Development of Detailed Railyard Emissions to Capture Activity, Technology and Operational Changes

Robert G. Ireson Air Quality Management Consulting, 161 Vista Grande, Greenbrae, CA 94904 rob@AQMconsulting.com

M. J. (Jon) Germer and Lanny A. Schmid Union Pacific Railroad Company, 1416 Dodge St., Omaha NE 68179 <u>mjgermer@up.com</u>

ABSTRACT

Railyard operations involve a variety of complex activities, including inbound and outbound train movements, classification (i.e., separating cars from inbound trains for redirection to multiple destinations, and building new trains), and servicing locomotives. Standard locomotive duty cycles provide long-term average activity patterns for locomotive operations, but they are not appropriate for the specialized activities that occur within railyards or at locations such as ports, and emission densities in such areas can be high relative to those of line haul activities. There are significant emission rate differences between locomotive models, and differences in the types of service for which specific models are used. Data for throttle-specific emissions, activity levels, and locomotive models and operating practices can be used to provide more accurate emissions estimates for such operations. Such data are needed to quantify actual emissions changes in these high activity areas. A calculation scheme has been developed to generate detailed emission inventories based on the types of data that are collected for managing rail operations. This scheme allows improved accuracy in emissions estimation, and also provides a more reliable basis for bottom-up tracking of emissions changes over time. Factors that can be addressed include: changes in the distribution of locomotive models and control technology levels (e.g., increasing fractions of Tier 0, 1, and 2 locomotives) for both line haul and local operations; actual in-yard idling duration and reductions associated with auto-start-stop technologies; fuel quality effects; and detailed operating practices for switching and train-building operations. By providing detailed disaggregation of activity and emissions data, the method also makes it possible to quantify and evaluate the effects of specific emission reduction alternatives.

INTRODUCTION

Freight movement by rail is a key component of the U.S. transportation infrastructure. The combination of rail's low rolling resistance and the fuel-efficient turbocharged diesel engines used in modern locomotives make rail the most efficient mode of transport from both an emissions and economic perspective. Railyards located strategically through the nation's rail network are used to assemble and direct goods movement to their destinations. Railyards may handle dozens of trains per day, each powered by a "consist" of several locomotives. While in railyards, these locomotives are serviced and regrouped into new consists as needed for specific departing trains. In addition to train arrivals and departures and locomotive servicing, so-called "classification" yards separate rail cars in inbound trains into segments with different destinations, and build new trains with a common destination. This work is accomplished by switcher locomotives (typically of lower horsepower than the locomotives used for "line-haul" operations). Some railyards also have major locomotive repair facilities whose activities include load testing of locomotives prior to or after maintenance. Collectively, the locomotive operations associated with these activities can result in relatively high localized emission densities.

The Union Pacific Railroad (UPRR) is the largest railroad in North America, operating throughout the western two-thirds of the United States. It operates a number of railyards throughout its system, including the J. R. Davis Yard in Roseville, California. The Davis Yard is UPRR's largest classification yard in the western U.S. It is approximately one-quarter mile wide and four miles long, and is visited by over 40,000 locomotives per year. The California Air Resources Board (CARB) recently completed a detailed dispersion modeling study to estimate concentrations of diesel particulate matter in the vicinity of the railyard.¹ UPRR cooperated closely with CARB in this study, including the identification, retrieval and analysis of data needed to assemble a detailed emission inventory for railyard operations to-date, including empirically developed train counts, locomotive model distributions, locomotive service and maintenance activities, and dedicated on-site switching operations. The results of this effort have been further adapted to allow UPRR to track the effect of locomotive fleet modernization, freight volume, and operational changes on emissions, and to identify opportunities for further emission reductions at the Davis Yard.

