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Principal Component Analysis

Objective

Identify, through data reduction, the characteristic, recurring and 
independent modes of variation (signals) of a large, noisy data set.

Approach

Sorts, initially correlated data, into a hierarchy of statistically 
independent modes of variation (mutually orthogonal linear 
combinations), which explain successively less and less of the total 
variation.

Utility

Facilitates identification, characterization and understanding 
of the spatiotemporal variation of the data set across a myriad of 
spatial and temporal scales. 



Numerous applications

Ø The spatial and temporal analysis of the Palmer Drought Severity 
Index over the Southeastern US. (J. of Climatology - 7, pp 31-56)

Ø A principal component analysis of SO4
= precipitation concentrations

over the eastern US.  (Atmospheric Environment 23, No. 12, pp 
2739-2750)

Ø A characterization of the spatiotemporal variation of
non-urban ozone in the Eastern US.  (Atmospheric  Environment, 
27A, pp. 2645-2668)

Ø A climatology of total ozone mapping spectrometer data using 
rotated principal component analysis. (Journal of Geophysical 
Research. 104, No. D3, pp 3691-3709)

Ø A climatology of air concentration data from the Clean Air Status 
and Trends Network (CASTNet). (Atmospheric Environment)



Methodology

Spatial

Calculate a square, symmetrical correlation matrix R having 
dimensions j x j, from the original data matrix having dimensions 
j (e.g. stations, grid cells) x i (e.g. days, weeks).

By using R and the Identity matrix I, of the same dimensions, 
j characteristics roots or eigenvalues ( λ ) can be derived that 
satisfy the following polynomial equation:

det [ jRj  - λj Ij ]  =  0 (1)



Methodology

Spatial

For each root λλ of (1) which is called the characteristic equation, 
a nonzero vector e can be derived such that:

jRj e1  = λj e1 (2)

where e is the characteristic vector (eigenvector) of the 
correlation matrix R, associated with its corresponding eigenvalue λλ.

- The eigenvectors represent the mutually orthogonal
linear combinations (modes of variation) of the matrix.

- The eigenvalues represent the amount of variation explained 
by each of the eigenvectors.



Methodology

Spatial

When the elements of each eigenvector (e) are multiplied by the square 
root of the associated eigenvalue (λλ0.5), 

the principal component (pc) Loading (L) is obtained.

L :   provides the correlation between the pc and the 
station (grid cell)

L2:   provides the proportion of variance at an individual station
(grid cell) that can be attributed to a particular pc

The sum of the squared Loadings indicates                       (3)
the total variance accounted for by the pc,                     
which stated earlier is called the eigenvalue For station j and pc k

The pc Loadings can then be spatially mapped onto their respective
stations (grid cells) identifying homogeneity or “influence regimes”.

λ
k kj

j
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Methodology

Spatial

By retaining the first few eigenvector-eigenvalue pairs or principal 
components, a substantial amount of the variation can be explained 
while ignoring higher-order pcs, which explain successively less of 
the variance.

How many principal components should be retained??

- Scree test

- λλ > 1  criteria

- Overland-Priesendorfer “Rule N” test

- Common Sense



Methodology

Spatial

Rotation of Retained Principal Components

Facilitates spatial interpretation allowing  better identification of 
areas that are homogeneous 

Oblique Rotation
Orthogonal Rotation

An orthogonal rotation developed by Kaiser (’58) increases the 
segregation between principal component loadings which in turn 
better defines a distinct group or cluster of homogeneous stations.

Stations (grid cells) are then assigned to the pc (“influence regime”) 
having the largest pc loading.



Methodology

Temporal

Having identified influence regimes, we can examine their 
temporal structure thru calculation of the pc Score

The pc Score for time period i on principal component k are 
weighted, summed values whose magnitudes depend upon the 
observation O ij  for time i at station j and Ljk is the loading of 
station j on component k as seen below:

(4)

The pc Scores are standardized (mean: 0, std dev: 1)

( )PCscore O L
ik ij

j
jk
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Methodology

Temporal

When plotted as a time series, the pc Scores provide excellent 
insight into the spectrum of temporal variance experienced by 
each of the influence regimes.

This temporal variance can then be examined using:

Spectral Density Analysis

Correlograms

Filters

Red and White Noise tests





“Dynamical Forcing”

Related to transport 
and  tropopause 
height.

Sharp late winter, 
early spring peak.

More broad, late 
summer, early autumn 
minimum. 

Strong annual signal
(Periodicity = 2B/f)



“Photochemical Forcing”

Related to solar 
insolation.

Broad, mid-summer 
maximum.

Sharp, mid-winter 
minimum.

Strong annual signal



“Dynamical Forcing”

Related to annual 
transport and SAO in 
wind field (peaks at 
equinoxes)

Strong annual, 
semi-annual 
and a long term signal.



“Quasi-Biennial Forcing”

Related to QBO of 
tropical winds in the 
stratosphere.

Note peaks in ‘80, ‘82, 
’85, ‘87, ‘90 and ’92.

Strong QBO signal
(~2.5 years)



“Wave Number 5”

One of 5 similar 
patterns found between 
450 - 650 S.

Due to medium scale 
baroclinic waves  
associated with 
Antarctic Polar Jet 
stream.

Note variability.

Note trend
and  semi-annual
periodicity. 



“El-Nino-Southern 
Oscillation”

During ENSO years of 
’82-83, ’87 and ’91-’92, 
ozone values are very 
low, while in none ENSO 
years ozone values are 
high. 

Note strong periodicity 
of ~ 4 years.



Data Retrieval Artifact”

An earlier analysis of 
TOMS Version 6.0 
included a “cross-track”
bias related to successive 
orbital scans of the 
surface.

Note the tremendous 
pulse” in the spectral

plot.

NASA was unaware of
this artifact.





Six Homogenous Regions

Great Lakes
Northeast
Mid-Atlantic
Southwest
South
Florida





Daily Time Series

Standardized PC scores

Summer Peak

No pronounced Peak

Spring Peak 



Daily Time Series

Standardized PC scores

Early summer peak

Late summer peaks



Seasonal Time Series

Standardized PC scores

Medians over 6 years
Cubic Spline Smoother



Seasonal Time Series

Standardized PC scores

Medians over 6 years
Cubic Spline Smoother





Correlograms

Standardized PC scores

Deseasonalized

Weaker persistence

Stronger Persistence

Lag1 r  =  0.56 Lag1 r  =  0.47

Lag1 r  =  0.61 Lag1 r  =  0.53

Lag1 r  =  0.70 Lag1 r  =  0.64



Spectral Density

Standardized PC scores

Deseasonalized

“White Noise”

“Red Noise”



Spectral Density

Standardized PC scores

Deseasonalized

“White Noise”

“Red Noise”



Summary

Principal Component Analysis:

- allows one to examine the spatial and temporal variability of
environmental data across a myriad of scales;

- utilization of Kaiser’s orthogonal rotation facilitates
identification of “influence regimes”  where concentrations
exhibit statistically unique and homogenous characteristics.  

- utilization of time series analyses, including spectral density 
analysis, facilitates characterization of the “influence regimes” 



Summary

Principal Component Analysis 

- is useful in that it:

- can provide “weight of evidence” of the regional-scale nature 
of environmental data,

- facilitate understanding of the mechanisms responsible for 
the data’s unique variability among influence regimes,

- designate stations (grid cells) that can be used as indicators 
for each influence regime,

- identify erroneous data or data artifacts that are often 
missed with other analyses.


