Use of Travel Demand Model Data to Improve Inventories in Philadelphia

Richard Cook, David Brzezinski, Harvey Michaels Office of Transportation and Air Quality

Jawad S. Touma

NOAA/Atmospheric Sciences Modeling Division (In Partnership with the U.S. Environmental Protection Agency)

Allan Beidler Computer Sciences Corporation

Madeleine Strum Office of Air Quality Planning and Standards

Purpose

 Compare "top-down" and "bottom-up" inventory approaches

– Philadelphia, in calendar year 1999

- "Top-down" -- relies on more aggregated information and default modeling inputs
- "Bottom-up" -- emission factors (EFs) and road link level vehicle activity data from a Travel Demand Model (TDM)

"Top-down" Approach

- Typically used for regional and national scale assessments
- EFs often based on default or average inputs
- Activity data are allocated from a larger geographic scale
 - Population often used as allocation surrogate (e.g. NEI)

"Bottom-up" Approach

- Uses more local inputs to estimate better emission factors
- vehicle activity data from a TDM
 - can provide more detailed information on the spatial distribution of roadway types, vehicle activity, and speeds
 - can be used to more accurately estimate emission rates at local scale
 - provides better estimates at the census tract level

Use of "Top-down" Approach in NATA

- Can affect modeled concentrations and risk estimates
 - Study in Minneapolis-St. Paul indicated overprediction at low monitored concentrations and underprediction at high concentrations.
 - NATA has been used for EJ analyses which can be impacted by mischaracterization of local emissions

Methods

- Link level inventory developed for Philadelphia area
 - Benzene, 1,3-butadiene, formaldehyde, acetaldehyde, acrolein
 - Running emissions estimated for links, nonrunning emissions (e.g. starts, hot soak, diurnal, resting loss) allocated to grid cells.
 - Local inputs used where available
 - Speed distributions, registration distributions, VMT fractions by vehicle class

Methods

- Results compared with 1999 NEI
 - Total VMT for Philadelphia MSA allocated to counties using population
 - County inventories allocated to census tracts using roadway miles

 Spatial distribution of emissions differ between "top-down" and "bottom-up" approaches

 Philadelphia Link Based Benzene Emissions Distribution ("Bottom-Up" Approach)

 Philadelphia Tract Emissions Density from 1999 NATA ("Top-Down" Approach)

- Difference in Emissions
 Density
- More emissions along major corridors

• Total county emissions also differ significantly between two approaches.

Comparison of Annual 1999 Benzene Emissions (tons/year) from Two Approaches

		"Top-	Percent
	"Bottom-Up"	Down"	Difference
County	TDM	NEI	
Camden	165	210	-27%
Delaware	162	160	1%
Gloucester	110	104	6%
Montgomery	333	209	59%
Philadelphia	255	467	-45%
Total	1,025	1,150	-12%

County	1,3- Buta	1,3- Butadiene Formaldehy		dehyde	Acetaldehyde		Acrolein	
	"Bottom- Up" TDM	"Top- Down" NEI	"Bottom- Up" TDM	"Top- Down" NEI	"Bottom- Up" TDM	"Top- Down" NEI	"Bottom- Up" TDM	"Top- Down" NEI
Camden	25	34	93	128	29	37	4	6
Delaware	21	26	79	105	24	30	3	4
Gloucester	17	17	62	66	19	19	3	3
Montgomery	44	35	165	139	51	40	7	6
Philadelphia	34	77	127	305	39	86	5	13
Total	141	189	526	743	162	212	22	32
% Difference	-25%	6	-29	9%	-24	%	-3	1%

