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ABSTRACT 
Understanding uncertainty in emissions inventories is critical for evaluating both air quality 

modeling results as well as impacts of emissions reduction strategies. In this study we focused on 
quantification of uncertainty due to non-road emissions specifically for the state of Georgia. 

EPA’s current NONROAD model is used for this purpose. We first conducted a sensitivity 
analysis to determine the variables that have significant effects on emissions. Results showed that 
increase in equipment population, activity, load factor, and emission factor have normalized sensitivity 
coefficients of 70 percent or higher. Increases in ambient temperature, fuel RVP, fuel sulfur (except on 
SO2), and average useful life have normalized sensitivity coefficients of 30 percent or lower, and these 
parameters are viewed as typically less uncertain as well. Thus analysis of uncertainties of these 
parameters was not as much of a priority in this study. 

Emissions and activity data that are used in the NONROAD model were analyzed using 
statistical techniques to quantify uncertainty in the input parameters. Expert elicitation was also used to 
estimate uncertainties in emission factors, equipment population, activity, load factors, and geographic 
allocations of the emissions to the county level. A Monte Carlo approach using the derived parameter 
uncertainties and different probability distributions were used to estimate the overall uncertainty of 
emissions from the NONROAD model for the state of Georgia.  The uncertainties resulting from this 
analysis, represented here as standard deviation as % of the mean, ranged from 23 to 26% for THC, 27 
to 33% for NOx, 27 to 32% for CO, and 28 to 33% for PM. 
 
INTRODUCTION 

In the past ten years, nonroad engine emissions have increasingly become the focus of regulatory 
action and emission reduction strategies.  Nationally, nonroad emissions have generally increased until 
the mid-1990s.1  During this time, nonroad emissions have also increased the ir share of the overall 
emissions pie for most pollutants.  Nonroad engines comprised 9% of national carbon monoxide (CO) 
emissions in 1940 but their share increased to 22% by the late 1990s.  Similarly, the nonroad emissions 
share of the national inventory increased for volatile organic compounds (VOC) from 5% in 1940 to 
14% in 1998.  Particulate matter (PM) and sulfur dioxide (SO2) nonroad emissions do not follow this 
same trend, because of drastic reductions from locomotives between 1940 and 1970.  However, recent 
years show much less progress in reducing emissions of these pollutants. 

In the mid-1990s, EPA developed software for the use of estimating nonroad emissions for any area 
in the United States.  The NONROAD emissions model was first released publicly in 1998.2  Before this 
time, nonroad emissions inventory preparation involved tedious use of equipment and emission factor 
data from past studies.  Ultimately, the goal was to build a standard model for use in State 
Implementation Plan (SIP) preparation.  The model was designed for easy user-modification to adjust 
for local conditions, and most data is not hard-coded in program.  Between 1998 and now, several 
versions of this model have been publicly released, although the model is still officially in draft form.3  

It is widely recognized that uncertainty in nonroad emissions estimation may be significant.  Some 
past studies of photochemical grid modeling have included determination of the uncertainty of the 
nonroad emissions inventory.  A study by Hanna et.al. that elicited opinion from 10 experts found the 
uncertainty of anthropogenic area source emissions to be ± 40% for nitrogen oxides (NOX), and ± 80% 
for VOC.4  A follow-up study that surveyed 20 experts then found the uncertainty of area mobile source 
emissions to be a factor of 2 (under a log-normal distribution) for both NOX and VOC.5  However these 
studies were conducted in more of a top down approach in terms of emissions uncertainty, with 
determinations of only the overall uncertainty of the inventory for the purpose of air quality modeling.  
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The work described in this report focuses on a more bottom-up approach, obtaining uncertainty of 
different components of the NONROAD emissions model, and working up to the overall inventory 
uncertainty. 
 An important first step in using the bottom-up approach would be determination of uncertainty of 
emissions coming from individual nonroad engines.  Thus far study in this area has been very limited.  
Past studies of nonroad engine emission factor uncertainty by Frey and Bammi have estimated 
uncertainties based on 95 percent confidence intervals using parametric bootstrap analysis of data 
assembled from several engine-testing studies.  Two-stroke total hydrocarbons (THC) and NOX 
emissions uncertainties in Lawn & Garden equipment were found to be -32% to +38% and -46% to 
+65% respectively. Analysis of 4-stroke engines yielded uncertainties of -38% to +45% for THC and -
25% to +38% for NOx.6  These studies did not directly use the emission factor data in the NONROAD 
model, due to lack of available sources, but used available emission factor studies that should be similar 
to what is used by EPA in the model.  In our study we analyze uncertainty more specifically for the 
NONROAD model and also we include uncertainties of population and activity parameters as well as 
emission factors. 
 
