Optimal Shrinkage
of a Monitoring Network

Maria De Iorio

David Higdon Peter Miiller




| OVERVIEW I

1. Space-time modelling using process convolutions

2. Design problem
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Data: daily maximum for the eight hour running average of ozone
concentration over the Eastern United States.

The data consist of around 500 measurements recorded for 30 days
in summer 1999.

Want: Space-time model for ozone concentration.
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Problem:

amount of data by station
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| 1. BASIC MODELI

z(s) : Gaussian process over a spatial region S
x(s) : continuous white noise process, s € S

k(s) : smoothing kernel
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We can construct z(s) by convoluting x(s) with k(s)




The covariance function for z(s) depends only on the displacement

vector d = s — s’
c(d) = Cov(z(s), z(s")) = /Sk(u—s)k(u—s’)dUZ /Sk(u—d)k(u)du

If S =R™ and k(s) is isotropic = z(s) is isotropic and c(d)
depends only on the magnitude of d.




(Generalize:

e Dimension reduction: restrict the latent model z(s) to locations
Wi, ..., wm (i.e. over a coarse lattice) = a small number of

parameters effectively control the entire spatial process z(s)

2(s) = Zfﬁ(wg‘)’f(s — wj)

Z,

(0,07)

r(wj) ~

k(- —w;) is a kernel centered at w;.




e Space-time models: Augment S with time 7 so that the latent

process and the smoothing kernel are defined over S x T

Alternatively we can allow the latent process z(s,t) to evolve
over time, with the kernel being a function only of s

—> a space-time process can be constructed by

2(s,t) = /Sk(u — s)z(u, t)du




|2. A SPACE-TIME MODEL FOR OZONE CONCENTRATIONSI

Data: 500 measurements recorded for 30 consecutive days

Yt = (?Jlta <. 7ynt)/

Data are recorded at sq,...,s, stations.
teT ={1,...,30}

n = 500 stations

Let

WC — {Wf, .. ’(.Ug'?}
Wi = {w{,...,wé;}

spatial supports for 2 independent latent processes x€(s,t) and
x/(s,t). We account for temporal dependence within x¢(s,t) and
within z7 (s, t).




coarse scale: W€

fine scale: W/




The space-time process is then obtained

z(s,t) = / k(u— s)x(u,t)du + /W k(u— s)z! (u, t)du

Wwe 7
= k(wi — s)x(wj, 1) + Z k(wf — s)zf (Wl t)
] J

]7
J
Set
:I;'f - (xc(wfvt)w .,:Ec(w§7,t))
xif — (xc(wlfvt)v '7$C(w537t)>
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Smoothing kernel k(s) is an isotropic two dimensional
tricube kernel with a range of 9 degrees. Hence the induced

covariogram dies off at about 15 degrees.

<« >

kernel covariance function

g

<«

The covariogram is fairly flat near the origin and the dependence

dies off after a fixed distance
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The model can be expressed by 3 evolution equations

v = Klaf+ K;m{ + €
ry = xy 1+
vl = pxl_ +m

where K7, is a n X 27 matrix and K is a n x 83

K3 = k(sit — w5), t=1,...,30
K{ = k(sie —wl), t=1,...,30
e KYN(0,02), t=1,...,30
v RYON(0,02), t=2....,30

i~  N(0,0;)
ne XY N(0,02), t=1,...,30
0 ~ Beta(a, 3)

This model can be updated using methods from dynamic linear model theory (West

and Harrison, 1997).
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Posterior mean surfaces of the 8 hour daily maximum ozone

concentrations for eight consecutive days
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coarse component fine component

fit
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| 3. DESIGN PROBLEM I

Want: optimal monitoring network

general design problem

" = argmax [ u(d,0,5)dp(0,y | d
U(d)

d = design

(0,y) = random variables (parameters and data)
y° = possible historical data

u(-) = utility function

U(d) expected utility

p(0,y | y°,d) = full probability model
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n = number of stations

d= (dy,...dy), d; =1 if station 7 is included in the design, 0

otherwise.

T" = number of days in historical data

y° = observed data (30 days)

y = future data, y = (ya, y3)

yq = future data at selected sites (observable)
y7 = future data at NOT selected sites (latent)

x = parameters in probability model (weights x in the process

convolution process
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The optimal design is formally defined as the network d* s.t.

d* = arg max / u(d, ,y)p(e | ya)aly | v°)dady

where y are the future data and q(y | y°) is the design distribution

to simulate future data.
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Utility function

payoff for prediction within ¢ - sampling cost

U(d,ﬂ?,yt) =R Z 1(yzot S /y\zt(yd) j:5) o Z Ci + CO

1:d; =0 1:d; =1

where ;¢ (y4) denote the prediction for station ¢ at time ¢ based on

the observed stations y,.
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We have set

c;, = C, \)
R
== 9
c
0 = 5

We have forced the number of stations to be between 181 and 28]1.
To find the optimal design we have used simulated annealing

technique.
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Initial design obtained by using routine cover.design (FIELDS by D. Nychka, W.
Meiring, J.A. Royle, M. Fuentes, E. Gilleland) — finds the set of points on a
discrete grid (candidate set) which minimises a geometric space-filling criterion.
This set is evenly distributed over the observed domain of data. We have set the
number of stations in the design to be equal to 231. The filled blue diamonds

represent the selected stations.
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Marginal utility U(d).

2.5
X 104
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Optimal design
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There are 181 stations in the design. The blue circles represent the
selected stations. The area of the circle is proportional to the

marginal frequency of each station.

24