RAILYARD ACTIVITY ESTIMATION

At state and national levels, locomotive emissions have been estimated using locomotive fleet population data and average locomotive emission factors, expressed in g/bhp-hr, in conjunction with fuel efficiency estimates and fuel consumption. For freight locomotives, the emission factors are typically derived using both a switching duty cycle and a line haul duty cycle, each of which gives the fraction of operating time locomotives spend at different throttle settings, referred to as notch positions.² These throttle settings (see Table 1) include idle, notches 1 through 8, and dynamic braking (in which the locomotive traction motors are used to generate power which is dissipated through resistor grids). While this approach can provide reasonable estimates for larger regions, neither the overall locomotive fleet composition nor the standard duty cycles accurately reflect the specific activities that occur within an individual railyard. The g/bhp-hr emission factors vary substantially between throttle settings and between locomotive models. Other confounding factors include: speed limits within yards (which preclude the high throttle settings used for line-haul activity outside of yards); locomotive load (consists commonly move within yards with only one locomotive pulling and no trailing cars); and time spent either shut down or idling. Classification activities are carried out with duty cycles that are unique to yard operations and may vary from yard to yard. To develop more accurate emissions estimates, it is necessary to explicitly identify railyard activities at the level of individual locomotives.

	Throttle Position (Percent Time in Notch)									
Duty Cycle	D.B.	Idle	N1	N2	N3	N4	N5	N6	N7	N8
EPA Line-Haul	12.5	38.0	6.5	6.5	5.2	4.4	3.8	3.9	3.0	16.2
EPA Switch	0.0	59.8	12.4	12.3	5.8	3.6	3.6	1.5	0.2	0.8
Trim Operations	0.0	44.2	5.0	25.0	2.3	21.5	1.5	0.6	0.0	0.0
Hump Pull-Back	0.0	60.4	12.5	12.4	5.9	3.6	3.6	1.5	0.0	0.0
Hump Push	0.0	0.0	0.0	100	0.0	0.0	0.0	0.0	0.0	0.0
Consist Movement	0.0	0.0	50.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0
Load Tests:										
10-Minute	0.0	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	80.0
15-Minute	0.0	33.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7
30-Minute	0.0	33.3	33.3	0.0	0.0	0.0	0.0	0.0	0.0	33.3

Table 1. Locomotive Duty Cycles.

To accomplish this, UPRR reviewed the types of databases available for its operations to identify where explicit emission-related activity information could be generated for the Davis Yard. UPRR

operates approximately 7000 locomotives over a network spanning 23 states. Large amounts of data are generated and retained by UPRR for management purposes. These include tracking the location and status of capital assets (e.g., locomotives and rail cars), tracking performance of specific activities, and managing operations. These databases can be queried for data records specific to the Davis Yard, but their content does not directly relate to emissions. Where possible, data providing a complete record of emissions-related events (e.g., locomotive arrivals and departures) were identified and retrieved. Where 100 percent data for an activity could not be obtained (e.g., locomotive model number for each arriving locomotive), distributions were developed based on available data. In some cases, data are not available for specific types of emission events (e.g., the duration of idling for individual trains prior to departure). In these cases, UPRR yard personnel were consulted to derive estimates of averages or typical operating practices.

Railyard Operations – Inbound and Outbound Trains

The majority of locomotive activity in a railyard arises from inbound and outbound freight traffic. Following arrival, consists are decoupled from their trains in receiving areas and are either taken directly to outbound trains, or more commonly, are sent through servicing which can include washing, sanding, oiling, and minor maintenance prior to connecting to outbound trains. Some fraction of trains arriving at a yard simply pass through, possibly stopping briefly for a crew change. UPRR maintains a database that, when properly queried, can produce detailed information regarding both arriving and departing trains. Table 2 lists some of the key parameters that are available in this database. In this study, 12 months of data were obtained for all trains passing through the Davis Yard. The extracted data (over 60,000 records) included at least one record for every arriving and departing train, and each record contained specific information about a single locomotive, as well as other data for the train as a whole. The data were processed using a commercial relational database program and special purpose FORTRAN code to identify individual train arrivals and departures and train and consist characteristics.

	Used to Identify						
Parameter	Identification of	Location in	Consist	Temporal	Train		
	Train Events	Railyard	Composition	Profile	Characteristics		
Train Symbol	Х	Х					
Train Section	Х						
Train Date	Х						
Arrival or Departure	Х	Х					
Originating or Terminating	Х	Х					
Direction		Х					
Crew Change?		Х					
Arrival & Departure Times				Х			
# of Locomotives			X				
# of Working Locomotives			X				
Trailing Tons					X		
Locomotive ID #			X				
Locomotive Model			X				

Table 2. Selected Train Database Parameters.