METHODOLOGY & RESULTS 

In this study, we used EPA’s current publicly available draft NONROAD model7 for 
quantification of uncertainty for nonroad emissions in the state of Georgia. For this purpose, we first 
conducted a sensitivity analysis in order to identify variables that have significant impact on emissions. 
Statistical methods as well as expert elicitation results were used to quantify uncertainty in nonroad 
emissions. For overall uncertainty, a Monte Carlo technique was applied. This section provides detailed 
information on the methodology used. 
Sensitivity Analysis 

A sensitivity analysis of the NONROAD model was conducted to determine the relative 
importance of different input parameters to the model outcomes.  The sensitivity was conducted using a 
“brute force” method where the model was run at a base scenario, then varied in subsequent runs to 
observe output changes.  In this case, the base case modeled a typical summer weekday for the state of 
Georgia in 1999.  The parameters to be studied in this case were: equipment population; emission 
factors; activity; load factor; useful life; temperature; RVP; and fuel sulfur content.  Although 
NONROAD incorporates several other input parameters, these were picked based on ease of 
modification and suspected significant emissions impact.  Each parameter was varied individually at 
110% and 90% of the base parameter value while keeping all other parameters constant.  The model 
output resulting from these modifications was used to calculate normalized sensitivity coefficients for 
each of the input parameters of interest.  Figure 1 presents the results for these analyses. These analyses 
showed that increase in equipment population, activity, load factor, and emission factor have a 
normalized sensitivity coefficient of 70 percent or higher, meaning that a unit increase in these 
parameters increase emissions by 70 percent.  As expected, engine population had a 100% direct impact 
on emissions.  Activity and load factor inputs had varied effects by pollutant, and emissions were less 
sensitive to these parameters than population.  This was likely due to the influences these factors have 
on deterioration rates in the model.  The base emission factor sensitivity was tested for only one 
pollutant, PM2.5, but was assumed to have obvious important effect on emissions for all pollutants. 

Increases in ambient temperature, fuel RVP, fuel sulfur (except on SO2), and average useful life 
found to have normalized sensitivity coefficient of 30 percent or lower.  Thus, uncertainties in RVP, 
temperature, sulfur, and average useful life were neglected in the ensuing work.  RVP, temperature, and 
fuel sulfur are also viewed as typically less uncertain, further justifying their omission in the model 
uncertainty analysis.  Therefore, in this analysis we focused on uncertainties in the equipment 
population, activity, load factor, and emission factor parameters. 
 This work focuses on the exhaust THC, NOx, CO, and PM pollutants.  CO2 and SOx are not 
dealt with here because their estimations in NONROAD are not emission factor based, but depend on 
fuel consumption rates only.  This study did not include uncertainty of fuel consumption rates.  Also, 
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evaporative THC is ignored in this analysis because it makes up only a small fraction of total THC.  
Furthermore, for the state of Georgia, THC emissions from man-made sources are less important 
overall. 
Statistical Analysis  

For the more recent diesel engine model years (1996 and on), NONROAD uses Tier 1 and Tier 2 
engine test certification data to calculate the emission factors used by the model.  These test data are 
provided in the model documentation.8  Thus, the emission test results can be used directly in 
uncertainty analysis.  The test data were grouped by engine horsepower and each data point was 
associated with a specific engine sales fraction.  The sales fraction and data were used together to 
estimate a mean emission factor for each horsepower grouping.  Although past work has suggested that 
the horsepower groupings used by the model are not actually statistically significant for calculation of 
mean emission factors,6 this analysis retained the horsepower groupings to most accurately reflect what 
is actually used by NONROAD. 

