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INTRODUCTION 

State and local air pollution control agencies have begun


implementation of an ambitious new program (Federal Register,


1993) to monitor ozone precursors in ozone nonattainment areas


designated as serious, severe or extreme. In addition, the new


network of Photochemical Assessment Monitoring Stations (PAMS)


will supplement existing monitoring networks with new data on air


toxics and meteorological measurements needed to interpret


pollutant transport and accumulation. Data from the PAMS network


will provide air quality planners with vital new information


needed to understand and control ozone precursors and toxic


organics more effectively.


PAMS data will ultimately be used to meet a variety of


specific data objectives such as corroboration of emission


inventories, refinement of model inputs, and empirical evaluation


of trends and ozone precursor relationships. Preliminary data


analysis plans have been proposed (Stoeckenius T. E., et. al,


1994) for beginning such analysis, with emphasis on first steps


to explore and evaluate the consistency of VOC species. 


The purpose of this workbook is to describe exploratory data


methods useful in preliminary investigation of data collected


from PAMS. In essence, this workbook illustrates a condensed


sampling of "first look" analyses which will become part of a
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much broader set of analytical approaches to achieve stated PAMS


objectives. Since many of the specific analytic methods are


presently evolving, supplementary guidance will be provided as


these data analytic methods mature. While the methods in this


workbook are not new (Hoaglin, et.al, 1983 and 1985), they have


been tested (Stoeckenius T. E., et. al., 1995) and should prove


useful in evaluating data consistency and potential data


"outliers".


The analysis and graphics were produced using SAS (SAS


Institute, 1993) or S-PLUS (Mathsoft, 1993) running on a 486-


based PC under Microsoft Windows 3.1. SAS was used because it is


supported by EPA while S-PLUS offers a less-expensive alternative


with a wide range of robust statistical methods useful in


exploratory analysis.


Since the emphasis is on exploratory analysis, the graphics


shown in the workbook are not "presentation" quality. Most of


the graphs are typical of those that might be produced through


interactive analysis at a terminal followed by production of a


working "hardcopy" for subsequent review by other analysts.


The reader is assumed to have some knowledge of the PAMS


program and the type of data produced. The data used in this


analysis were collected at a "type 2" PAMS site in Baltimore


Maryland during the summer of 1993. The raw hourly data were


retrieved from AIRS and manipulated for input into SAS and S-PLUS


using standard data reduction utilities.
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Because of the size of the collected data base (e.g. over 60


organic species) only selected species or species combinations


were included in these examples. For convenience, a scheme


proposed for analysis of data measured in Atlanta (Cohen, 1992)


was used: acetylene, ethylene, olefins--(the sum of butenes and


pentenes), isoprene, toluene, xylene--(the sum of three related


species), benzene and total non-methane organic compounds. In


addition, hourly concentrations of ozone, NO, NOx, NO2 and CO


were included along with available hourly meteorological


parameters.


The workbook begins with examples of graphical methods for


summarizing PAMS data completeness. Next, simple procedures for


illustrating diurnal patterns are pursued, with the view that


typical diurnal patterns define a frame of reference for


detecting some types of data anomalies. This is followed by


examples of methods for comparing organic concentrations among


data categories including weekend vs weekday differences. 


Methods for factoring out meteorology are illustrated, including


use of species ratios and simple statistical models that relate


species concentrations to selected meteorological parameters. 


Next, multivariate cluster methods are illustrated for


interpreting the interrelationships among organics and for


detecting potential data outliers. Finally, a section is


included on methods to investigate the relationships between


ozone and meteorological parameters and organic species.
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While most of the examples appear to confirm what we already


know about basic species relationships, exploratory methods offer


an approach for developing new hypotheses where data do not


appear to support our current understanding. Because 1993 was a


"start-up" year, discovery of data anomalies should come as no


surprise. As the PAMS monitoring program matures, we also would


expect for such anomalies to become less frequent. It is


important that the results from exploratory analysis be made


available to monitoring operators and quality assurance


specialists to ensure that steps are taken to upgrade the overall


quality of PAMS data.


