SPATIAL DATA ANALYSIS TECHNICAL EXCHANGE WORKSHOP

Sponsored by: U.S. EPA at Sheraton Imperial Hotel & Convention Center Research Triangle Park, North Carolina

December 3-5, 2001

Network Design – Mixed Monitoring Technologies (Puget Sound) presented by: Steven M. Bortnick

Battelle

Reminder

n PM_{2.5} monitoring in Puget Sound

- Mixed network: FRMs, TEOMs, Nephelometers
- Evaluate performance
 - Look at annual PM_{2.5} spatial process
 - Assess network's MSPE summary statistics for that process
 - current versus alternative designs
 - Keep in mind:
 - Federal regulations
 - real-world bias adjustment of data

Notation

- n Z = data, as measured
- n $Y = true PM_{2.5}$
- n Asterisks (*) denote bias-adjusted data
- n Will clarify more as we go along
- n Will suppress subscripts/superscripts whenever possible !

Basic Model Form

- n $Z^* = Y + , *$ ® Data
- n $Y = X (+ * \mathbb{R} \text{ Process})$
- n Written hierarchically, where:
 - X (= deterministic large scale spatial trend
 - * = stochastic small scale variation
 - , = error in measurement

Basic Model Assumptions

 $\ \ ^{n}$ *, , independent and normally distributed

ⁿ Var [*] = W \rightarrow some spatial covariance matrix

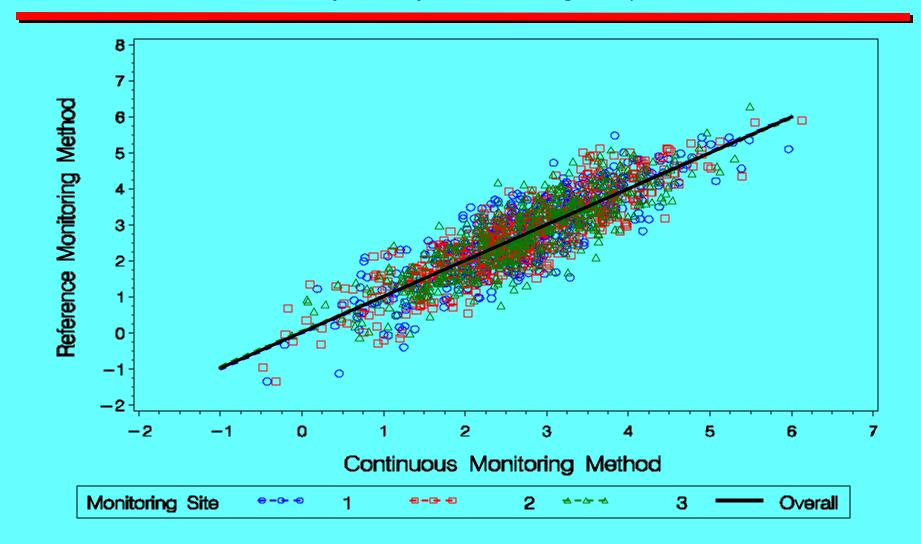
- explored several
- spherical used in examples

More on V*

- ⁿ With FRM-only network, $V^* = V = F^2 I$
- ⁿ With mixed network but no bias, $V^* = V = \text{diag} \{\sigma_{1'}^2, \sigma_{2'}^2, ...\}$
- $_{n}$ With mixed network, bias, and real-world bias correction, V* =
 - No longer diagonal !
 - Depends on measurement errors
 - Depends on uncertainty in bias correction