The uncertainty in the mean emission factors was estimated using two bootstrap sampling 
methods.  The first method involved using a bootstrap resampling technique in MATLAB.  Sets of 
emission factors and their associated sales fractions were randomly sampled and averaged several 
thousand times.  The resulting 95% confidence intervals about the mean were determined based on these 
data sets.  Table 1 presents the results of this analysis.  Uncertainties of the mean were approximately ± 
30% for THC, ± 6% for NOX,  ± 25% for CO, and ± 15% for PM when model years and horsepower 
grouping results are averaged.  However, individual categories of model years and horsepower show 
considerable variation in the results, ranging from -55% to + 66% for THC, -10% to +13% for NOX, -
49% to +42% for CO, and -27% to +29% for PM.  

  Note that these uncertainties of the mean emission factors are due to variability of engine test 
results only.  They do not include uncertainties due to representativeness of the data or the certification 
test or other unknowns. 

The uncertainty in the mean emission factors for diesel certification test data were also estimated 
by parametric bootstrap analysis using the Analysis of Uncertainty and Variability Tool (AuvTool) 
software.9  An empirical distribution was fit to samples using this software.  The software calculates the 
95% confidence interval of a given sample using a parametric bootstrap method.10  Table 2 shows the 
parametric bootstrap emission factor uncertainty results.  Uncertainties of the mean were approximately 
± 20% for THC, ± 3.5% for NOX,  ± 16% for CO, and ± 10% for PM when model years and horsepower 
grouping results are averaged.  However, individual categories of model years and horsepower show 
considerable variation in the results, ranging from -49% to + 56% for THC, -6% to +5% for NOX, -20% 
to +23% for CO, and -18% to +17% for PM. 
Expert Elicitation 
 Uncertainty analysis of most other NONROAD inputs parameters is difficult due to lack of 
available data.  Therefore, expert elicitation was used to determine uncertainties of the important input 
parameters as selected during the sensitivity analysis.  In addition, expert elicitation was used to 
determine uncertainties in the geographic allocation of the equipment population.   

The engine population and activity data are, in many cases, taken from or based on the Power 
Systems Research (PSR) engine databases.  The PSR database is based on an on-going survey of at least 
10,000 engine owners per year and includes engine population, activity, and load factor.  PSR also 
conducts some analyses to determine appropriate geographic allocations of the equipment populations 
down to the county level.  PSR uses 22 types of surrogate data to estimate county populations, including 
economic, geographic, demographic, and meteorological surrogates (PSR).11  However, the database is 
proprietary, and thus the data and explicit methods are not publicly available.  The NONROAD model 
uses much of the national engine population and activity data from PSR, but does make substitutions in 
many instances based on EPA studies, often from rulemakings.  EPA also does not use the PSR 
geographic allocations, because the explicit methods are not public.  However, NONROAD does also 
use a surrogate allocation method in which population, engine survey data, economic parameters, etc. 
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are used to distribute the national total emissions.12  Simple fractions, based on the relative surrogate 
values, apportion the emissions to each county. 

PSR provided some rough estimates of uncertainty of different parameters.13  They estimated the 
uncertainty of engine life to be  ± 10%, annual hours of activity to be  ± 5%, and load factor to be  ± 4%.  
The geographic distributions by state of the equipment were estimated to have  ± 6% uncertainty by 
engine type, ± 4% by horsepower grouping, and  ± 7% by application.  The geographic distributions by 
county of the equipment were estimated to have  ± 12% uncertainty by engine type, ± 9% by 
horsepower grouping, and  ± 15% by application.   

