

The Yale Climate Initiative: GHG emissions from transportation

Marco Buttazzoni Kathryn A. Zyla

Presentation Overview

- Study background
 - Yale Climate Initiative (YCI)
 - Yale's Inventory
- GHGs from transportation
 - Boundaries and methodology
 - Emissions calculations approaches
- Conclusions

YCI Overview: Purpose

Student-initiated study to:

- Understand Yale's greenhouse gas (GHG) emissions drivers
- Develop a GHG emissions inventory for Yale
- Analyze approaches to make the University more climate friendly

An opportunity to reflect on existing inventory methodologies and tools

Greenhouse Gases at Yale

Yale's GHG Emissions: Year 2002

Yale University GHG Emissions (2002)

Transportation: System boundaries

- Institutional (WRI Scope 1)
 - Yale-owned vehicles
- Work-related (WRI Scope 3)
 - Conferences, meetings, research trips (flights, train, ground transportation)
- Commuters (WRI Scope 3)
 - Daily (faculty, students)
 - Travel home (students)

Yale owns 366 vehicles, over half of which are trucks or vans

Yale spends about \$20 million in travel each year

Yale commuters travel over 57 million miles per year

System boundaries chosen to:

- Understand Yale's total footprint
- Explore methodologies for quantifying more than the usual direct fleet emissions

Uncertainty

Importance of uncertainty

- General need to understand range of potential values
- Very large for transportation emissions
- Several assumptions needed to calculate emissions

Our approach

- Develop calculation tool
- Estimate the variability deriving from single variables
- Evaluate total uncertainty
- Identify most significant variables and assumptions

The 'inventory community' has an opportunity to define more standardized factors and procedures

Institutional Emissions: Data

- Vehicles owned and operated by Yale University
 - Vehicle purchasing decisions made by Yale
 - Fuel purchases made by Yale drivers

Data sources

- Kept centrally
 - Up-to-date list of vehicles
 - Accurate fuel purchase information from credit card transactions
 - Inconsistent identification of vehicles being refueled
 - Inaccurate vehicle mileage data

Institutional Emissions: Analysis

Institutional Emissions: Conclusions

- Low uncertainty for total institutional emissions, but
- High uncertainty on the emissions and efficiency of individual vehicles and users
- \rightarrow Difficult to translate to mitigation opportunities

Case studies and "Best management practices" to help companies gather and analyze more granular data?

Work-related emissions: Data

- Travel directly linked with university activities
 Conferences, meetings, research trips
- Includes many modes of transport – Flights, train, ground transportation

Data sources

- Financial records (from expenditure reports etc.)
- Yale's travel agency records (with good granular information about flights)
- Some purchases not made through centralized process
- Many types of trips are aggregated monetarily, not separated by mode

Work-related emissions: Analysis

Travel agency data

Air travel analysis v. 1

Air travel analysis v. 2

Work-related emissions

• Using financial data to calculate GHG emissions required a variety of assumptions. E.g.

Parameter	Sources	Notes
Miles/\$ train GHG/passenger-mile train	TA, Market prices WRI	Significant variability in train prices Only one factor for the US at the time of the analysis (now improved)
\$/day car rental Miles/day car rental GHG/pass. mile car rental	TA, Market prices TA benchmark WRI	Based on limited random sample Based on industry data
Miles/\$ ground transportation GHG/pass. mile ground t.	Expenses mile rebate Market prices WRI, DOT	Based on limited sample Few data available

None of these parameters influenced the work related emissions by more than 3.3% of the total

Work related emissions: Conclusions

- Several parameters can affect uncertainty when calculating work related emissions
- The inventory community could improve consistency, if not accuracy, if it agrees on parameters such as:
 - Miles per \$ spent for various transportation methods (ideally at state or local level)
 - Emissions per mile for different transportation methods (requires aggregating different options)
- With transportation companies looking at offering GHG emissions offset services we should also think about information protocols to transfer relevant data between transportation companies and their customers

Personnel commuting: Data

- Overall Yale employees about 12.500 people
 - Faculty
 - Researchers
 - Management
 - Support

Data sources

 Zip code records from Human Resource Department Where employees live Zip codes data

Personnel commuting: Analysis

Personnel commuting: Analysis

Personnel commuting: Conclusions

- Work related emissions estimate could have benefited from
 - A mobility study for the University
 - More precise and current data on personnel and students residence
 - Vehicle-specific parking data (dept name doesn't matter, but type of data desired seems important)
 - State level and local data on transportation behavior
 - State level and local emission parameters (e.g. for car, train or bus emissions)
 - Average (non-technology-specific) automobile emissions parameters

Summary: Emissions from Transportation

Conclusions: Data Quality

- Lack of Data
 - Define management systems and templates for data gathering and emissions calculation
 - Prepare standard templates for mobility studies for Universities
 - (In the future?) Define communication protocols between the travel industry and end users
 - E.g. For airline or train companies to communicate CO₂ emission data to their users

Conclusions: Emissions factors

- Create a repository with agreed/standard parameters for:
 - Miles per \$ spent per mode of transportation
 - Emissions per mile traveled per mode of transportation
 - Regional and local vehicle use parameters
 - Occupation rate
 - Distance traveled for commutes
 - Mode of transportation chosen
 - Average automobile emission factors

Parameters of increasing level of granularity can be provided and associated with decreasing level of uncertainty

Conclusions: Methodology

- Current calculations tools for transportation emissions can be a basis for improving scope and precision
 - New calculation tools and protocol can broaden calculations
 - More granular analysis is possible if suitable parameters are available (and provided by reputable sources)
 - More explicit uncertainty analysis
- Case studies, 'best practices' and training to help companies improve:
 - Internal data management systems and
 - Processes and incentive structures

Thank you!

Kathryn Zyla, zylak@pewclimate.org Marco Buttazzoni, mbuttazzoni@ert.net