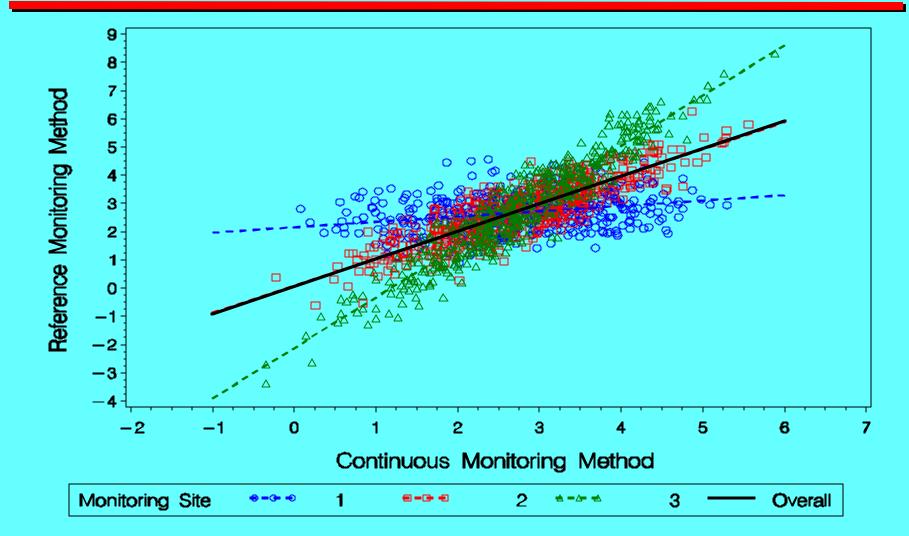
Bias Correction

- n Consider daily data, t denotes day
- n In practice:
 - Assume $E[Z_F(t)] = " + E[Z_C(t)]$
 - (", \$) = fixed area-wide bias correction
 - Suggests SOME uncertainty in bias adjustment, e.g., $se(\hat{\beta}) \approx \frac{\sigma_1}{\sqrt{n}}$
- n Closer to reality:
 - (", \$) = fixed area-wide bias correction
 - ("_{s'} \$_s) = random site-specific or monitor-specific bias
 - Suggests MORE uncertainty in bias adjustment, e.g., $\mathbf{se}(\hat{\beta}) \approx \sqrt{\frac{\sigma_1^2}{n} + \sigma_2^2}$

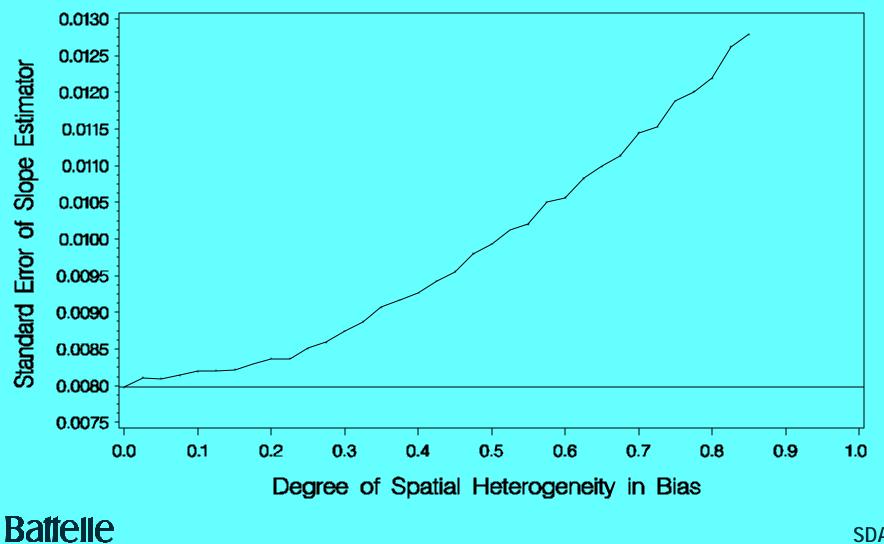

Example of Uncertainty in Bias Adjustment

- ⁿ Simulated three sites of co-located FRM and continuous data.
- Increased degree of between-site heterogeneity in continuous bias.
- ⁿ Applied ordinary least squares, ignoring site effect.

ⁿ Compared $se(\hat{\beta})$ versus degree of heterogeneity.



Complete Spatial Homogeneity


Battelle

Spatial Heterogeneity in the Bias

Battelle

Variability in Slope Estimate Versus Degree of Spatial Heterogeneity

Back to V*

- Recall, in practice, data from all co-located FRM, continuous sites pooled to estimate (", \$).
- n This gives:
 - $Z_C^*(s) = \alpha + \beta Z_C(s)$ for continuous annual average $PM_{2.5}$
 - $Z_F^*(s) = Z_F(s)$ for FRM annual average PM_{2.5}
- n Include some assumptions:
 - Day-to-day independence of 24-hour integrated PM_{2.5} data
 - No significant seasonal or spatial trends
 - Monitor-to-monitor independence, conditional on Y

Back to V* (continued)