PSR expert opinion was not directly used in the ensuing analysis because it was based on their 
database and does not account for the modifications or substitutions EPA makes for the NONROAD 
model.  Instead, an email-based survey was conducted of known experts in the NONROAD emission 
field.  Experts were identified based on emphasis of emissions modeling experience, not air quality 
modeling experience, since this work focused on a bottom-up uncertainty analysis approach.  Seven 
companies/agencies with vast past experience in nonroad emissions were contacted.  Five responded, 
one refused to respond, and one was not reachable with repeated contact attempts.  The survey asked for 
uncertainty estimates (95% confidence intervals) for specific NONROAD input parameters. 

Experts were “scored” based on self-ratings of their knowledge and experience in nonroad 
emissions inventory preparation, nonroad model development, nonroad engines emissions testing, and 
nonroad emissions uncertainty.  This scoring was used to weight the responses when computing 
averages, so that the opinion of the most experienced experts had greater influence on the average than 
those with less experience.  Table 3 presents the findings of the expert elicitation.  For equipment 
population, the uncertainties generally ranged from 20 to 30%, with a much higher 70% positively-
skewed uncertainty for small (<25hp) spark ignition (SI) engines.  For geographic allocation surrogates, 
the uncertainties varied widely by emissions source category, with agricultural equipment determined to 
be the least uncertain at ±10%, and commercial equipment and pleasure craft estimated to be the most 
uncertain at +150% and –50%.  Uncertainties of the activity estimates fell in the range of +65% and –
40%.  Unlike most other input parameters in the survey, the experts determined a negatively skewed 
95% confidence interval for load factor, since this variable is a fraction bounded at a value of 1.  These 
uncertainties fell in the range of +36% and –40%.  Finally, the experts determined that PM emission 
factors were the most uncertain of the four pollutants in this study for SI engines at +52% and –29%, 
while CO emission factors for compression ignition (CI) engines were most uncertain overall at +96% 
and –29%. 