DATA COMPLETENESS 

We begin the analysis by examining simple graphical methods


to display data completeness. The intent is to quantify overall


success in reporting data for the entire monitoring period but


also to focus on patterns of missing data that may affect


subsequent data interpretation. This task is somewhat


challenging because of the large number of hourly parameters


evaluated (approximately 20 for this analysis) and the relatively


long span over which data are collected (24 hours per day for 90+


summer days).


Figure 1 consists of side-by-side box plots of the number of


hours reported per day for each component or species at the
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Maryland PAMS site. The median number of hours reporting per day


is indicated by the dark line at the center of each box plot. 


The wide shaded areas span the distance between the 25th and 75th


percentiles (interquartile range). The narrow shaded areas


(whiskers) extend from the quartiles up to a distance equal to


1.5 times the interquartile range. Values outside this latter


range are indicated as isolated dots.


For the organic species, the median number of hours reported


across the three months (92 days) is approximately 17 per day. 


Xylene is the exception having a median reporting rate of only 9


hours per day. For the other continuous pollutant measurements


(Ozone, NO, NO2, NOx and CO), most days are relatively complete


(median approximately 23 per day). The meteorological parameters


are also relatively complete with the exception of relative


humidity for which few measurements have been reported. While


these boxplots provide a good overview of data completeness, they


do not show which times of the day (e.g. morning vs afternoon)


are most problematic.


Figure 2 is an array that illustrates missing ethylene data


by hour of the day (horizontal-axis) for each July day (vertical-


axis) at the Maryland PAMS site. From this array, it is easy to


identify periods of the day which are more apt to have missing


data as well as any trends in data completeness among days of the


month. For July, reported ethylene values after July 4 appear
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relatively complete, except for a tendency towards missing values


during the morning hours.


The ability to detect relationships among species may be


seriously affected when the quantity of missing data is large or


when missing data among species occur at different times. 


Although we do not illustrate the process here, it should be


relatively easy to identify concurrent patterns of missing data


that may present problems in analysis by simply overlaying these


arrays for two or more parameters of interest.


For this particular data set, most hours (refer also to


figure 1) reported either all of the organic species (except


xylene) or none. Thus, analysis to examine the interrelationship


among organic species is not limited by missing values for any


single species but by the general availability of organic data


for each candidate hour. Furthermore, since the non-organic


components are relatively complete, data interpretations


involving organic and non-organic species are limited by the


availability of the organic species.


DIURNAL PATTERNS 

Most of the pollutant species measured through the PAMS


program are known to have well defined diurnal cycles that are


related to both source activity (e.g. traffic) and familiar


diurnal meteorological patterns. Figure 3 shows an example of
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those diurnal patterns using the PAMS data taken at the Baltimore


site in 1993. Each panel contains 24 box plots corresponding to


each hour of the day. The panels are grouped by parameter type,


i.e., organic species (figure 3a), in-organic species (figure 3b)


and meteorological parameters (figure 3c).


Box plots for organic species (figure 3a) appear to indicate


clearly defined diurnal trends in spite of being quite noisy. 


Median values for each species, except isoprene, show a tendency


for higher morning and evening concentrations. These patterns


appear to coincide with typical diurnal meteorological


conditions, i.e., higher measured concentrations during peak


traffic hours when wind speeds and vertical mixing are relatively


low and lower measured concentrations during mid-day when traffic


is light and vertical mixing is greatest. Relatively extreme


concentrations occur sporadically among all hours for acetylene,


olefins, toluene and xylene. For ethylene and isoprene the most


notable extremes appear to be confined to the mid-morning hours.