- Along with assumptions, some Very Careful Bookkeeping gives V* as:
 - Diagonal elements:
 - Var(Z_{iF}^*) = $\sigma_F^2 \{1/n_{iF}\}$, for FRMs
 - $Var(Z_{iC}^{*}) = \sigma_{F}^{2} \{ 1/M + s [1/M + 1/n_{iC} 2/M (m_{iC}/n_{iC})] \}, \text{ for continuous}$
 - Off-diagonal elements:
 - Cov(Z^{*}_{iC}, Z^{*}_{jC}) = σ^2_F { 1/M + s [1/M 1/M (m_{iC}/n_{iC} + m_{jC}/n_{jC})] } , for continuous i and j

-
$$Cov(Z_{iF}^*, Z_{jF}^*) = 0$$
, for FRM i and j

 $- \text{Cov}(Z_{iF}^{*}, Z_{jC}^{*}) = \sigma_{F}^{2} \{ 1/M (m_{iF}/n_{iFC}) \}$, for FRM i and continuous j

Back to V* (continued)

- Where
 - F_F^2 = FRM measurement error
 - n_{iF} = number of daily observations in annual average of FRM at i-th site
 - n_{iC} = number of daily observations in annual average of continuous at i–th site
 - m_{iF} = number of daily observations used from FRM at i-th site in bias correction
 - m_{iC} = number of daily observations used from continuous monitor at i-th site in bias correction
 - M = total number of observations used in bias correction
 - s = $(F_b^2 + \$^2) r^2$, where \$ is slope of bias correction, F_b is standard error of slope estimate, and r is ratio F_c/F_f , where F_c^2 is continuous measurement error
- Recall, $\sigma_b^2 = \frac{\sigma_1^2}{M} + \sigma_2^2$ Battelle

V* Example

- ⁿ Consider 4 FRM and 4 continuous monitors
- n Assume daily data collected as:

	is.frm	n.mean	n.reg
F-1	1	120	0
F-2	1	120	120
F-3	1	60	0
F-4	1	60	60
C-1	0	240	0
C-2	0	240	120
C-3	0	120	0
C-4	0	120	60

- n First 4 lines correspond to FRMs
- n F-2, C-2 co-located and F-4, C-4 co-located

Battelle

V* Example (continued)

ⁿ Suppose \$=1, $se(\hat{\beta}) = 0.05$, and $(F_C / F_F) = 1$ then correlation matrix from V* is:

- n F-i, F-j un-correlated
- n F-2 and F-4 correlated with C-i
- n C-i, C-j all correlated

Battelle

V* Example (continued)

ⁿ Suppose $F_F = 0.1$, then V^{*} diagonals are:

F-1	F-2	F-3	F-4	C-1	C-2	C-3	C-4
0.00913 0	.00913	0.0129	0.0129	0.0124	0.00987	0.014	0.0118

- F-diagonals vary due to different number of daily observations ONLY
- C-diagonals vary due to different number of daily observations AND whether or not co-located.

V* Properties

- n As desired, penalizes for:
 - Smaller number of daily observations
 - Smaller number of co-located FRM sites
 - Continuous monitor not being co-located with FRM (0-1)
 - TOTAL error in bias correction
- Accounts for correlation induced by real-world bias correction process

Summary

- n Interested in MSPE of BLUP for network evaluation
- n MSPE = $f(W, V^*)$
- n W = variability in true spatial process
- $V^* = uncertainty in measurement process$ $= f (sample size, measurement errors, true area-wide bias, <math>\sigma_b^2$)
- σ_{b}^{2} = error in bias estimation/adjustment
 - = f (sample size, measurement errors, heterogeneity in site-to-site or monitor-to-monitor bias)

Prediction

- n To predict Y-process at new site, S', BLUP of $Y_{s'}$ is: $p_{s'} = x_{s'} g + c_{s'} E^{-1} (Z - Xg)$
- n Where $E = V^* + W$

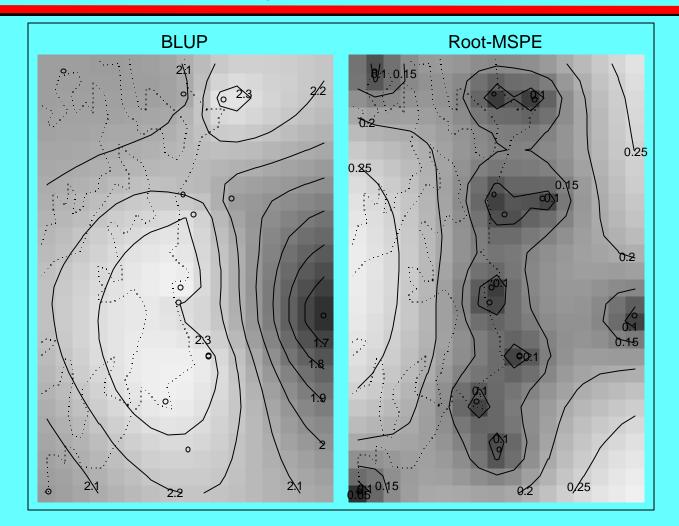
n MSPE of BLUP can be written as:

$$MSPE(p_{s'}) = Var(p_{s'} - Y_{s'}) = Var(Y_{s'}) + Var(p_{s'}) - 2 Cov(P_{s'}, Y_{s'})$$

= Var(Y_{s'}) + P_{s'} E P^{*}_{s'} - 2 P^{*}_{s'} c_{s'}
= Var(Y_{s'}) + P_{s'} V* P^{*}_{s'} + P_{s'} W P^{*}_{s'} - 2 P^{*}_{s'} c_{s'}

Parameter Estimation (FRM, TEOM)

- ⁿ Use data at hand to estimate unknown parameters in W and V*:
 - Restricted maximum likelihood (REML) in S⁺ applied to 14 sites of FRM annual averages yields σ_F^2 and W (spherical spatial correlation, no nugget effect)
 - Linear mixed model fit by REML in S+ applied to co-located FRM, TEOM daily data yields '' , \$, and σ_b^2
 - Can obtain σ_{C}^{2} a number of ways
 - Combined with a given network specification, yields MSPE for a mixed "network" of FRMs and continuous


Results – FRMs Only

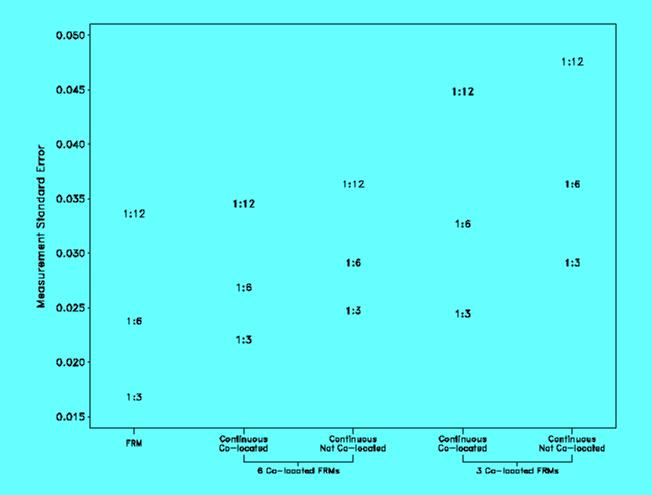
- ⁿ Fit model to 14 sites of FRM annual averages
- n Yields estimates:
 - $\sigma_{\rm F}^2 = 0.034$
 - $\sigma_{W}^{2} = 0.078$
 - Range = 70.5 kilometers
- n Summary Statistics

Min.1st Qu.MedianMean3rd Qu.Max.BLUP 1.600002.0662.15802.14602.25202.375root-MSPE 0.046320.1510.18270.18380.22030.287

Results – FRMs Only (continued)

Results – Bias Correction

- ⁿ Fit mixed model to daily co-located FRM, TEOM data
- n Yields Estimates:
 - **"** = -0.474, **\$** = 1.182
 - $\sigma_{\mathbf{C}}^2$ (unadjusted) = 0.011
 - $\beta^2 \sigma_C^2$ (bias adjusted, \$ known) = 0.015 (se **8**18%)
 - $(\sigma_b^2 + \beta^2)\sigma_C^2$ (bias adjusted, \$ unknown) = 0.016 (se 822%)
 - $(\sigma_b^2 + \beta^2)\sigma_c^2$ (bias adjusted, \$ unknown, site-to-site variation) = 0.024 (se 848%)



Results – Bias Correction (continued)

530310003			······		
530330080			······		
530611007				·····	
530610005				·····÷	
530330027			·····		
530330024				······	······
530330057					······∆·+·
530330021					
530330017					
530332004					• •••••••••
530330033					····· <u>A</u> ··+·····
530530031					······································
530531018					
530670013	_		·····		
	1.6	1.8	2.0	2.2	2.4
FRM TEOM-orig TEOM-corr	○ + △	bias-corrected log-PM2.5			