In this work, emission factor uncertainties for CI engines of model years 1996-1998 were 
estimated in three ways: resampling bootstrap, parametric bootstrap, and expert elicitation techniques.  
Generally, the parametric bootstrap estimates were less conservative, yielding lower uncertainties, than 
the resampling bootstrap method.  However, the estimates from both these methods followed similar 
patterns.  Expert opinion of emission factor uncertainties were much more conservative than either 
bootstrap method.  The advantage of using expert opinion in this case, is that the experts can account for 
not only variability of data used to calculate mean emission factors, but also take into consideration 
representativeness of the data and other more intangible issues.  Thus, the overall much higher 
uncertainty estimates from the experts is expected.  Interestingly, however, there was some agreement 
between the experts and the bootstrap results in the relative uncertainties when comparing different 
pollutants.  All techniques agreed in much lower uncertainties for NOX than the other three pollutants. 
This can be used as evidence for validation of the expert opinions. 
Monte Carlo Simulation 
Method 
 Monte Carlo (MC) simulations were performed on the NONROAD model to determine the 
overall emissions uncertainty, based on the various uncertainties of the specific inputs.  The basic 
scenario was run for a typical summer weekday for the state of Georgia in 1999.  The NONROAD 
model was run in batch mode, with each run consisting of a randomly generated set of inputs.  The 
randomly generated inputs were generated based on the 95% confidence interval survey results.  Three 
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Monte Carlo simulations were conducted: generating random inputs using normal distributions with 
unequal halves (to account for positively or negatively skewed confidence intervals), using triangular 
distributions, and using uniform distributions.  These three set-ups were conducted to compare the 
importance of the distribution used in the analysis.  Using the uniform distribution would capture the 
most extreme, most conservative case, while the normal distributed data was thought to represent the 
least conservative case in terms of uncertainty of the output.  The MC simulations were run until the 
running average and standard deviation.  Figure 2 and Figure 3 show an example of the calculated 
running average and standard deviation for NONROAD PM emissions output.  Figure 2 shows both the 
MC running average and the base case scenario emissions.  In all cases, the MC simulations result in 
higher state total emissions than the base case.  The graphs show that the calculated parameters 
generally stabilize by 1500 model runs. 
 Allocation of the emissions down to the county level was done in a separate MC step outside of 
the NONROAD model runs, with these uncertainties compounded with the uncertainties of the state 
total emissions derived directly from the model.  However, since the allocations are simple fractions of 
the emissions, conducting the apportionment with uncertainties outside the model is equivalent to 
running the model with the allocations.  This was done for the normal distribution MC simulation only.  
In order to determine the county emissions with uncertainties of the allocations, the emissions output 
had to be separated into the allocation source groups, as shown in Figure 4.  NOx and PM are generally 
dominated by construction equipment emissions, while lawn and garden equipment contribute a large 
fraction of THC and CO emissions.  Since the geographic allocations and emission factors uncertainties 
vary by source category and pollutant respectively, uncertainty results by county would be affected in 
varied amounts, depending on which source categories and pollutants are prevalent in certain areas.  
Georgia has 159 counties.  In this analysis, the allocation fraction for each county was randomly 
adjusted based on the uncertainties of each allocation group specified in the expert elicitation results.  
The fractions for all 159 counties were then normalized to the state total so that this analysis would only 
involve the uncertainty of spatial allocation and not overall emissions. 
Results 
 As expected, the uniform distribution MC simulation produced the most conservative results, 
with highest emissions and the highest standard deviations (as % of total emissions) and thus highest 
uncertainties.  However, the normal distribution did not produce the least conservative results and lowest 
uncertainties as expected.  The triangle distribution simulation may have resulted in less uncertainty 
because the triangle distribution does not allow for the extreme highs and lows captured in the tails of 
the normal distribution.   However, between the three simulations, the resulting uncertainties 
(represented as standard deviation as % of the mean) did not differ by more than 5% for any pollutant, 
e.g. the uncertainties of PM emissions ranged from 28% to 33% for the three simulations, as shown in 
Table 4.  
 Because several input parameters had confidence intervals that were positively skewed, it is not 
surprising that the distributions of emissions for all simulations were also positively skewed.  The 
normal distribution simulation had higher positive skewness than either the triangle or uniform 
distribution simulations, as expected.  Figure 5 shows an example of the resulting probability 
distribution of the normal distribution simulation results for CO emissions from NONROAD. 
 In the county allocation simulation, the uncertainties averaged over all counties were very similar 
to the uncertainties resulting from the whole state simulation.  However, individual counties varied 
significantly in the amount of uncertainty calculated, likely due to different uncertainties assigned to the 
various allocation source categories.  The emissions from different counties are dominated by different 
source categories.  Table 1 summarizes the uncertainty results for the county allocation.  The final 
uncertainties of emissions at the county level all range between 18 and 38% when represented by the 
standard deviation as % of the mean.  Figure 6 to Figure 9 show the spatial allocation of emissions for 
the four pollutants resulting from the Monte Carlo simulation.  Generally, the highest emissions are 
found in northern Georgia in and around Atlanta.  Figure 10 to Figure 13 show the uncertainties by 
county.  Interestingly, uncertainties for PM emissions are highest right in Atlanta, where emissions are 
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also highest.  Finally Figure 14 to Figure 17 show the overall change in emissions by county from the 
base case scenario to the MC simulation results.  Recall that the overall state emissions always increase 
in the MC simulations when compared to the base case.  These maps show how the overall state 
emissions increase is distributed by county.  Generally, the highest percent increases occur in areas of 
low emissions, where small changes in allocation may have a large effect. 
 
