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Principal Component Analysis

Objective

Identify, through data reduction, the characteristic, recurring and
Independent modes of variation (signals) of a large, noisy data set.

Approach

Sorts, initially correlated data, into a hierarchy of statistically
Independent modes of variation (mutually orthogonal linear
combinations), which explain successively less and less of the total

variation.
Utility

Facilitates identification, characterization and understanding
of the spatiotemporal variation of the data set across a myriad of

spatial and temporal scales.



Numerous applications

» The spatial and temporal analysis of the Palmer Drought Severity
Index over the Southeastern US. (J. of Climatology - 7, pp 31-56)

» A principal component analysis of SO,~ precipitation concentrations
over the eastern US. (Atmospheric Environment 23, No. 12, pp
2739-2750)

» A characterization of the spatiotemporal variation of
non-urban ozone in the Eastern US. (Atmospheric Environment,
27A, pp. 2645-2668)

» A climatology of total ozone mapping spectrometer data using
rotated principal component analysis. (Journal of Geophysical
Research. 104, No. D3, pp 3691-3709)

» A climatology of air concentration data from the Clean Air Status
and Trends Network (CASTNet). (Atmospheric Environment)



Methodology

Spatial

Calculate a square, symmetrical correlation matrix R having
dimensions j X j, from the original data matrix having dimensions
J (e.qg. stations, grid cells) x 1 (e.g. days, weeks).

By using R and the Identity matrix I, of the same dimensions,
J characteristics roots or eigenvalues (| ) can be derived that
satisfy the following polynomial equation:

det[ R, - 1;1.] =0 (1)



Methodology

Spatial

For each root| of (1) which is called the characteristic equation,
a nonzero vector e can be derived such that:

Riieg & ey (2)

where e Is the characteristic vector (eigenvector) of the
correlation matrix R, associated with its corresponding eigenvalue | .

- The eigenvectors represent the mutually orthogonal
linear combinations (modes of variation) of the matrix.

- The eigenvalues represent the amount of variation explained
by each of the eigenvectors.



lethodology

Spatial

When the elements of each eigenvector (e) are multiplied by the square
root of the associated eigenvalue (I ),

the principal component (pc) Loading (L) is obtained.

L . provides the correlation between the pc and the
station (grid cell)

L2: provides the proportion of variance at an individual station
(grid cell) that can be attributed to a particular pc

The sum of the squared Loadings indicates |- = é L2 (3)
the total variance accounted for by the pc, K j K
which stated earlier is called the eigenvalue For station j and pc k

The pc Loadings can then be spatially mapped onto their respective
stations (grid cells) identifying homogeneity or “influence regimes”.



Methodology

Spatial

By retaining the first few eigenvector-eigenvalue pairs or principal
components, a substantial amount of the variation can be explained
while ignoring higher-order pcs, which explain successively less of
the variance.

How many principal components should be retained??

Scree test

| >1 criteria

Overland-Priesendorfer “Rule N” test

Common Sense



Methodology

Spatial
Rotation of Retained Principal Components

Facilitates spatial interpretation allowing better identification of
areas that are homogeneous

Obligue Rotation
Orthogonal Rotation

An orthogonal rotation developed by Kaiser ('58) increases the
segregation between principal component loadings which in turn
better defines a distinct group or cluster of homogeneous stations.

Stations (grid cells) are then assigned to the pc (“influence regime”)
having the largest pc loading.



Methodology

Temporal

Having identified influence regimes, we can examine their
temporal structure thru calculation of the pc Score

The pc Score for time period i on principal component k are
weighted, summed values whose magnitudes depend upon the
observation O;; for time I at station j and L;, is the loading of
station j on component k as seen below:

(PCscore), =g O L, (4)

jk
J

The pc Scores are standardized (mean: O, std dev: 1)



Methodology

Temporal

When plotted as a time series, the pc Scores provide excellent
Insight into the spectrum of temporal variance experienced by
each of the influence regimes.

This temporal variance can then be examined using:

Spectral Density Analysis
Correlograms
Filters

Red and White Noise tests
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A climatology of total ozone mapping spectrometer data using
rotated principal component analysis
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Abstract. The spatial and temporal variability of total column ozone (1) obtained from
the total ozone mapping spectrometer (TOMS version 7.0) during the period 1980-1992
was examined through the use of a multivariate statistical technique called rotated
principal component analysis. Utilization of Kaiser’s varimax orthogonal rotation led to
the identification of 14, mostly contiguous subregions that together accounted for more
than 70% of the total () variance. Each subregion displayed statistically unique ()
characteristics that were further examined through time series and spectral density
analyses, revealing significant periodicities on semiannual, annual, quasi-biennial, and
longer term time frames. This analysis facilitated identification of the probable
mechanisms responsible for the variability of () within the 14 homogeneous subregions.
The mechanisms were either dynamical in nature (i.e., advection associated with baroclinic
waves, the quasi-biennial oscillation, or El Nifio—Southern Oscillation) or photochemical in
nature (i.e., production of odd oxygen (O or O,) associated with the annual progression of
the Sun). The analysis has also revealed that the influence of a data retrieval artifact,
found in equatorial latitudes of version 6.0 of the TOMS data, has been reduced in
version 7.0.
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(a) Principal component loadings associated with RPC_1, which accounted for 31.9% of the total
variance; (b) standardized principal component scores associated with RPC_1; and (c) spectral density analysis
of the principal component scores associated with RPC_1.