The parameters listed in Table 2 were used to calculate the number of trains by time of day arriving or departing from each area of the yard, as well as average composition of their consists (number of locomotives and distribution of locomotive models). The combination of train symbol, train segment, and train date provided a unique identifier for a single arrival or departure, and the individual locomotive models were tabulated to generate model distributions. Where necessary, working horsepower and total horsepower were used to estimate the number of working locomotives in the consist.

Emission calculations associated with inbound and outbound trains included both periods of movement within the yard boundaries and locomotive idling while consists we connected to their trains. Based on train direction and the location of its arrival or departure, moving emissions were based on calculations of time at different throttle settings based on distance traveled and estimated speed profiles, considering speed limits on different tracks. Yard operators provided estimates for the average duration of such idling for both inbound and outbound trains.

Railyard Operations – Classification

On arrival, inbound trains are "broken" into sections of rail cars destined for different outgoing trains. Figure 1 shows a schematic diagram of the Davis Yard including a large central "bowl" consisting of a large number of parallel tracks connected by automated switching controls to a single track to the west. Trains are pulled back to the west and then pushed to the "hump," a slightly elevated portion of track just west of the bowl. As cars pass over the hump, they are disconnected and roll by gravity into the appropriate track in the bowl. Dedicated special purpose locomotives, known as "hump sets," are used in this operation. Unlike most locomotives, these units have continuously variable throttles, rather than discrete throttle notch settings, to allow precise control of speed approaching the hump. Switching locomotives, known as "trim sets" are responsible for retrieving the train segments or trains being "built" in the bowl and moving them to the appropriate outbound track. The Davis Yard operates a fixed number of hump sets and trim sets at any given time, with backup sets standing by for shift changes and possible breakdowns.

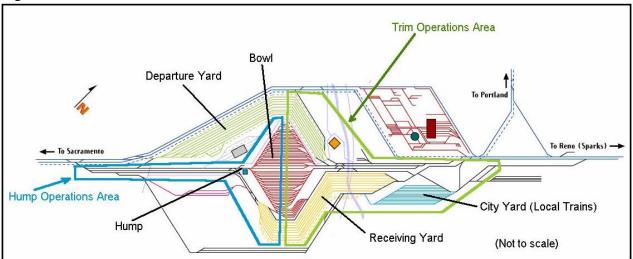


Figure 1. Schematic of the J. R. Davis Yard.

Emission calculations for hump and trim operations were based on the number of working hump and trim sets at any given time, plus assumed idling times of standby units. For the hump sets, yard operators provided estimates of average pull-back and pushing times, and the duty cycles associated with these operations. For pull-back, based on distance and speed limits, the EPA switcher duty cycle, excluding notch 7 and 8 was used. Pushing is conducted at the equivalent of notch 2. For the trim sets, speed limits within the Yard preclude any high throttle setting operation, but there is a greater time spent in mid-throttle settings than reflected in the EPA switcher cycle. A revised duty cycle was developed for these units based on the EPA switcher duty cycle, with high throttle fractions (notches 7 and 8) excluded, but with increased notch 1 and notch 4 operating time. These duty cycles are also shown in Table 1.

Railyard Operations - Consist Movement, Service, Repair and Testing

After disconnecting from inbound trains, consists move to one of several servicing locations for refueling and other maintenance, following designated routes in the yard. Typically, one locomotive in each consist will pull the others, with throttle settings at notch 1 or 2. Based on distance and speed limits, movement times were estimated for each route, and emissions calculated using the number of locomotives following each route.

While being serviced, locomotives may be either idling or shut down. Locomotives must be idling while oil and other routine checks are performed. In addition, since locomotive engines are water-cooled and do not use antifreeze, they are commonly left idling during cold weather conditions. New idling reduction technologies known as SmartStart and AESS provide computer-controlled engine shut down and restart as necessary, considering temperature, air pressure, battery charge, and other parameters. Yard personnel provided estimates of the average potential duration of idling associated with different servicing events. Databases for service and maintenance activities maintained by UPRR provide details on the number and types of service events at different locations in the yard. As for train activity, these data were processed with a commercial relational database program and special purpose FORTRAN code to characterize and tabulate service events. These results were used in conjunction with data for the number of inbound and outbound consists to estimate total idling emissions for different service event types and locations. Following service, consists are dispatched to outbound trains. The same procedures were followed for estimating idle time, number of locomotives moving to each outbound area of the yard, and the duration of each movement for emission calculations.