Box plots for non-organic species (figure 3b) are also quite


noisy with the exception of ozone. Diurnal patterns for ozone


are relatively smooth with characteristically low values in the


early morning hours followed by highest values in early to mid-


afternoon hours. Mean diurnal patterns for NO and NOX indicate


low values during mid-day hours and highest values during early


morning and later evening hours. For CO, the more typical
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concentrations have a pattern similar to NO, although peak levels


from mid-day on appear somewhat unusual.


Box plots for meteorological parameters (figure 3c) are well


behaved and exhibit familiar diurnal patterns. In Baltimore,


wind speeds rise steadily during morning hours and peak in early


afternoon. As expected, surface temperature and solar radiation


closely track the daily solar cycle. Relative humidity (though


the quantity of data is limited) is typically highest in early


morning and late evening and lowest during the mid-day hours


reflecting the general inverse association with temperature.


With these typical patterns in mind, we examine diurnal


patterns for individual days to evaluate daily consistency and to


expose potential problems with the quality of the individual


values. Using SAS/INSIGHT, a graphic panel similar to that shown


in figure 3a, was generated for each day. By "paging" through


the results for each of the 92 summer days, it is relatively easy


to spot patterns that stand radically apart from the more typical


patterns shown in figure 3.


For example, figure 4 shows diurnal patterns for August 14


in which one particular hour (hour 10) stands apart from rest of


the day. For isoprene, the concentration reported for that hour


(252 ppb) is more than 15 times larger than any other hour


reported on that day. Moreover, each of the other five organic


species reports the highest value for hour 10, usually exceeding


values for each adjacent hour by over a factor of 10.
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Figure 5 shows a similar plot for CO on four consecutive


days (July 9-12) for which the pattern of CO values appear quite


unusual. On each day, reported CO levels ramp upward


periodically with uncharacteristic discontinuities in early


morning and evening hours. Levels of CO on these days are


considerably higher than any other day for which CO data is


reported.


Examination of daily diurnal patterns in each parameter


(including meteorological), should be routinely performed as a


preliminary quality control check on the data. If such data are


confirmed to be incorrect, clearly they should be deleted before


the data base is used in any subsequent analysis.


COMPARISONS AMONG ORGANICS 

The relationship among the various species is largely


governed by hour-to hour and day-to-day variations in source


activity levels, atmospheric dispersion and, during daylight


hours, photochemically driven transformations. Because the


process is so complex, we will focus initially on the organic


species for a time period during the day when concentrations are


relatively high. Hour 6 (5-6 AM average) was chosen for this


purpose, since data for this particular hour are relatively


complete and not affected by photochemical processes occurring


later in the day.
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Figure 6 shows frequency distributions of acetylene and the


logarithm of acetylene using the hour 6 concentration values. 


The distribution based on logarithms removes the apparent


skewness and thus mitigates the impression that the largest


values are an "outliers" in some sense. Furthermore, the q-q


plot for the log values appears straight and provides support for


the notion that acetylene (and perhaps other organic species) are


approximately log-normally distributed. Approximate log-


normality of organic species was also established in other


analysis (Stoeckenius T. E., et. al., 1995) using data from the


Houston area. The log-normality assumption will become an


important consideration later on as we explore and test


hypotheses regarding differences between weekday and weekend


concentrations.


Figure 7 shows side-by-side boxplots for six of the organic


species using the hour 6 Baltimore PAMS data. In this case, the


data are all plotted using the same concentration scale, making


it easy to compare the relative magnitude and distribution of


values among species. Median concentrations of xylene and


toluene (approximately 12 ppb) are largest followed by ethylene


and acetylene (approximately 4 to 5 ppb), olefins (approximately


2 ppb) and isoprene (1 ppb). The distributions are slightly


skewed as indicated by the tendency toward a few isolated large


values. Again, a log-transformation of these data would probably


remove this apparent skewness.
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Side-by-side boxplots are also useful for comparing


distributions for different data subsets. For example, figure 8


compares the distribution of acetylene on weekends (Saturday and


Sunday) vs weekdays. Since acetylene is strongly associated with


vehicle emissions (Scheff P. A., et. al, 1989), it is not


surprising to find that acetylene values are lower on weekends


when morning traffic would be expected to be relatively light


compared to weekdays. For xylene, median values on weekdays and


weekends are the roughly the same although there appears to be


greater scatter on weekend days. Differences between acetylene


and xylene weekday to weekend patterns are not surprising since


sources other than traffic (e.g. solvent usage) can contribute to


the total observed xylene concentration. 