CONCLUSIONS 
 The uncertainty of the NONROAD model emissions for the state of Georgia appear to range 
between -23 and +33%, represented as the standard deviation as % of the mean.  The distributions of the 
emissions uncertainty are always positively skewed, likely fit best by lognormal or other positively 
skewed distributions. 
 This analysis attempted a comprehensive uncertainty analysis of the NONROAD model for the 
state of Georgia.  However, many considerations were still unaccounted for, including fuel consumption, 
growth factors, equipment age distributions, PM and HC speciation profiles, temporal activity 
adjustments (seasonal and weekday/weekend), fuel sulfur effects, and evaporative emissions.  These 
factors were assumed either less important for this analysis, or beyond the scope of this work.  For 
example, uncertainty in forecasting of future emissions deals with a great deal more than just basic 
emissions modeling.  In that case, one must consider future rules and regulations, economic patterns, 
technological advances, etc.  PM size apportionment and HC species (NONROAD calculates VOC, 
NMOG, NMHC, etc.) are currently calculated using simple multiplicative factors on emissions by 
source category.  Dealing with these uncertainties will likely require further study before good estimates 
can be made. 
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TABLES 
Table 1 Resampling Bootstrap Uncertainties of Diesel Engine Certification Emission Test Results 

Model 
Year HP Range

HP 95% 
Confidence 

Interval 

HC 95% 
Confidence 

Interval 

NOx 95% 
Confidence 

Interval 

CO 95% 
Confidence 

Interval 

PM 95% 
Confidence 

Interval 
1996 175-300 -5.63% 6.56% -12.86% 12.17% -2.84% 2.94% -18.84% 24.71% -11.21% 13.21%
1996 300-600 -10.56% 18.18% -37.82% 53.65% -9.70% 13.44% -15.50% 8.87% -20.25% 29.20%
1996 600-750 -5.55% 5.17% -55.38% 65.90% -6.72% 5.81% -23.28% 24.44% -19.64% 17.86%
1997 100-175 -12.31% 10.01% -20.30% 20.41% -5.25% 7.14% -10.36% 15.87% -21.94% 9.10%
1997 175-300 -5.32% 6.61% -30.24% 28.52% -4.61% 4.48% -14.20% 18.59% -8.73% 9.53%
1997 300-600 -11.32% 21.27% -31.04% 31.04% -4.75% 8.03% -48.74% 27.33% -27.05% 21.04%
1997 600-750 -6.90% 4.28% -54.49% 66.51% -5.42% 6.37% -28.15% 21.70% -13.29% 7.30%
1998 50-100 -7.82% 7.02% -42.08% 28.41% -7.33% 7.61% -49.21% 31.03% -21.43% 13.40%
1998 100-175 -12.92% 12.34% -13.29% 9.16% -5.34% 5.48% -34.39% 41.84% -13.96% 6.95%
1998 175-300 -8.34% 12.53% -8.67% 13.24% -2.19% 3.50% -11.71% 19.70% -7.96% 5.68%
1998 300-600 -10.52% 13.36% -28.68% 56.12% -6.68% 5.95% -28.62% 23.10% -12.36% 14.74%
1998 600-750 -6.73% 8.99% -43.90% 28.99% -3.62% 1.76% -30.85% 22.18% -24.73% 19.83%

Average  -8.66% 10.53% -31.56% 34.51% -5.37% 6.04% -26.15% 23.28% -16.88% 13.99%

Table 2 Parametric Bootstrap Uncertainties of Diesel Engine Certification Emission Test Results (using AuvTool) 