In addition to routine service, the databases include service codes indicating periodic inspections of various types, as well as major maintenance activities requiring load testing of stationary locomotives. Several types of load tests are conducted, including planned maintenance pre- and post-tests, quarterly maintenance tests, and unscheduled maintenance diagnostic and post-repair tests. Depending on the test type and locomotive model, these tests include some period of idling, notch 1 operation, and notch 8 operation. Data are not collected on the exact duration of individual tests, so estimates of average duration for each throttle setting were provided by shop personnel, as shown in Table 1. The number of tests of each type for each locomotive model group were tabulated based on the service codes in the database for each service event.

Trends in Activity and Technology

The initial study was based on data from December 1999 through November 2000. Since that time, UPRR's locomotive fleet modernization program as well as changes in freight volumes have occurred. A subsequent data retrieval for the period from May 2003 through April 2004 was made, and emission calculations updated. A number of significant changes occurred over this 40-month period. The distribution of locomotive models in line-haul operation showed a substantial shift from older, lower horsepower units to new high horsepower units. The average number of locomotives per consist remained the same at about 3, but the higher horsepower allowed an increase in train capacity (trailing tons per train). The decrease in older units also resulted in a decrease in the frequency of major maintenance load testing. In addition to updating activity inputs (number of locomotives by model) for

emission calculations, calculations were modified to reflect the penetration of new and retrofit technologies in the locomotive fleet, including SmartStart and AESS idling controls and Tier 0 and Tier 1 locomotives. UPRR data identifying the specific technologies installed on individual locomotives were matched with locomotive ID numbers in the train and servicing data retrievals to obtain a specific count of the number of locomotives of each model for which emissions reductions were achieved by these technologies. Historical temperature data for the Roseville area were used to estimate the fraction of time computer controls would require idling when the locomotive would otherwise be shut down.

EMISSION FACTORS

Data Sources

The study of the J. R. Davis Yard focused on diesel exhaust particulate matter emissions. At present, there is no unified database of emission test results for in-use locomotives. Appendix B of the USEPA's Regulatory Support Document for setting new emission standards for locomotives² contains a compilation of notch-specific emission factors. These data were supplemented by test data reported by Southwest Research Institute^{3,4}, as well as test data provided by locomotive manufacturers to assemble emission factors for each of 11 locomotive model groups.

There are dozens of specific locomotive model designations, and emissions tests are not available for all of them. However many models are expected to have nearly identical emission characteristics. Depending on their intended use, locomotives of different models may have different configurations (e.g., number of axles), but share a common diesel engine. For this project, 11 locomotive model groups were defined based on their engine models (manufacturer, horsepower, number of cylinders, and turbo- or super-charging of intake air). Table 3 lists these model groups and some of the typical locomotive models assigned to each group.

Model Group	Engine Family	Representative Models
Switchers	EMD 12-645E	GP-15, SW1500
GP-3x	EMD 16-645E	GP-30, GP-38
GP-4x	EMD 16-645E3B	GP-40, SD-40-2, SD-45-2
GP-50	EMD 16-645F3B	GP-50, SD-50M
GP-60	EMD 16-710G3A	GP-60, SD-60M
SD-7x	EMD 16-710G3B	SD-70MAC, SD-75
SD-90	EMD 16V265H	SD-90AC, SD-90-43AC
Dash-7	GE7FDL (12 cyl)	B23-7, B30-7, C36-7
Dash-8	GE7FDL (12 or 16 cyl)	B39-8, B40-8, C41-8
Dash-9	GE7FDL (16 cyl)	C44-9, C44AC
С60-А	GE7HDL	C60AC

Table 3. Locomotive Model Groups

Emission Factors and Fuel Effects

Figure 2 shows particulate matter (PM) emission factors for several of the more common locomotive model groups at the low to intermediate throttle settings typical of yard operations. As shown in the figure, emission rates generally increase with throttle setting. However, the older 3000 hp GP-4x series shows emissions comparable to (and in some cases, higher than) the newer 4000 to 4500 hp SD-7x and Dash-9 models. Due to the relatively large fraction of time locomotives spend at low throttle settings while in railyards, the relative differences in emission rates between models at these settings can significantly affect emissions estimates if locomotive model distributions change over time.

