environmental Satellite, Data, and Information Services) to develop near real time 
aerosol emissions for biomass burning events. To research this goal, we used multiple satellite 
instruments to retrieve spatially-distributed parameters for the modeling of PM2.5 (particulate matter 
with diameters less than 2.5µm) emissions. Particularly, a new fuel dataset was developed from MODIS 
land cover type, leaf area index (LAI), and vegetation percent cover at a spatial resolution of 1 km. Fire 
sizes in subpixels were derived from GOES WF_ABBA (Wildfire Automated Biomass Burning 
Algorithm) fire product with a half-hour interval. The combustion and emission factors were associated 
with fuel moisture derived from AVHRR vegetation health condition. The resultant emissions were 
analyzed in a temporal and spatial distribution and evaluated using different fuel loading data.         
   
MODELING BIOMASS BURNING EMISSIONS 
 Emissions from biomass burning are controlled by four fundamental parameters. These parameters 
are burned area, fuel loading (biomass density), the fraction of combustion, and the fraction of emissions 
for trace gases and aerosol. To model the biomass burning emissions, Seiler and Crutzen2 (1981) 
developed a standard formula by integrating these parameters as the following: 

ABCFE =                                 (1) 
where E represents the emissions from biomass burning (ton); A is the burned area (ha); B is  biomass 
density (ton/ha);  C is the fraction of biomass consumed during a fire event; and F is the fraction of the 
consumed biomass released as trace gases and smoke particulates. This simple model has been widely 
used to estimate the emissions in regional and global scales1,20, 24,29, 30.  
 To accurately estimate the smoke particulate released from biomass burning, we employed this 
format of model but improved parameterizations in both temporal and spatial resolutions. Thus, the 
emission model was modified as the following format: 
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where E is the particulate emission in a certain time period; i and j define the fire (pixel) locations; l is 
the fuel type; k is the time period; A is the burned area; M is the amount of fuel mass available for 
combustion; C is the combustion factor, and F is the emission factor for particles PM2.5. 
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CALCULATION OF FUEL LOADING 
 Fuel loading in this study is basically divided into live fuel loading and dead fuel loading. The live 
fuel loading consists of foliage and branch biomass in forests, shrub biomass, and grass (including crop) 
biomass. The dead fuel loading is composed of litter and coarse woody detritus. To determine fuel 
loading for each pixel, we developed a MODIS Vegetation Property-based Fuel System (MVPFS). 
These data ware primarily calculated from percent vegetation cover in MODIS continuous field product, 
LAI, and land cover types at a spatial resolution of 1 km. 
 
MODIS LAND DATA  
 We collected LAI data from 2002 to 2004 across the CONUS. The MODIS LAI product 
(MOD15A2) provides global green leaf area index at a spatial resolution of 1 km and a temporal 
resolution of 8 days31. This index is retrieved using look-up tables generated from rigorous three-
dimensional radiative transfer theory and six major biomes. The LAI product has been validated using 
field measurements and high resolution ETM data in semiarid woodlands and savannas, and forests 
across the world.  
 The MODIS vegetation continuous field (MOD44B) algorithm produces percent of tree cover, 
percent nontree vegetation (shrubs, crop, and herbaceous), and percent bare ground32. This algorithm 
employs a regression tree and a stepwise regression to produce percent cover from MODIS land bands 
with a spatial resolution of 500m. Currently, the available vegetation continuous field product was 
derived from MODIS data ranging November 2000 to December 2001. 
 Land-cover data used in this study were derived from the MODIS land-cover product at a 1 km 
resolution. The primary land-cover types in this product are 17 land cover classes following the 
International Geosphere-Biosphere Programme (IGBP) Scheme33. Based on MODIS land cover product 
produced in 2001, 2002, and 2003, we generated a land cover dataset by selecting the cover type in a 
pixel with the highest accuracy assessment value. 
 