Model 
Year 

HP 
Range 

HP 95% 
Confidence 

Interval 

HC 95% 
Confidence 

Interval 

NOx 95% 
Confidence 

Interval 

CO 95% 
Confidence 

Interval 

PM 95% 
Confidence 

Interval 
1996 175-300 -3.05% 3.45% -8.75% 9.68% -2.14% 2.09% -17.59% 15.79% -6.48% 8.10%
1996 300-600 -7.01% 6.90% -24.01% 24.39% -5.34% 5.13% -7.96% 7.60% -11.27% 11.72%
1996 600-750 -4.39% 4.13% -48.96% 44.80% -5.59% 5.11% -19.18% 19.79% -14.03% 14.60%
1997 100-175 -4.59% 4.78% -13.12% 14.02% -3.08% 2.61% -14.07% 14.47% -8.86% 8.91%
1997 175-300 -3.16% 3.00% -14.75% 13.12% -3.01% 2.71% -10.22% 10.23% -6.16% 6.38%
1997 300-600 -7.13% 6.78% -14.94% 16.43% -3.89% 3.60% -15.65% 16.30% -11.78% 11.34%
1997 600-750 -4.40% 4.95% -44.50% 45.66% -5.13% 4.83% -20.14% 19.41% -10.33% 8.92%
1998 50-100 -2.11% 2.14% -15.88% 15.15% -3.71% 3.86% -19.40% 19.29% -9.85% 11.66%
1998 100-175 -5.02% 5.80% -3.53% 3.50% -2.30% 2.36% -20.13% 23.33% -6.77% 6.74%
1998 175-300 -4.42% 5.04% -7.78% 7.41% -1.89% 1.76% -14.07% 13.29% -4.04% 3.78%
1998 300-600 -5.84% 6.29% -24.42% 27.86% -3.11% 2.69% -13.82% 14.22% -8.92% 8.29%
1998 600-750 -6.52% 6.33% -26.64% 27.50% -3.33% 3.57% -19.27% 17.30% -18.42% 17.40%

Average   -4.80% 4.97% -20.61% 20.80% -3.54% 3.36% -15.96% 15.92% -9.74% 9.82%
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Table 3 Expert Elicitation Aggregated Results 

Category Parameters 95% Confidence Interval (%) 

Large SI equipment population 23.95 -29.38 
Small SI equipment population 68.15 -25.04 Population 

CI equipment population   29.38 -22.72 
Agricultural Equipment allocation   10.00 -10.00 
Airport GSE Equipment allocation 13.21 -13.21% 
Commercial Equipment allocation 105.56 -46.44 
Construction Equipment allocation 38.89 -38.89 
Industrial Equipment allocation 194.44 -50.00 
Lawn and Garden (Com) Equipment allocation 61.11 -38.89 
Lawn and Garden (Res) Equipment allocation 61.11 -38.89 
Logging Equipment allocation 51.23 -29.01 
Pleasure Craft Equipment allocation 101.43 -46.04 
Railroad Equipment allocation 29.38 -29.38 
Recreational Equipment allocation 73.83 -51.60 
Oil Field Equipment allocation 15.68 -15.68 
Underground Mining Equipment allocation 97.65 -38.54 

Geographic Allocation 

A/C Refrigeration Equipment allocation 21.60 -21.60 
PSR-database based equipment activity 59.86 -39.48 
Small SI Lawn & Garden equipment activity 64.81 -38.40 
Recreational Marine equipment activity 32.08 -25.02 
ATV activity 28.40 -25.00 

Annual Activity Hours 

Off-road Motorcycle activity 34.81 -31.42 
PSR-database based SI equipment load factors 23.21 -36.54 
Small SI Lawn & Garden equipment load factor 18.77 -40.99 
CI equipment transient cycle load factors 36.54 -40.99 

Load Factors 

Recreational Marine load factor 23.21 -21.88 
HC 20.39 -17.40 
NOx 31.13 -21.67 
CO 16.05 -13.83 