Figure 2. Locomotive PM Emission Factors (g/hr).

The emission factors used were based on tests using fuel typical of national off-road diesel. Initial emission estimates were derived by multiplying model-specific g/hr emission rates by the total hours of operation and locomotive model fraction for each activity within the yard. At the Davis Yard, over half of the diesel fuel dispensed to locomotives meets California on-road diesel fuel specifications (so-called "CARB diesel"). To account for the effect of fuel quality on emissions, estimates of the fraction of locally dispensed fuel burned by locomotives in different yard activities were developed. These ranged from 100 percent for hump and trim sets to zero percent for inbound line-haul units prior to refueling. These fractions were multiplied by the fraction of CARB diesel dispensed at the yard and an estimate of 14 percent reduction in PM emissions for locomotives burning CARB diesel to develop fuel effects adjustments for individual activities.

EMISSION TRENDS

Using the procedures described in the preceding sections, emissions estimates were developed for the December 1999 to November 2000 period, and the May 2003 to April 2004 period. During this period, significant changes in the UPRR locomotive fleet occurred, with the addition of new locomotives and the retirement of older units. Figure 3 shows the locomotive model distributions for all servicing events at the Davis Yard during these two periods. Service events include both the line-haul and local units arriving and departing on trains (which make up the bulk of these events), as well as the hump and trim sets. A significant increase in the relative fraction of high horsepower SD-7x and Dash-9 units is seen, and a corresponding decrease in the fraction of older GP-4x, GP-50, GP-60, Dash-7 and Dash-8 models. In addition to the fleet modernization, tabulations of specific emission control technologies on units serviced at the Davis Yard showed substantial penetration of new and retrofit technologies. Approximately 31 percent of locomotives serviced at the yard were equipped with computer-controlled shut-down and restart technology, resulting in reduced idling times. Also, approximately 27 percent of servicings were for Tier 0 locomotives, and approximately 25 percent were Tier 1 units. Although the Tier 0 and Tier 1 technologies are not expected to substantially reduce PM emissions, their nitrogen oxides emissions are lower. A few prototype Tier 2 units were observed in 2003 – 2004 data, and their reduced PM emissions will show benefits in the future.

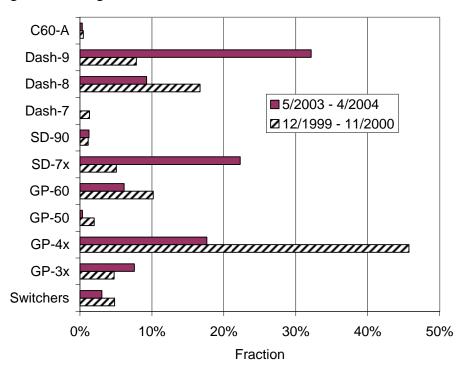


Figure 3. Changes in Locomotive Model Distributions.

The freight volume passing through the yard also changed between these periods. Table 4 lists the percent change in the number of arriving and departing trains, locomotives, and trailing tons (a measure of freight volume). The number of trains and locomotives showed little change, however the trailing tons increased by approximately 15 percent, implying that the average train weight (and correspondingly, the required consist horsepower) increased. This is a result of the increased availability of high horsepower units in the UPRR fleet. A higher fraction of trains bypass the yard, either not stopping, or stopping only for crew changes.

Table 4. Percent Change in Y and Activity Levels from $12/1999 - 11/2000$ to $5/2003 - 4/2004$.					
	Trains	Locomotives	Trailing Tons		
Arrivals	-5.2%	-3.5%			
Departures	-7.0%	-7.3%			
Throughs (Bypassing the yard)	8.0%	6.8%			
Total Arrivals and Departures	-0.3%	-0.9%	15.1%		

Table 4. Percent Change in Yard Activity Levels from 12/1999 - 11/2000 to 5/2003 - 4/2004.