Most differences in total county emissions due to VMT

Annual VMT (Vehicle Miles Traveled)					
1999					
County	VMT Derived from	MT Derived from VMT From Highway			
	TDM (Travel	Statistics (used in NEI)	Difference		
	Demand Model)	"Top-Down"			
	"Bottom-Up"	_			
Bucks	4,878,636,990	3,710,307,400	31%		
Burlington	4,187,820,178	3,567,877,700	17%		
Camden	3,682,826,156	4,199,354,700	-12%		
Chester	4,491,670,453	3,046,058,600	47%		
Delaware	3,155,112,296	3,373,141,300	-6%		
Glouster	2,524,701,655	2,195,654,200	15%		
Mercer	3,136,953,593	3,555,648,300	-12%		
Montgomery	6,381,619,077	4,508,702,800	42%		
Philadelphia	4,864,568,590	9,804,935,300	-50%		
Total	37,303,908,988	37,961,680,300	-2%		

- Although overall metro area VMT similar for two approaches, total inventory about 12% lower with "bottom-up" approach
 - We evaluated inputs which can have a large impact on emission rates
 - Speed, registration distribution, VMT fractions for individual vehicle classes, temperature, RVP
 - Emission factors 12% to 14% lower with local registration distributions versus MOBILE6.2 defaults

Impact of Local Registration Distribution on MOBILE6 Benzene Emission Factors (All Other Inputs Unchanged)

		Emission Fa		
Facility	Speed	Local	M6 Default	%
				Difference
Arterial	10	64	74	-13
Arterial	15	51	59	-13
Arterial	20	44	51	-14
Arterial	25	41	47	-14
Arterial	30	38	44	-13
Arterial	35	37	42	-13
Arterial	40	36	42	-13
Arterial	45	36	41	-13
Freeway	10	61	71	-14
Freeway	15	47	55	-14
Freeway	20	43	49	-14
Freeway	25	40	47	-13
Freeway	30	39	45	-13
Freeway	35	38	43	-13
Freeway	40	37	43	-13
Freeway	45	37	42	-12
Freeway	50	37	42	-12
Freeway	55	37	42	-12
Freeway	60	37	41	-12
Freeway	65	36	40	-12

Conclusion

- Use of local level inputs can have a significant impact
 - Distribution of emissions
 - Magnitude of emissions
- Use of TDM and other local data can:
 - Improve the quality of local-scale assessment
 - Improve the quality of regional and national inventories
 - Use of local inputs and VMT aggregated from TDM results in "top-down" county-wide inventories which closely approximate estimates developed using "bottom-up" approach

Acknowledgements

- Ray Chalmers, James Smith, Brian Rehn, Alan Cimorelli – EPA Region 3
- Megan Beardsley, Chad Bailey EPA OTAQ
- EPA Reviewers Laurel Driver, George Pouliot, William Benjey

References

Link-level air toxics inventories

- Cohen, J., Cook, R., Bailey, C., Carr, E., 2005. Relationship between motor vehicle emissions of hazardous air pollutants, roadway proximity, and ambient concentrations in Portland, Oregon. Environmental Modelling and Software 20, 7-12.
- Kinnee, E., Touma, J., Mason, R, Thurman, J., Beidler, A., Bailey, C., Cook, R., 2004. Allocation of onroad mobile emissions to road segments for air toxics modeling in an urban area. Transportation Research Part D: Transport and Environment 9, 139-150.
- Isakov, V., Venkatram, A. 2006. Resolving Neighborhood Scale in Air Toxics Modeling: A Case Study in Wilmington, California. Journal of the Air and Waste Management Association, in press.
- Cook, R., Touma, J., Beidler, A., Strum, M. Preparing Highway Emission Inventories for Urban Scale Modeling: A Case Study in Philadelphia. Transportation Research Part D: Transport and Environment, in press.

References

- Impacts of "top-down" approach on NATA results
 - Pratt, G., Wu, C., Bock, D., 2004. Comparing air dispersion model predictions with measured concentrations of VOCs in urban areas. Environmental Science and Technology 38, 423-430.

• EJ Analyses using NATA data

- Morello-Frosch, R., Jesdale, B. M., 2006. Separate and unequal: Residential segregation and estimated cancer risks associated with ambient air toxics in U. S. metropolitan areas. Environmental Health Perspectives 114, 386-393.
- Apelberg, B., Buckley, T., White, R., 2005. Socioeconomic and racial disparities in cancer risk from air toxics in Maryland. Environmental Health Perspectives 113, 693-699.