‘Photochemical Forcing”
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Figure 3. (a) Principal component loadings associated with RPC_2, which accounted for 17.7% of the total

variance; (b) standardized principal component scores associated with RPC_2; and (c) spectral density analysis
of the principal component scores associated with RPC 2.
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EDER ET AL.: CLIMATOLOGY OF TOMS DATA

Related to annual T
transport and SAO in 0o

02070 0.40

vind field (peaks at o0

= B 050 TO 080 T ;1'
2quinoxes) & \@g\ N

; T Tl - i g
\\\1\\&\ Wi
- S

T
.f TR ] I“'fofll'l"l!ll

1 rrfL L e

5 \\1x~&\

RPC 3

1980 1981 1982 1983 1984 1985 1986 1987 1988 1983 1990 199-1' 1992
Year

o]

40

RPC_3

Strong annual, X
semi-annual

ind a long term signal.

3
]

nsity o

201

104

Spectral

04 . : ————————— - : . .
000 002 004 OD6E 0OB 010 012 014 016 018 0O
C Frequency

Figure 4. (a) Principal cnmp(menl loadings associated with RPC_3, which accounted for 5.8% of the total
variance; (b) standardized principal component scores associated with RPC_3; and (c) spectral density analysis
of the principal component scores associated with RPC 3.




‘Quasi-Biennial Forcing”
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Figure 5. (a) Principal component loadings associated with RPC_4, which accounted for 4.2% of the total
variance; (b) standardized principal component scores associated with RPC 4; and (c) spectral density analysis
of the principal component scores associated with RPC_4.
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Figure 6. (a) Principal component loadings associated with RPC_5, which accounted for 2.0% of the total
variance; (b) standardized principal component scores associated with RPC_5; and (c) spectral density analysis
of the principal component scores associated with RPC_5.
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Figure 12. (a) Principal component loadings associated with RPC_I I. which accounted for 0.9% of the total
variance; (b) standardized principal component scores associated with RPC_LI; and (¢) spectral density
analysis of the principal component scores associated with RPC_I1,
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Abstract— The spatial and temporal variability of the daily 1-h maximum O, concentrations over non-
urban areas of the castern United States of America was examined for the period 1985-1990 using principal
component analysis, Utilization of Kaiser’s Varimax orthogonal rotation led to the delineation of six
contiguous subregions or “influence regimes”™ which together accounted for 64.02% of the total variance.
Each subregion displayed statistically unique O, characteristics and corresponded well with the path and
[requency of anticyclones, When compared to the entire domain, the mid-Atlantic and south subregions
observe higher mean daily 1-h maximum concentrations, Concentrations are near the domain average for
the northeast and southwest subregions and are lowest in the Great Lakes and Florida subregions. The
percentage of observations exceeding 120 ppb were greatest in the mid-Atlantic and southwest subregions,
near the domain average in the northeast and south subregions, and lowest in the Great Lakes and Florida
subregions.

Examination of the time series of the principal component scores associated with the subregions indicated
that Gireat Lakes and mid-Atlantic subregions tend to observe a stronger seasonal cycle, with maximum
concentrations occurring during the last week in June and first week in July, respectively. The strengith of this
seasonality is weakened for the northeast and south subregions and its timing delayed, until the end of July
and the first of August, respectively. The southwest subregion experiences a greatly diminished seasonality,
with maximum concentrations delayed until the middle of August. The seasonality found in the Florida
subregion is unigque in both its strength and timing, as the highest concentrations consistently occur during
the months of April and May. The time series were then deseasonalized and autocorrelations and spectral
density estimates calculated, revealing that persistence is much more prevalent in the Florida (autocorrela-
tion significant to a lag of 4 days), south (3 days) and southwest (3 days) subregions. Conversely,
autocorrelations are only significant to a lag of one day in the northeast and two days for the Great Lakes
and mid-Atlantic subregions.

Key word index: Ozone, principal component analysis. influence regimes, time series analysis, persistence,
seasonality, anticyclones.
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Fig. 9. Spectral density analysis of the deseasonalized daily standardized principal
component scores associated with the six homogeneous subregions.
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Summary

Principal Component Analysis:

- allows one to examine the spatial and temporal variability of
environmental data across a myriad of scales;

- utilization of Kaiser’'s orthogonal rotation facilitates
identification of “influence regimes” where concentrations
exhibit statistically unigue and homogenous characteristics.

- utilization of time series analyses, including spectral density
analysis, facilitates characterization of the “influence regimes”



Summary

Principal Component Analysis
- iIs useful in that it:
- can provide “weight of evidence” of the regional-scale nature

of environmental data,

- facilitate understanding of the mechanisms responsible for
the data’s unique variability among influence regimes,

- designate stations (grid cells) that can be used as indicators
for each influence regime,

- identify erroneous data or data artifacts that are often
missed with other analyses.