DETERMINATION OF LIVE FUEL LOADING 
 Live fuel loading in forests was derived from foliage biomass and branch biomass, which is a 
function of percent vegetation cover, leaf area index, and land cover types. Foliage biomass (Mf) is a 
function of LAI and specific leaf area (SLA). It can be calculated using the following formula34:  

Mf =LAI/SLA                                                  (3) 
 The SLA is defined in mass units of carbon and is converted to dry weight (m2/kg). The value varies 
with vegetation types, which is higher in thin and light leaves (such as grass) than dense conifer needles. 
To determine the SLA values for different land cover types, we compared the mean values concluded 
from various field measurements35 and the model-based values in processing the MODIS Gross Primary 
Productions (GPP) and Net Primary Productions (NPP) products at a global scale34. After investigating 
the foliage biomass of conifer in the western North America36, we selected SLA for needleleaf forests 
from dataset developed by White et al. (2002) 35 and others from the MODIS GPP/NPP model.  
  The LAI in equation (3) was referred as to the maximum monthly LAI. This LAI value was retrieved 
from an annual time series of MODIS LAI product to reduce the noise in the LAI time series and 
seasonal variation in LAI values. Further, to reduce the uncertainty caused by interannual variability 
induced by climate change and other factors, the maximum monthly LAI in 2002, 2003, and 2004 were 
averaged to represent the maximum LAI. Because the LAI in a 1 km pixel rarely represented a uniform 
vegetation type, it was further separated for forests and non-forest vegetation in subpixels using land 
cover type, vegetation continuous field, and the LAI ratios among different land cover types37. As a 
result, we used the LAI values in subpixels to calculate the foliage biomass using equation (3) for 
forests, shrubs, and grasses. 
 Depending on the variation in foliage biomass, the branch biomass in forests was calculated from the 
generalized foliage-based allometric models37:   
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γδ fb MM =                                              (4) 
where Mb is biomass in branch (kg); Mf represents monthly maximum foliage biomass (kg); γ and δ are 
coefficients with the values of 1.46 and 1.099 in the eastern USA (1.025 and 1.277 in the western USA) 
for needleleaf forests, and 4.087 and 1.156 for broadleaf forests.  
 For shrubs, the total aboveground biomass is a function of crown area/vegetation cover38. To 
calculate shrub biomass, a regression model developed in the western US39,40,41 was applied to the 
CONUS. 

2235 10078.110161.21009.1 ccs VVM ×+×−×=                            (5) 
where Ms is shrub biomass (kg/km2) and Vc is the horizontal projection of shrub cover above the plot 
surface (%) which is equivalent to vegetation cover in shrubs.  
 
LITTER AND COARSE WOODY DETRITUS 
 The litter production is primarily composed of material such as leaves, fine wood, and fine roots, 
while coarse woody detritus is usually larger than 7cm in diameter42. The pools of litter and coarse 
woody debris (CWD) were investigated by compiling biomass density measurements for various 
vegetation types43,44.  
 Employing the relationship of vegetation type with litter and CWD developed by Matthews (1997), 
we generated the litter fuel loading and CWD at a 1 km resolution. Specifically, the Matthews’ 
vegetation types43 in temperate and tropical/subtropical climate were reclassified to MODIS IGBP land 
cover types using a crosswalk rule. The corresponding fuel data for each land cover type were selected 
or averaged.  
 To estimate little and CWD more realistically, we also included vegetation percent cover for each 
land cover type. The non-forest vegetation within the forest land cover types was assumed as the 
mixture of grasses and shrubs because they were not able to be further separated. On the other hand, the 
trees in the land cover types of non-forests were considered as mixed forests. Thus, the related fuel 
loading in each pixel was refined using the following equation: 

cslwscflwflw VMVMM +=                                  (6) 
where Mlw is litter or CWD density in a pixel (kg/m2); Mlwf and Mlws are litter or CWD density (kg/m2) 
for forests and non-forest vegetation, seperately;  Vcf and Vcs are percent forest cover and non-forest 
vegetation cover. 
 
