On-road Mobile Source Emission Inventory Development for the Central Regional Air Planning Association (CENRAP)

> Presented by Dana Coe Sullivan Sonoma Technology, Inc. Petaluma, CA

U.S. EPA 14th International Emission Inventory Conference Las Vegas, Nevada April 14, 2005



## Objectives

Develop emission inventories of criteria pollutants for on-road mobile sources that are suitable for photochemical modeling and consistent with EPA guidance.

- Develop county-level emission inventories on the basis of bottom-up activity data.
- Prepare county-level emissions modeling inputs suitable for running MOBILE6 within SMOKE.
- Generate annualized emission inventories of criteria pollutants for 2002 (NIF3.0 format).



## **CENRAP** Region





## **MOBILE6** Inputs

# Various inputs affect emission inventories of on-road mobile sources moderately to significantly.

- VMT (activity data)
- <u>Distributions of VMT</u> (by facility type, vehicle type, and time of day)
- <u>Speed</u>
- Fuel characteristics
- <u>Regulatory controls</u>
- <u>Fleet characteristics</u> (registration distributions and fuel fractions)

- Temperature
- Altitude
- Air conditioning
- Hot and cold soaks
- Mileage accumulation rates
- Humidity

### Methods—VMT and Speeds (1 of 3)

Highest priority was assigned to areas with large VMT or population near Class I areas.

Local data were acquired for non-attainment areas.

- Houston/Galveston, TX
- Beaumont/Port Arthur, TX
- El Paso, TX
- Dallas-Ft. Worth, TX
- Baton Rouge, LA



### Methods—VMT and Speeds (2 of 3)

Local data were acquired for urban attainment areas.

- New Orleans, LA
- St. Louis, MO
- Kansas City, MO-KS
- Lincoln, NE

A combination of local data and MOBILE 6 defaults were developed for all other areas, which were mostly small urban and rural.



## **Data Acquisition Areas**



Nonattainment areas Urban attainment areas near Class I areas Other areas





### Methods—VMT and Speeds (3 of 3)





#### Data Summary Sheet: Arkansas Data Source: <sup>1</sup> Arkansas Dept. of Transportation & Highways <sup>2</sup> Default Data





Average Speed by Road Type <sup>2</sup>



9





## Methods—Fleets (1 of 2)

Inputs were developed at the county level.

- Registration distributions
  - Fractions of vehicles in each of 25 age groups
  - Separate distributions for each of 16 vehicle classes
- Fuel fractions

 Fractions of diesel and/or natural gas vehicles in each age group and vehicle class



## Methods—Fleets (2 of 2)

Inputs were based on records of vehicle identification numbers (VINs).

VINs were acquired from state departments of motor vehicles (DMVs) and decoded.

Two states were exceptions.

- Texas provided its own county-level fleet distributions.
- Arkansas is developing its own distributions through a state-funded project.



## **Example Results—Louisiana**



Age (year)

#### Example Results—Another CENRAP State



Age (year)

## **Fuels and Controls**

#### Fuels characteristics were acquired.

- Gasoline volatility
- Gasoline oxygenate content
- Sulfur content (gasoline and diesel)

Regulatory controls exist in a few nonattainment areas: St. Louis, Baton Rouge, and a few cities in Texas.

- Anti-tampering programs
- I&M programs
- Stage II refueling controls



## Starting Points for Fuels

MOBILE6 explicitly models areas that use federal reformulated gasoline (RFG). Data were acquired from Northrop Grumman (NG).

- Data are available for many areas of CENRAP.
- However, NG's data do not cover every area and are not always representative of an entire state.





## Results: Fuels (1 of 6)

#### **Fuel Volatility**

- NG's data are often used and are assumed to be representative of all gasolines.
- However, fuel volatility data are available for summer and winter only and for limited sampling locations.
- Additionally, interpolations are based on ASTM standards.



## Results: Fuels (2 of 6)

#### Example results for fuel volatility: Twin Cities, MN





## Results: Fuels (3 of 6)

Fuel volatility data were improved by acquiring information from state departments of agriculture.

- Spring and fall observations deviated significantly from the ASTM interpolation.
- Requirements for regular-grade fuels did not necessarily apply to all other grades of fuel.



## Results: Fuels (4 of 6)

#### Example results for fuel volatility: Minnesota





## Results: Fuels (5 of 6)

Sulfur content directly affects  $SO_2$  and sulfate PM emissions, and indirectly affects CO,  $NO_x$ , and VOC emissions due to its damaging effects on catalysts.

- For non-RFG, MOBILE6 defaults are 279 ppmw (average) and 1000 ppmw (max).
- Observations for regular-grade gasoline are comparable to defaults.
- Observations for mid- and premium-grade gasoline are significantly lower than defaults.
- About 75% of gasoline sold nationally is regulargrade, and 25% is medium- or premium-grade.

## Results: Fuels (6 of 6)

#### Sulfur content: weighted averages for each district.



Brackets on the x-axis indicate cities in similar districts of the petroleum pipeline distribution chain.

#### Results: NO<sub>x</sub> Emissions, July 10, 2002



#### **Emissions by Vehicle Type**

#### NOx





VOC

#### ■ Light-Duty Vehicles ■ Heavy Duty Vehicles



#### **Monthly Pattern**



#### Weekly Patterns



#### **Diurnal Patterns—Light-Duty Vehicles**



#### **Diurnal Patterns—Heavy-Duty Vehicles**



#### Comparison with the Draft 2002 NEI (1 of 3)



#### Comparison with the Draft 2002 NEI (2 of 3)



Sti

#### Comparison with the Draft 2002 NEI (3 of 3)







applies from here

right-hand axis

ΟK

TX Total

1000

800

600

400

200

## Conclusions

Take-home message: Using data representative of local conditions (instead of national-average defaults) makes a difference.

Differences in state-level VOC,  $NO_x$ , and  $PM_{2.5}$  emissions were as large as ±25%.



#### **Opportunities for Further Improvements**

Incorporate additional local data as they become available.

Investigate and improve vehicle registration databases.

Use fleet distributions to refine VMT distributions.

Improve inventories for alternative-fuel vehicles, which are likely to become more important in the future.



#### Glossary

- ATP = Anti-Tampering program
- CENRAP = Central States Regional Air Planning Association
- DOT = Department of Transportation
- HPMS = Highway Performance Monitoring System
- IDA = Inventory Data Analyzer format
- IM = Inspection and Maintenance program
- NEI = National Emissions Inventory
- NIF = NEI Input Format
- SMOKE = Sparse Matrix Operator Kernel Emissions Modeling System
- VMT = Vehicle miles traveled