The newer locomotive fleet also affected the level of load testing activity required. Table 5 lists the percent change in the number of load tests of different types, and the corresponding change in total locomotive testing time at idle, notch 1, and notch 8. The extended 30-minute post-maintenance tests were substantially reduced, and total hours of testing were reduced for the various throttle settings between 12 and 43 percent.

Table 5. Percent Change in Load Test Activity from $12/1999 - 11/2000$ to $5/2003 - 4/2004$.					
10-Minute Tests	-18.9%				
15-Minute Tests	14.6%				
30-Minute Tests	-43.2%				
Total Tests	-12.3%				
Idling Hours	-20.6%				
Notch 1 Hours	-43.2%				
Notch 8 Hours	-12.0%				

The combined net result of these changes is shown in Table 6. Between November 2000 and April 2003, total estimated PM emissions in the yard decreased by approximately 15 percent. Reductions in idling and movement emissions of about 20 percent were calculated, due to the combination of a newer, lower emitting locomotive fleet and the computer-controlled shutdown technologies (both retrofits and standard equipment on newer units). Hump and trim emissions were reduced by about 6 percent, and load testing emissions by about 14 percent.

	Estimated Emissio	Percent Change	
	12/1999 – 11/2000	5/2003 - 4/2004	
Idling and Movement of Trains	5.2	4.2	-20.3%
Idling and Movement of Consists	8.5	6.8	-20.2%
Testing	1.5	1.3	-14.1%
Hump and Trim	7.0	6.6	-5.7%
Total	22.3	18.9	-15.3%

Table 6. Emissions Changes from 12/1999 - 11/2000 to 5/2003 - 4/2004

CONCLUSIONS

Because of the unique features of each individual railyard, top-down methods (e.g., based only on tons of freight handled or number of arriving locomotives) cannot provide reliable estimates of railyard emissions. Yard-specific data are needed. In-yard activity patterns (and emissions) will vary between yards depending on factors such as: the type of yard (e.g., hump or flat switching classification yards, or intermodal facilities); the presence and capabilities of service tracks or locomotive repair shops; the types of freight handled; the location of the yard in the rail network; and yard configuration. The development of procedures for retrieving and analyzing activity data and locomotive characteristics for a specific railyard is a substantial improvement of alternatives based on top-down estimation. By obtaining disaggregate data for the range of specific activities occurring within railyards, it is possible to reliably estimate historical trends in emissions, as well as to evaluate the potential effects of operational changes and new technologies. Railyard operations cannot be treated in isolation, since these yards are only one component of complex national level systems. Nevertheless, the ability to assess the details of yard operations and their emissions provides an improved basis for environmental management decisions at both local and larger scales.

REFERENCES

1. Hand, R.; Di, P.; Servin, A.; Hunsaker, L.; Suer, C. Roseville Rail Yard Study, California Air Resources Board, Stationary Source Division, Sacramento, CA, October 14, 2004.

2. U. S. Environmental Protection Agency. Locomotive Emission Standards – Regulatory Support Document, U. S. Environmental Protection Agency, Office of Mobile Sources, April 1998.

3. Fritz, S. "Emissions Measurements – Locomotives", SwRI Project No. 08-5374-024, Prepared for the U.S. Environmental Protection Agency by Southwest Research Institute, San Antonio, TX, August 1995.

4. Fritz, S. "Diesel Fuel Effects on Locomotive Exhaust Emissions", SwRI Proposal No. 08-23088C, Prepared for the California Air Resources Board by Southwest Research Institute, San Antonio, TX, October 2000.

KEY WORDS

Emission inventories Locomotives Railyards Diesel

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of numerous UPRR staff who assisted in data retrieval and interpretation, and in providing information on operating practices, including Deb Schafer, Punky Poff, Rob Cohee, Jim Diel, and Brock Nelson. In addition we acknowledge the contributions of Ron Hand of the California Air Resources Board.