FIRE DATA AND PROCESSING 
 NOAA WF_ABBA produces fire product from GOES East and West data in an interval of half 
hour45. The WF_ABBA detects instantaneous fire sizes in subpixels using 3.9 µm and 10.7 µm infrared 
bands by locating and characterizing hotspot pixels from a 4 km resolution of GOES data. This product 
contains the time of fire occurrences, fire location in latitude and longitude, instantaneous estimates of 
subpixel fire size, and fire flag (ranging from 0 to 5) which represents the quality assurances of the fire 
detections. The fire size is only retrieved for pixels with best quality but not for the fire pixels that are 
saturated, cloudy, and with high, medium, or low probabilities. To minimize false fires, the WF_ABBA 
product used a temporal filter to exclude the fire pixels that were only detected once within the past 12 
hours.   
 We collected the GOES WF_ABBA fire data between April 2002 (no data available for January-
March) and December 2004 in this study. To generate a consistent dataset of fire sizes, we replaced the 
pixels that the subpixel fire sizes were not calculated. Specifically, if a missing value occurred at the 
beginning of a fire event, the average fire size from 2002-2004 was taken as a representative, which was 
0.153 km2. If a missing value occurred during a fire event, it was replaced using the previous neighbor 
value. In addition, the cumulative fire size in a pixel must not be in excess of the GOES pixel size (4x4 
km2).  
 
FRACTIONS OF COMBUSTIONS AND EMISSIONS  
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 The fractions of combustions and emissions were assumed to be a function of fuel moisture. The 
combustion factors were calculated from the following model46: 

( )mcf
l eC 11 −−=              (7) 

where Cl represents the fraction of fuel loading consumed for fuel type l which is canopy, shrub, and 
grass, separately; and mcf is the moisture category factor (Table 1). To determine the mcf value for each 
fuel type, the fuel moisture condition was classified from AVHRR data which were described in the 
following section.  
 The fraction of combustion for litter was assumed to be 100% under various moisture conditions. 
However, the value for CWD was calculated using the formula46: 

( )( )( )mcfCw −+= 31.0*03.031.06.0            (8) 
 The fraction of PM2.5 emissions also varies with moisture conditions. The variation is generally 
slight for various moisture conditions (Table 2). However, the value for coarse wood was more sensitive 
to moisture conditions than those for other fuel types. 

 
DETERMINATION OF MOISTURE CATEGORY 
  To determine fuel moisture condition required for calculating the fractions of combustions and 
emissions, we employed Vegetation Condition Index (VCI) produced by NOAA AVHRR product as a 
proxy. The weekly VCI provides accurate drought information for various environments51, and was 
derived from the Normalized Difference Vegetation Index (NDVI) using the following equation47,48: 

minmax

min100
NDVINDVI

NDVINDVIVCI
−
−

=            (9) 

where NDVImax and NDVImin in a pixel are the maximum and minimum values in the corresponding 
week  from 1985-2004. The weekly VCI values were produced from the NOAA Global Area Coverage 
(GAC) using smoothed weekly NDVI datasets at a spatial resolution of 4 km since 1985. 
 To fit the requirements in determining the fuel moisture category factors, we equally divided the 
weekly VCI values into five different categories which represented fuel moisture conditions of very dry, 
dry, moist, wet, and very wet, separately (Figure 1). As a result, these categories were used to calculate 
the weekly fractions of combustions and emissions.  