Because meteorology has such an important affect on


pollutant concentrations, variations in meteorological conditions


should be considered before drawing any conclusion about weekday


vs weekend differences. A major reason for including


meteorological variates in such analysis is to reduce any bias


caused by the coincidental occurrence of favorable meteorology


with the effect being examined. For example, if weekends were


unusually windy, lower concentrations due to dilution might


erroneously be ascribed to lower traffic emissions on Saturdays


and Sundays. Another reason for including meteorology is to


lower the residual variance used in judging the significance of


the weekday-weekend effect. In the next section, we will discuss
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how meteorological effects might be statistically modeled so that


inferences may be drawn about differences in concentration levels


among data categories (i.e., weekend vs weekdays).


METEOROLOGICAL INFLUENCES ON ORGANICS 

Fluctuations in meteorological conditions are known to play


an important role in affecting measured concentrations. Since


meteorology affects different pollutants in different and


sometimes complex ways, it may be difficult to confirm suspected


relationships with limited data. Nevertheless, simple


exploratory methods may be useful, especially for less reactive


pollutants or during periods when photochemical activities are


not dominant.


Figure 9 shows pairwise scatter plots between acetylene and


xylene and three of the meteorological parameters (wind speed,


wind direction and temperature), again using the data for hour 6. 


Both acetylene and xylene appear to have a strong inverse


relationship with early morning wind speed and a very weak


relationship with temperature and wind direction. Of the other


two meteorological variables, relative humidity is only available


for 1-2 percent of the hours while solar intensity is not a


factor for this time of day.


Based on the appearance of these graphs, a simple log-linear


model was used to describe morning acetylene as a function of
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wind speed along with a categorical variable (ie. weekend and


weekday) to account for differences between weekdays and weekends


(refer back to figure 8). The results, summarized in figure 10,


show that wind speed and weekday-weekend differences explain


approximately 67 percent (R-Square=0.67) of the variation. 


Because the log of acetylene is modeled, the parameter estimates


may be interpreted as the fractional change in acetylene per unit


change in the independent variable (weekday or wind speed). For


example, the parameter estimate for wind speed is -0.38 which


means that for every 1 meter/sec increase in wind speed,


acetylene decreases by approximately 38 percent. Of greater


interest, is the fact that weekday values of acetylene, adjusted


for wind speed differences between weekend and weekdays, are


typically 60 percent higher than values on the weekends. 


Although the sample size here is relatively small (52 values),


the difference in concentrations between weekdays and weekends is


statistically significant. The model fits the data reasonably


well as indicated by the close linear fit between the observed


and predicted values and the linearity of the log-normal q-q


residual plot. Although refinements are possible (e.g., a plot


of the residuals vs wind speed would be an appropriate diagnostic


check), a simple model of this type might be an adequate starting


point for building more complex models to explain interspecies


differences (and similarities) within an area.
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SPECIES RATIOS 

Another way to seek normalization of meteorological (and


other) effects, is through use of ratios of selected species. 


For example, the ratio of individual VOC species components to


TNMOC and the ratio of TNMOC to NOx have been suggested as


meaningful. The presumption is that differences in the ratio


among contrasting data subsets (e.g. weekends vs weekdays) are


dominated by differences among source and emission


characteristics, since meteorological effects (e.g. wind speed)


common to each ratio component are factored out in the


calculation of the ratio.