SI Equipment zero-mile steady-state  
emission factors 

PM 51.60 -29.38 
HC 49.51 -29.27 
NOx 15.67 -15.60 
CO 96.05 -29.38 

CI Equipment zero-mile steady-state  
emission factors 

PM 54.81 -19.26 
HC 46.79 -22.10 
NOx 46.79 -26.05 
CO 61.11 -30.99 

SI Equipment transient emission  
factors adjustments 

PM 40.49 -31.60 
HC 38.89 -22.10 
NOx 29.01 -13.21 
CO 61.11 -30.99 

CI Equipment transient emission  
factors adjustments 

PM 62.72 -40.49 
HC 26.94 -21.77 
NOx 37.58 -16.94 
CO 27.26 -16.94 

Overall Emissions 

PM 44.52 -23.87 

Table 4 Monte Carlo Simulation of NONROAD Model Results Using Different Probability Distributions for Inputs 

Average (Tons Per Day) Input 
Distribution THC NOx CO PM 
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Normal 204.42 204.60 2580.59 23.81
Triangle 219.56 213.90 2804.44 26.34
Uniform 226.96 221.91 2930.71 28.05

Standard Deviation (Tons Per Day) Input 
Distribution THC NOx CO PM 
Normal 48.13 58.82 758.42 7.17
Triangle 50.74 58.30 775.18 7.43
Uniform 59.13 73.22 939.75 9.31

Standard Deviation as % of Average (%) Input 
Distribution THC NOx CO PM 
Normal 23.55 28.75 29.39 30.13
Triangle 23.11 27.26 27.64 28.21
Uniform 26.05 33.00 32.07 33.20

Skew Input  
Distribution THC NOx CO PM 
Normal 0.98 0.93 1.05 1.00
Triangle 0.70 0.55 0.80 0.68
Uniform 0.72 0.57 0.77 0.70
 
Table 5 Monte Carlo Simulation Results for County Allocations of NONROAD Emissions Output 

 
Standard Deviation for Emissions as % 
of Average with 159 County Allocations 

 Maximum Minimum Average 

Standard Deviation for 
Emissions as % of 

Average for Whole State 

THC 34.75 18.88 23.37 23.55
NOx 33.49 20.48 29.34 28.75
CO 37.52 19.47 27.78 29.39
PM 36.78 22.48 30.91 30.13
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Figure 1 Normalized Sensitivity Coefficients for Various NONROAD Input Parameters.  **Emission factor sensitivity 
analysis performed for PM2.5 only.  All other parameters include sensitivities for ALL pollutants listed. 
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Figure 2 Monte Carlo Simulation Running Average of NONROAD Emissions Output 
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Figure 3 Monte Carlo Simulation Standard Deviation of NONROAD Emissions Output 
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Figure 4 NONROAD Emissions Contribution of Source Categories for Georgia, Summer 1999 
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Figure 5 Monte Carlo Simulation NONROAD Emissions Output Probability Distribution 
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Figure 6 Monte Carlo Simulation Average NONROAD THC Emissions at County Level 
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Figure 7 Monte Carlo Simulation Average NONROAD NOx Emissions at County Level 
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Figure 8 Monte Carlo Simulation Average NONROAD CO Emissions at County Level 
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Figure 9 Monte Carlo Simulation Average NONROAD PM Emissions at County Level 
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Figure 10 Monte Carlo Simulation NONROAD THC Emissions at County Level Uncertainty As Standard Deviation 
Fraction of Mean 
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Figure 11 Monte Carlo Simulation NONROAD NOx Emissions at County Level Uncertainty As Standard Deviation 
Fraction of Mean 
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Figure 12 Monte Carlo Simulation NONROAD CO Emissions at County Level Uncertainty As Standard Deviation 
Fraction of Mean 
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Figure 13 Monte Carlo Simulation NONROAD PM Emissions at County Level Uncertainty As Standard Deviation 
Fraction of Mean 
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Figure 14 Monte Carlo Simulation NONROAD THC Emissions at County Level % Change from Base Case 
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Figure 15 Monte Carlo Simulation NONROAD NOx Emissions at County Level % Change from Base Case 
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Figure 16 Monte Carlo Simulation NONROAD CO Emissions at County Level % Change from Base Case 
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Figure 17 Monte Carlo Simulation NONROAD PM Emissions at County Level % Change from Base Case 