 
COMPARISON OF EMISSIONS FROM DIFFERENT FUEL LOADING  
 Since fuel loading is currently incomplete and is one of the main sources of uncertainty in estimating 
biomass burning emissions, we investigated the effects of fuel loading on emission estimates by 
comparing our results with emissions derived from NFDRS and FCCS fuel loadings. The NFDRS fuel 
map consists of 21 fuel models, and each fuel model is assigned a set of live and dead fuel loadings. 
These fuel loadings were modified for various different applications. The FCCS fuel dataset is more 
sophistic, which qualifies live and dead fuel loadings for 16 types of fuels for 150 fuelbed types across 
the CONUS (http://faculty.washington.edu/dmck/feradata/FCCS-lower48.zip). The fuelbed was 
classified using ecoregions, potential natural vegetation, and land use. The quantitative estimates of fuel 
loadings within the fuelbeds were derived from georeferenced stand-level data on the six ranger districts 
in the forest. Both the NFDRS and the FCCS datasets did not provide fuel information in agriculture 
areas. In addition, the fuel loading values are the same for large polygon regions and produces sharp 
boundary between neighbor values although the spatial resolution is 1km.    
 We further compared our emission estimates against the Inter-RPO 2002 National Wildfire Emission 
Inventory (NEI) developed by Air Sciences Inc49. The NEI was generated using the field-observed fire 
data (>0.0405km2) from federal and state databases, the fuel data derived from NFDRS fuel model or 
regional composites. 
 The comparisons were implemented using daily emissions from years 2002, 2003, and 2004, 
separately. The indices used in the comparisons were coefficient of determination (R2), root mean square 
(RMS) difference, and percent systematic RMS difference.  
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RESULTS 
MVPFS FUEL LOADINGS  
 The fuel loading derived from MODIS data is displayed in Figure 2. The forest canopy biomass, 
including forest foliage biomass (Figure 2A) and branch biomass (Figure 2B), is large in the Pacific 
Northwest evergreen needleleaf forests with values of 10 tons/ha in foliage biomass, and 27 tons/ha in 
branch biomass. It is followed by biomass in the eastern US. In contrast, the canopy biomass is very 
limited in the center and southwestern US. On average, the foliage biomass is less than 7 tons/ha in 90% 
of the forest areas, and the branch biomass is generally less than 30 tons/ha. The variation in biomass is 
significantly associated with the forest cover percent in a pixel.  
 The biomass in shrubs and grasses is generally less than 5 ton/ha (Figure 2C and 2D). The shrub 
biomass is larger in the forest land cover types. The high values are mainly distributed in the eastern US 
and northern west US while the low values present in the open shrublands in the southern west US. In 
contrast, grass biomass dominates in central agriculture areas and western grasslands and savanna areas.  
 The litter and CWD are much larger in forests than in non-forest land cover regions (Figure 2E and 
2F). The magnitude CWD values are as high as 30 ton/ha in northern needleleaf forests while the values 
are very small in central agriculture areas.  The litter displays similar pattern but the values are relatively 
small. 
 
PM2.5 EMISSIONS 
 Figure 3 presents the spatial patterns in PM2.5 emissions across the CONUS. The high emissions are 
mainly distributed in the western US followed by those in the southeastern US while the values are 
much smaller in the central agricultue areas for all the three years. However, the occurrence of small fire 
emissions is very frequent in the areas around Kansas, Oklahoma, and Missouri. The annual emissions 
are 1.7x105 tons in 2002 (April to December), 1.6x105 tons in 2003, and 0.9x105 tons in 2004. The 
emissions at a state level varies greatly. The states with large proportion of the total annual emissions are 
Oregon (22.5%), California (13.7%), and Colorado in 2002; Montana (18.6%), California (12.8%), and 
Idaho (10.4%) in 2003; and California (18.8%), Florida (11.16%), and Washington (7.1%) in 2004 
(Figure 4).  This pattern is comparable with fire sizes. The fire sizes in California account for 15% of the 
annual fires in the CONUS from 2002-2004. The other states with large fire sizes are Oregon, Colorado, 
and Arizona in 2002; Montana, Idaho and Texas in 2003; and Arizona, Texas, and Florida in 2004. 
 The PM2.5 emission presents strong seasonal cycles (Figure 5). The emission is highest in July and 
August, which accounts for more than 40% of the total annual emissions. In contrast, the emission from 
November to next February is very small, which only accounts for less than 10% of annual emissions. 
This seasonality varies interanually, which is much stronger in 2002 and 2003 than in 2004. This 
temporal pattern is strongly associated with the variations in GOES WF_ABBA fires (Figure 6). During 
the summer period the fires occur often in the western US because the climate is dry and vegetation 
contains low moisture.  
 The PM2.5 emissions are mainly released from forest fires (Figure 7). It accounts for more than 56% 
of the total annual emissions for 2002, 2003, and 2004. The emission values are followed by those 
released from shrublands and savannas in 2002 and 2003, and from croplands and savannas in 2004. 
Generally, the amount of PM2.5 emissions does not coincide well with the fire sizes in different land 
cover types. Fire size is large in forests, which is about 25% of the total annual fires, followed by those 
in shrublands, agriculture areas, grasslands, and savannas in 2002 and 2003 (Figure 8). In contrast, the 
fire size is similar in forests and crop lands, but smaller in shrub, grass and savannas in 2004. 
 
