

Current Methodologies and Best Practices for Preparing Port Emission Inventories

Louis Browning, ICF International Kathleen Bailey, U.S. EPA

May 17, 2006

- Development of a well-informed port emissions reduction strategy
- SIP development
- NEPA and CEQA analyses

Port Inventory Development Methodology Options

Detailed Inventory

- Requires details on deep sea vessel and land based equipment characteristics, activities, port geometry and ship paths
- Used by larger sea ports
- Resource Intensive

Mid-Tier Inventory

- Requires port-specific activity information by ship type then applies "typical" port emission rate averages for each ship type
- Used by mid-sized and smaller ports in a nonattainment or maintenance areas

Port Inventory Development Methodology Options

Streamlined Inventory

- Requires minimal port-specific details
- Extrapolates emission data from another port using US ACE ship trip data and RSZ speed and distance
- Provides a "back of the envelope" estimate of port emissions
- Used by smaller sea and Great Lake ports
- Low amount of resources required

Deep Sea Vessels

$\mathbf{E} = \mathbf{P} \mathbf{x} \mathbf{L} \mathbf{F} \mathbf{x} \mathbf{A} \mathbf{x} \mathbf{E} \mathbf{F}$

Where **E** = Emissions (grams [g])

- **P** = Maximum Continuous Rating Power (kW)
- **LF** = Load Factor (percent of vessel's total power)
- A = Activity (hrs)
- **EF** = Emission Factor (g/kWh)

Auto Carrier

- **Barge Carrier**
- **Bulk Carrier**
- Container
- **General Cargo**
- Miscellaneous

Ocean Going Tug Passenger Reefer RoRo Tanker

Engine Size

- Category 1
 - < 5 liters/cylinder</p>
 - Mostly small harbor craft and recreational propulsion
- Category 2
 - > 5 liters/cylinder and < 30 liters per cylinder
 - OGV Auxiliaries, Harbor craft, smaller OGV propulsion
- Category 3
 - > 30 liters per cylinder
 - OGV propulsion

Marine Engine Types

Engine Speed

- Slow Speed
 - < 130 rpm
 - Mostly 2 stroke
- Medium Speed
 - > 130 rpm and < 1400 rpm
 - Mostly 4 stroke
- High Speed
 - > 1400 rpm
 - 4 stroke

Other Engine Types

- Steam Turbine
- Gas Turbine

	Average		Auxiliary			
Ship Type	Propulsion Engine (kW)	No	Power Each (kW)	Total Power (kW)	Engine Speed	to Prop Ratio
Auto Carrier	10,700	2.9	983	2,850	Medium	0.266
Bulk Carrier	8,000	2.9	612	1,776	Medium	0.222
Container	30,900	3.6	1,889	6,800	Medium	0.220
Cruise	39,600	4.7	2,340	11,000	Medium	0.278
General Cargo	9,300	2.9	612	1,776	Medium	0.191
RORO	11,000	2.9	983	2,850	Medium	0.259
Reefer	9,600	4.0	975	3,900	Medium	0.406
Tanker	9,400	2.7	735	1,985	Medium	0.211

Cruise

- From open ocean to RSZ
- At service speed

Reduced Speed Zone

- From pilot pick-up or other point to breakwater
- At reduced speed, usually 9 to 12 knots

Maneuvering

- From breakwater to berth
- At slow speeds 3 to 8 knots slower coming in than out

Hotelling

- Time at berth or anchorage with propulsion engine off
- Auxiliaries usually running unless cold ironing

Propulsion Load Factors

$LF = (AS/MS)^3$

Where LF = Load Factor (percent) AS = Actual Speed (knots) MS = Maximum Speed (knots))

Minimum value 2%

Propulsion Engine Emission Factors (g/kWh)

Engine	NOx	CO	HC	PM ₁₀	PM _{2.5}	SO ₂
SSD	18.1	1.40	0.60	1.05	0.96	10.3
MSD	14.0	1.10	0.50	1.11	1.02	11.1
ST	2.1	0.20	0.10	1.50	1.38	16.1

INTERNATIONAL Low Load Adjustment Factor

CF Auxiliary Engine Load Factors

Ship-Type	Cruise	RSZ	Maneuver	Hotel
Auto Carrier	0.13	0.30	0.67	0.24
Bulk Carrier	0.17	0.27	0.45	0.22
Container Ship	0.13	0.25	0.50	0.17
Cruise Ship	0.80	0.80	0.80	0.64
General Cargo	0.17	0.27	0.45	0.22
Miscellaneous	0.17	0.27	0.45	0.22
OG Tug	0.17	0.27	0.45	0.22
RORO	0.15	0.30	0.45	0.30
Reefer	0.20	0.34	0.67	0.34
Tanker	0.13	0.27	0.45	0.67

INTERNATIONAL

Auxiliary Engine Emission Factors (g/kWh)

Fuel	% S	NOx	CO	HC	PM ₁₀	PM _{2.5}	SO ₂
RO	2.7	14.70	1.10	0.40	1.11	1.02	11.1
MDO	1.5	13.90	1.10	0.40	0.71	0.66	6.16
MGO	0.5	13.90	1.10	0.40	0.38	0.35	2.05

- Assist tugboats
- Towboats/pushboats/tugboats
- Ferries and excursion vessels
- Crew boats
- Work boats
- Government vessels
- Dredges and dredging support vessels
- Commercial fishing vessels
- Recreational vessels

Harbor Craft Emissions Calculations

Land Side Emission Sources

Cargo Handling Equipment

- Determine counts by equipment type
- Determine activity
- Use Nonroad Model to calculate emissions
- Rail

RNATIONAL

- Information from Rail companies
- Apply EPA guidance
- On-road vehicles
 - Determine fleet calling on port
 - Use MOBILE 6.2 to calculate emissions

Great Lake and Inland River Ports

Great Lake Ports

- Ship Types differ from Deep Sea Ports
 - Salties Pass through the St. Lawrence River to the Ocean
 - Lakers Stay within the lakes
- Significant amount of trips by tug/barge and Category 2 ships

Inland River Ports

- Entirely tug/barge and excursion vessels
- Entirely Category 2 ships
- Significant amount of traffic passes ports without stopping

Streamlined Method

- Lou Browning, ICF International
 - LBrowning@ICFI.com
- Kathleen Bailey, US EPA
 - Bailey.Kathleen@epamail.epa.gov
- **FEPA Marine Inventory Guidance**
 - http://www.epa.gov/otaq/marine.htm
- EPA Port Sectors Website
 - <u>http://www.epa.gov/sectors/ports</u>