Results – Bias Correction (continued)

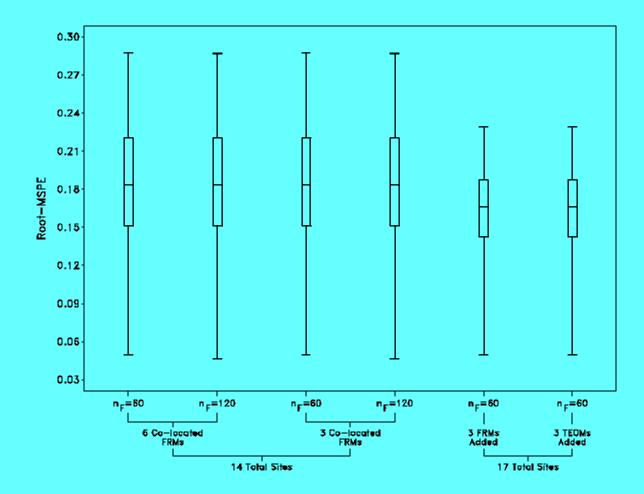
Results – FRMs and TEOMs

- ⁿ See results from FRM-only model (virtually identical)
- n Why is that ?
 - Propagation of error (good !)
 - Continuous versus FRM sample sizes (not representative)

Results – FRMs and TEOMs (continued)

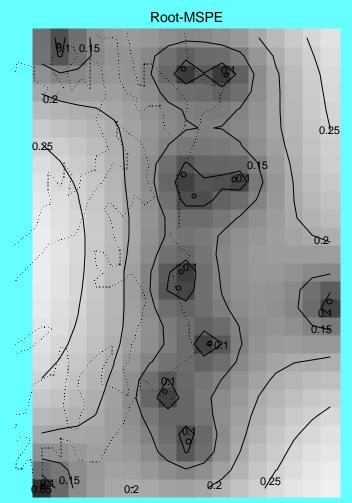
530310003			····· ·		
530330080			····· · ····		
530611007				······	····-
530610005				······	
530330027			······ q ·····		
530330024				·······	- P
530330057					·····A···
530330021				····· 4	
530330017					
530332004					- G
530330033					····
530530031					·····Δ···
530531018				····· +···	
530670013			·····		
	1.6	1.8	2.0	2.2	2.4
FRM			log-PM2.5		
TEOM-corr	Δ		10g T 112.0		
Pred	+				

Results – Alternative Designs

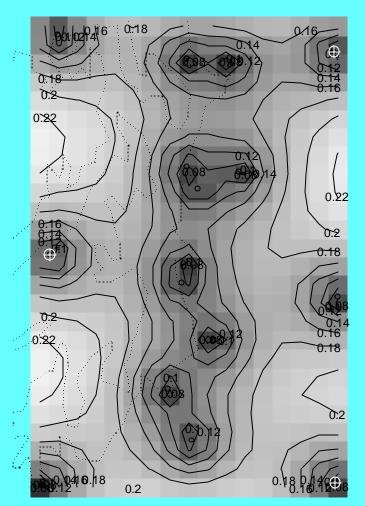

- ⁿ Current network of 14 FRMs with 6 co-located TEOMs
 - $n_F = 60 (1:6)$, $n_C = 360$ 6 14 total sites
 - $n_F = 120 (1:3)$, $n_C = 360$ 6 14 total sites

Remove 3 of the co-located FRMs

- $n_F = 60 (1:6), n_C = 360$ 6 14 total sites
- $n_F = 120 (1:3)$, $n_C = 360$ 6 14 total sites
- n Add 3 new monitoring sites
 - 3 FRMs, $n_F = 60 (1:6)$, $n_C = 360$ 6 17 total sites
 - 3 TEOMs, $n_F = 60$ (1:6), $n_C = 360$ **6** 17 total sites



Alternative Designs (continued)


Alternative Designs (continued)

Root-MSPE for 14 sites

Alternative Designs (continued)

Root-MSPE for 17 sites

Wrap-Up

- ⁿ The machine is built.
- n Tweaks to consider:
 - Approach to parameter estimation
 - Network of multiple continuous types
- ⁿ Scenarios to explore:
 - Many network alternatives
 - Numerous sensitivity analyses
 - Quarterly average time scale
 - Cost implications
 - Areas other than Puget Sound