VARIATIONS IN PM2.5 EMISSIONS ESTIMATED USING DIFFERENT DATASETS 
 Figure 9 presents the daily PM2.5 emissions from National Emission Inventory (NEI) and those 
estimated from GOES fires combining with MVPFS, NFDRS, and FCCS fuels, separately. These data 
exhibit a similar temporal pattern in 2002 (April-December), and the daily emissions in this study 
accounts for more than 50% of variations in the NEI. However, the magnitude value in NEI is much 
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larger than those derived from GOES fires. This result is likely associated with the following factors. (1) 
The burned areas in large fire events are underestimated in the GOES fire product. For example, the 
burned area in the Hayman fire from the NEI is 443 km2 in June 2002 while the cumulative 
instantaneous fire sizes from GOES data are 126 km2. One of the reasons is that GOES data detect fire 
size in subpixels while NEI reports the area of fire regions. (2) The PM2.5 emissions in NEI were 
calculated using the modified-NFDRS fuel data, which is close to our estimates using NFDRS fuel data. 
(3) The emission factors are generally higher in the calculation of PM2.5 emissions in the NEI, which is 
33.26 lb/ton in the smoldering phase and 22.74-31.44 lb/ton in the flaming phase. In contrast, the 
emission factors used in this study range 7.9 to 25.8 lb/ton which are similar to those used in the 
calculation of emissions in North America16.  
 The PM2.5 emissions calculated from MVPFS fuel data are significantly associated with those 
calculated using NFDRS and FCCS fuel loadings. The magnitude value from NFDRS fuel loadings is 
largest, and followed by those from FCCS and MVPS fuel loadings (Figure 9). However, the spatial and 
temporal patterns are complex. The correlations are strongly significant between daily PM2.5 emissions 
derived from different fuel datasets but the coefficient values change in different years (Table 3). The 
high correlations in emissions present between MVPFS and FCCS in 2002, MVPFS and NFDRS in 
2003 and 2004. The RMS differences in emissions are small between MVPFS and FCCS for these three 
years (Table 3), while the large differences are between MVPS and NFDRS in 2002 and 2004, and 
between FCCS and NFDRS in 2003. Among the differences, the systematic emission differences 
between MVPFS and NFDRS, between NESDES and FCCS, and between FCCS and NFDRS range 67-
74%, 31-63%, and 47-64%, respectively. These results suggest that the magnitude of PM2.5 emissions 
estimated using MVPFS fuel loading is very similar to those from FCCS fuel loadings, but not to 
NFDRS fuel loadings. Note that the differences change with year because the PM2.5 emissions occur in 
different locations.    
 
DISCUSSION AND CONCLUSIONS 
 The MODIS land data combined with allometric models provide a robust tool to establish fuel 
loading datasets (MVPFS) over a large coverage. This MVPFS provides different fuel loading values for 
each pixel rather than uniformly for a large polygon. Moreover, this dataset is easy to update using time 
series of remotely sensed data. The dead fuel loadings (litter and CWD) are currently derived based on a 
lookup table, which could be improved using robust methods in future.   
 The PM2.5 emissions vary greatly with ecosystems, state, season, and year. Seasonal patterns in the 
fires and emissions are constant. The fires and emissions mainly occur between June and August in the 
CONUS. However, the magnitude PM2.5 emissions vary greatly in different years, where the PM2.5 
emissions are much smaller in 2004 than 2002 and 2003. Although the fire size could be very large in 
shrublands and croplands, the emissions are mainly released from forest fires, which account for 56% of 
the total annual emissions. Across the CONUSA, California always produces large amount of PM2.5 
emissions every year. Relatively, Oregon, Colorado, Montana, Washington, and Idaho are also the main 
sources of PM2.5 emissions in some individual years.  
 The PM2.5 emissions estimated from different fuel datasets vary considerably although they are 
significantly correlated. Evidently, spatially-distributed fuel loading plays an important role in emission 
estimates accurately. Instantaneous fire sizes retrieved from GOES satellite can statistically represent the 
burned areas. However, some of the fires may not be detected in GOES data because of cloud cover and 
other artifacts, and large burned areas are greatly underestimated because of the saturate in the inferred 
reflectances. Besides, instantaneous fire size is not the same as burned area. Efforts are underway to 
investigate correlation of the GOES fire sizes with MODIS fire products and burned scars.  
 The fuel moisture defined by AVHRR NDVI is important for combustion and emission factors. 
Relatively, the weekly AVHRR NDVI-controlled fuel moisture accounts for small amount of variations 
in emission estimates. It is likely due to the factor that current values of combustion and emission factors 
are relatively coarse.     
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Table 1. Moisture category factor (mcf) (from Anderson et al., 2004). 