As an example, Figure 11 shows two graphs using the ratio of


TNMOC to NOx. Overall, the median ratio among the 50 data values


is approximately 6. Although not illustrated on these plots, two


"outliers", early in the sampling period (June 1 and 3) have been


removed. The graph on the left indicates that the ratio is more


or less independent of wind speed, at least for the morning


values. This suggests that the ratio has served the purpose of


factoring out the effects of wind speed on each component.


The graph on the right, shows the ratios in the form of box


plots for each weekday, beginning with Sunday (Wkday=1) and


continuing through Saturday (Wkday=7). Although the dataset is


very small, (approximately 7 values per day), there is a hint


that ratios on Sundays are slightly higher than other days of the
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week. Again, the statistical significance of the day-to-day


differences could be tested using procedures similar to those


described earlier in testing for weekend vs weekday effects for


acetylene.


In a sense, use of ratios represent a simplification of more


sophisticated methods involving source apportionment that lie


outside the scope of this document. The following discussion


will focus on a more generalized method (multivariate) for


examining the interrelationships among species. The view is


toward trying to explain how day-to-day covariations among


certain species may be used to infer common underlying factors or


causes.


MULTIVARIATE METHODS 

Because many of the organic pollutant species originate from


the same source category, we would expect to see a statistical


association among those species as source activity and


atmospheric dispersion varies over time. Figure 12 is a matrix


scatter plot using the data for hour 6 at the Baltimore site. 


Isoprene was omitted from this plot since values are generally


very low during this time period.


Acetylene and ethylene appear highly correlated with each


other but less so with other species. Presumably, this strong


association is in part due to gasoline combustion and resulting
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vehicle emissions. Likewise, xylene, toluene and benzene also


appear highly correlated with each other and less so with other


species, presumably because they result from several common


sources including both combustion, complete evaporation of raw


gasoline, and other evaporative sources. Olefins, which also


originate from vehicle related emissions, appear to be positively


correlated with acetylene and ethylene and to a lesser degree


with xylene, toluene and benzene. 


Cluster analysis is one of several multivariate technique


well suited for examining interpollutant relationships and


helpful in identifying potential data outliers. Many of the


popular clustering techniques begin with a single cluster that is


essentially a linear combination of the variables used in the


analysis. The second step breaks the initial single cluster into


two separate clusters where each cluster is composed of one or


more of the original variables. At this stage, all of the


variables have been assigned to one of two clusters (groups) that


hopefully "explain" a large portion of the combined variation of


all of the original variables. The process continues by breaking


each subsequent cluster into smaller clusters of variables until


an objective stopping criteria is met. Variables (species) that


are common to a given cluster are generally highly correlated


with one another and have less (but still possibly large)


correlation with variables in other clusters. 
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Figure 13 illustrates the outcome from application of a


hierarchical clustering technique using the organic data. The


vertical axis (reading from the top) indicates the proportion of


the total variance explained by 1 cluster (86 percent), 2


clusters (93 percent) and finally 3 clusters (98 percent). In


this case, the large fraction (86 percent) of the total variation


explained by only 1 cluster reflects the large positive


correlations that exists among the 6 species. These large


positive correlations in turn reflect common source (e.g.


vehicular emissions) and meteorological influences that affect


all species simultaneously. The second step results in two


clusters--one cluster, containing ethylene, acetylene, and


olefins, and the second cluster, containing xylene, benzene and


toluene. These two clusters represent subtle but distinct


"signals" that are probably related to the impact of two (or


more) source categories. For example, cluster 1 could represent


roadway emissions since the three components are strongly related


to gasoline combustion from vehicles. Cluster 2 is perhaps more


difficult to interpret but probably reflects a combination of


events related to evaporative losses and combustion.


In the third step, olefins break apart from the acetylene-


ethylene cluster to form a single species cluster. It is not


clear what signal (if any) is being sent at this point. Clearly,


had more of the original species been used (and more days of data
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been available), three or more interpretable clusters could have


easily emerged.


