The Role of QA in Determination of Effects of Shipping Procedures for PM2.5 Speciation Filters

Dennis Crumpler
US EPA OAQPS EMAD
Before the
24th Annual National Conference on Managing Quality Systems
April 13, 2005
Overview

- The Evolution of the shipping study
- The Data Quality Objectives
- The Measurement Quality Objectives
- The Data Starts to Speak
- The Lessons Learned
Why is the Shipping Study Important?

- The current PM2.5 speciation trends and supplemental network annual shipping bill: $1,600,000
- EPA Budget shrinking
- National Monitoring Strategy evolving
- Speciation QA program beefing up
Whoa!!!! Speciation? What are We Talking About?

- PM2.5 Chemical composition
- 24 - hr. integrated filter samples-3 media
- Multiple analyses
 - Gravimetric
 - Chromatographic
 - X-ray fluorescence and Thermo optical
- Results used for pollutant source attribution in SIP development
What Makes Speciation Shipping Expensive?

- ~250 sites collecting filter samples
 - 1 in 3 day or 1 in 6 day sampling -50/50
- Cold shipping requirement
 - Coolers with ice packs - 35 lbs (16 kg)
 - Overnight delivery
 - Both Ways
 - Average $40 per cooler one way
Why ship cold?

Prevent losses of semi-volatiles?
How to Attack the Question

Devise a study where we can limit variables to just the procedure by which the sample filters are shipped.

Seems simple enough............

Doesn’t it ???
What are the Challenges

- Three different filter media: Teflon, