

THE KANSAS CITY LIGHT-DUTY VEHICLE EMISSIONS STUDY: ASSESSING PM EMISSIONS FROM GASOLINE POWERED MOTOR VEHICLES

2004 International Emissions Inventory Conference Mobile Source Session Clearwater, Florida June 7-10

Overview

- Why are we concerned about Gasoline PM?
- The Kansas City Study
 - Objectives
 - Participants
 - Recruitment
 - Testing
 - Chemical and Physical Analyses
- Emission Inventory relevant outcomes.

Background

• Issue

- Emissions from light-duty gasoline vehicles may be significant contributors to ambient PM concentrations
- EPA inventories indicate diesel PM contributions greater than gasoline PM
- Recent source apportionment studies give conflicting results
 - Denver and Phoenix studies indicate gasoline greater than diesels
 - California studies indicate diesel greater than gasoline

Current State of Knowledge

- Measured emission results vary significantly, indicating the presence of high emitting gasoline vehicles.
- High emitters may have disproportionate contribution to ambient PM.
- Unclear how to relate sampled fleet to national fleet.
- Uncertainties exist on the adequacy of diesel/gasoline profiles.

Previous Gasoline PM Studies

- CRC Project E-24-1, Denver, CO, 1998
 - 101 gasoline vehicles tested in the summer and 72 tested in the winter.
 - Gasoline vehicle PM rates ranged over two orders of magnitude depending on vehicle age and smoking condition.
- CRC Project E-24-2, Los Angeles, CA, 1998
 - 129 gasoline vehicles tested, high emitters had 5-10 times the PM emissions of normal emitters.
 - Gasoline vehicle PM rates ranged from 0.01 to 388 mg/mile.
- Representativeness of vehicle fleet uncertain for both studies since vehicle recruitment was not random.

Can We Identify High PM Emitters in Advance?

- No technique available to quickly and inexpensively screen PM emissions.
- Other indicators have been used
 - Older vehicles
 - -High mileage vehicles
 - -High gaseous emitters
 - "Smokers"

FTP PM Emissions vs. Model Year

FTP PM Emissions vs. Model Year

Source: CRC Project E-24-2

FTP PM Emissions vs. Mileage

FTP PM Emissions vs. Mileage

Source: CRC Project E-24-2

PM vs. CO

PM vs. CO

PM vs. HC

PM vs. HC

PM vs. NO_x

What the Data Show

- Some vehicles appear to emit more PM than most.
 - Range of emissions:
 - Denver: (summer and winter) up to 1,400 mg/mi
 - Riverside: (summer) up to 400 mg/mi
- Existing data do not give a basis to assess the importance of high emitters.
 - How many are there?
 - targeted recruiting gives no idea how likely or unlikely it is to find high emitters.
 - How much do they contribute?
 - targeted recruiting gives no idea how much weight to assign high emitters.

Importance of Gasoline PM

• 2020 Mobile Source Direct PM2.5 Inventory 24% – Non-road gasoline: - Commercial marine diesel: 23% - Highway gasoline vehicles: 16% – Non-road diesel: 16% - Aircraft: 9% - Highway diesel: 6% - Locomotives: 5%

The Kansas City Study: Participants

- EPA OTAQ
- EPA ORD
- EIIP (STAPPA/ALAPCO & EPA OAQPS)
- CRC
- DOE/NREL
- DOT

Objectives

- Identify the distribution of PM emissions in the vehicle fleet
- Identify the fraction of PM high emitters in the vehicle fleet
- Evaluate existing mobile source PM and toxics inventories and models
- Improve automobile source profiles.

Project Location

Kansas City – No I/M Program – Varying temperatures

Vehicle Recruitment

- Up to 480 randomly selected vehicles

- From random digit dialing, and
- State DOT records
- Representative of national fleet

Vehicle Class	Age Class	Sample Size
Car	Pre 1980	50
Car	1980-1990	140
Car	1991 and newer	70
Truck	Pre 1980	40
Truck	1980-1990	50
Truck	1991 and newer	130

Testing Procedures

Equipment EPA ORD Portable Chassis Dynamometer PEMS (HC, NOx, CO, PM and activity) Remote Sensing

• Cycles

– LA92

– Real world

LA92 Cold and Warm Start Driving Cycle

Measurements

- Tailpipe Emissions

 Continuous PM
 - QCM
 - Nephelometer
 - Integrated PM
 - EC/OC
 - Elements
 - SVOCs
 - ions
 - Continuous HC, NOx, CO
 - VOCs and aldehydes
 - Visible Smoke

• Vehicle Fluid Sampling –Fuel and Oil

On-Board Emissions Monitoring

- Subset of vehicles equipped with on-board samplers.
 - Portable Emission Monitoring System (PEMS)
 - Continuous CO, CO₂, HC, NO_x and PM tailpipe measurements.
 - Environmental conditions (temperature, humidity, pressure).
 - Vehicle parameters (engine rpm, vehicle speed, A/C use, OBD codes).
 - GPS locator.

Emission Inventory Relevance

- Improve On-road Automobile Emission Rates
 PM
 - Distribution of PM emissions for the light-duty fleet.
 - Identification of the percent of high emitters.
 - Improvement of PM mobile source emissions models.
 - Air Toxics
 - Improved emission factors for toxics.
 - Estimate of the association of toxics emissions with criteria gases and PM.
- Improve MOBILE/MOVES emissions models.

Emission Inventory Relevance

- Source Profiles for On-road Automobiles
 - Existing profiles may be inadequate
 - Previous Dynamometer studies small number of vehicles non-randomly selected.
 - Tunnel studies only one driving condition (steady-state speeds) and typically newer mix of vehicles.
 - Benefits from Kansas City Study
 - Large number of vehicles representing vehicle fleet mix.
 - Random selection.
 - Test cycle represents typical mix of urban driving.
 - Multiple source profiles will be developed.
 - High emitters
 - Cold start conditions
 - Multiple technologies

Acknowledgements

• Co-authors

Joe Somers¹, Carl Fulper¹, Peter Gabele², Jim Warila¹, and Gene Tierney¹

¹ National Vehicle and Fuel Emissions Laboratory, U.S. Environmental Protection Agency, Ann Arbor, Michigan.

² National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.

• Project Sponsors and Participants

Brent Bailey³, Steve Cadle⁴, Doug Lawson⁵, Kevin Black⁶, and Dennis Beauregard⁷

- ³ Coordinating Research Council, Atlanta, Georgia.
- ⁴General Motors, Warren, Michigan
- ⁵ National Renewable Energy Lab, Golden, Colorado.
- ⁶ U.S. Department of Transportation, Federal Highway Admin, Washington, D.C.
- ⁷ Emission Inventory Improvement Program, U.S. EPA and STAPPA/ALAPCO consortium