Since clusters are essentially weighted averages of the


variables within each cluster, a cluster score can be computed


using the scoring coefficients and the individual (normalized)


concentrations. In effect, the scores represent the presence or


strength of that cluster for that particular day. Figure 14


shows the scatter plots of the three cluster scores along with


several rotated three-dimensional plots. From these plots, no


values appear radically apart from the overall body of data. In


the event that one or more cluster scores appear to be


"outliers", the contributing species values for that day should


be investigated further to determine if the underlying data is


potentially erroneous or whether the extremes might simply be


related to unusual or unexpected source activity associated with


that day (e.g. gasoline spill, etc).


This multivariate approach closely resembles many of the


techniques used in receptor modeling (e.g., Henry R. C., et. al.,


1994) to distinguish and apportion contributions from various


emissions sources to observed data. We anticipate that


application of more refined approaches, using a more complete


suite of VOC species, will result in more informative and


quantitative assessments of source contributions.
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OZONE RELATIONSHIPS 

Hourly ozone levels typically peak sometime between early to


late afternoon at most monitoring sites in the U.S. From


previous analysis of national weather and state reported ozone


data over the past decade, the relationship between peak daily


ozone levels and a variety of meteorological conditions has been


well established (Cox and Chu, 1993). Since the PAMS program


provides for similar measurements, it seems reasonable to explore


the relationship between daily ozone and meteorology at PAMS


sites and to compare results with historical results where


appropriate.


Figure 15 is a matrix scatter plot using daily maximum 1-


hour ozone and several daily meteorological parameters derived


from the Baltimore PAMS data. The ozone plots (top row), suggest


that the log of daily ozone has a strong positive association


with daily maximum temperature, a moderately strong inverse


association with morning average wind speed and a weak positive


association with mid-day average solar radiation. Note also that


solar radiation and temperature appear to have a weak positive


association.


Using standard linear regression methods, a log-linear model


was used to fit daily maximum ozone as a function of daily


maximum temperature, wind speed and solar radiation. The results


suggested that only temperature and wind speed were important
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predictors of ozone. Solar radiation was insignificant, probably


due to the overwhelming dominance of the ozone and temperature


association. Figure 16 summarizes the relationship along with


partial regression plots of the two significant predictors. 


Since a log-linear model was used, we may interpret the


regression coefficients as a fractional change in ozone per unit


change in the independent variable. In this case, daily ozone


increases approximately 2.5 percent for each 1 degree (F)


increase in temperature and decreases by approximately 8 percent


for each 1 m/s increase in wind speed.


These results compare reasonably well with historical


analysis (e.g., Cox and Chu, 1993) using ozone monitoring in the


Baltimore area over the period from 1981-1991. The coefficients


for both temperature (0.025 vs 0.032) and morning average wind


speed (~ -0.08 vs -0.06) are quite close to one another. As data


from additional sites and years become available, the


significance of such comparisons may take on greater meaning.


Finally, the regression model was modified to include


selected organic species (hour 6) to determine if additional


variation in ozone could be explained. For these limited data,


no organic species has a statistically significant relationship


with ozone for reasons that we may only speculate on at this


point.
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SUMMARY 

Data produced from the PAMS monitoring program will provide


valuable new information needed by air quality planners to more


effectively control ozone precursors and toxic pollutants. The


purpose for this workbook has been to provide a quick overview of


exploratory methods useful in preliminary investigation of PAMS


data prior to more extensive analysis to support specific data


objectives. Graphical methods are emphasized as being


particularly useful for examining the shape of data distributions


and for detection of potential outliers. Likewise, graphical


displays of diurnal patterns define a useful frame of reference


for detecting certain types of data anomalies. Side-by-side


boxplots provide for simple visual comparisons among pollutant


species and help in revealing differences in concentration levels


that may be attributed to differences in categories of source


activity (e.g., weekend vs weekday). Methods for incorporating


meteorological data into the analysis of ozone and species


relationships may prove useful for removing potential bias and


for increasing the power associated with specific hypotheses of


interest.
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