Introduction

- Typical approach of gridding highway vehicle emissions for air quality modeling may underestimate emission density along roads.
- In this study a methodology is developed for estimating emissions along individual roadway links for 27 hazardous air pollutants.
- MOBILE6.2 highway vehicle emission factor model is used in conjunction with link-based traffic data from Portland’s travel demand model.
- The resulting inventory includes emission estimates for seven daily time periods for over 24,000 roadway links.
Project Flow Diagram

Diurnal Distribution of Trips (Survey, Model) → Traffic Assignment (EMME/2) → Database (Oracle)

Emission Rate Calculation (MOBILE) → Speed Equation Regression → Database (Oracle)
Assignments (EMME/2)

Inputs:
- Time factors from 1994-95 household survey
- Vehicle trips from travel model for 1999

Outputs:
- Speed and volume by link for seven time periods
Assignment Periods

Diurnal Distribution of Weekday Trip Starts

Percent of Average Weekday Trips

Hour of Trip Start
Inputs to MOBILE

- County-level fleet age profiles
- Temperature and fuel settings from Oregon DEQ and Washington Dept of Ecology
- Fuel parameters from TRW surveys
 - eg., benzene, aromatics, olefins, sulfur, RVP
- Chromium, nickel, arsenic and PAHs are not explicitly modeled in MOBILE6.2
 - These compounds were modeled using the ADDITIONAL HAPs command
 - The user provides data on basic emission rates, toxic to TOG ratios or toxic to PM ratios in an external datafile to estimate additional HAPs
Base Pollutants in MOBILE

- Running and Non-Running Emissions
 - Benzene, 1,3 Butadiene
- Assigned to Running Emissions
 - Formaldehyde, Acetaldehyde, Acrolein
- Based on Diesel Traffic Volumes
 - Elemental Carbon, Total Diesel Exhaust Particulate Matter
300 MOBILE Scenarios

- 2 seasons (summer and winter)
- 30 link type combinations
 - 14 freeway and arterial average speed bins
 - local roadways and freeway ramps
- 5 fleet classes
 - OR I/M: Multnomah, Washington, Clackamas
 - WA I/M: Clark
 - Non I/M
Treatment of Link Types

- Speed-emission equations built for:
 - Freeways and Arterials
 - Independent variables: Speed, Speed\(^2\), Speed\(^3\), Speed\(^4\), Speed\(^5\)

- Set speeds assumed by MOBILE for:
 - Local Roadways and Freeway Ramps

Example Speed Curve

![Example Speed Curve](image-url)
Allocation of Emissions: Benzene and 1,3 Butadiene

Assigned to trip start zone
Oracle Database Calculations

- Hourly Volumes
- Hourly Speeds
- Link-Based Emissions
- Intrazonal Emissions
- Total Zone-Based Emissions
Conclusions

- Metro will use this methodology for future air quality conformity work.
- It can be used by other agencies with a need for geographically detailed analyses of motor vehicle emissions.
 - Useful in identifying “hot spots”.
- The process is currently very compute-intensive.
 - Fewer time periods and fleets may produce similar results.
Documentation