Moisture 
condition 

Canopy Shrub Grass Duff CWD 

Very dry 0.33 0.25 0.125 0.33 0.08 
Dry 0.5 0.33 0.25 0.5 0.12 

Moderate 1 0.5 1 1 0.15 
Moist 2 1 2 2 0.22 
Wet 4 2 4 4 0.31 

Very wet 5 4 5 5 0.75 
 
 
Table 2. PM2.5 emission factors (fraction) (from FOFEM). 

Moisture condition Litter Canopy Shrub and Grass Duff CWD 
 Dry 0.00395 0.01065 0.01065 0.01290 0.00810 

Moderate  0.00395 0.01065 0.01065 0.01290 0.00915 
Wet 0.00395 0.01065 0.01065 0.01195 0.01125 

 
 
Table 3. Statistical comparisons in daily emissions derived from different fuel loading data. NFDRS, 
FCCS, and NESDIS donate the emissions calculated using these three fuel datasets, respectively. 

2002 2003 2004  
 NFDRS FCCS MVPFS NFDRS FCCS MVPFS NFDRS FCCS MVPFS 

R2 
NFDRS 1.00 0.787 0.884 1.000 0.701 0.931 1.000 0.718 0.813 
FCCS 0.787 1.000 0.930 0.701 1.000 0.773 0.718 1.000 0.781 

MVPFS 0.884 0.930 1.000 0.931 0.773 1.000 0.813 0.781 1.000 
RMS 

NFDRS 0.00 769.66 958.76 0.00 879.04 683.21 0.00 331.60 379.36 
FCCS 769.66 0.00 447.60 879.04 0.00 297.87 331.60 0.00 191.55 

MVPFS 958.76 447.60 0.00 683.21 297.87 0.00 379.36 191.55 0.00 
Percent of systematic RMS 

NFDRS 0.00 46.89 72.05 0.00 63.83 74.15 0.00 47.35 66.92 
FCCS 46.89 0.00 62.93 63.83 0.00 31.70 47.35 0.00 44.46 

MVPFS 72.05 62.93 0.00 74.15 31.70 0.00 66.92 44.46 0.00 
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 Figure 1. The variation in fuel moisture category and VCI in 2002.  

                    
 
 
Figure 2. Fuel loadings across the CONUS (ton/ha). (A) Forest foliage, (B) forest branch,  (C) shrub, 
(D) grass, (E) litter, (F) coarse woody detritus.    
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Figure 3. Spatial patterns of annual PM2.5 emissions for 2002 (a), 2003 (b), and 2004 (c), respectively. 
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Figure 4. Emission for different states. 

 
 
 
Figure 5. Temporal variation in PM2.5 emissions cumulated from half hourly biomass burning 
emissions. 
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Figure 6. Daily cumulative GOES WF_ABBA fire size (km2). 

 
 

 
 
Figure 7. PM2.5 emissions for different land cover types. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 16

Figure 8.  Cumulative GOES fire sizes for different land cover types. 

 
 
 
 
Figure 9. Daily PM2.5 emissions from different estimates in 2002. 

 
 
 
 
 


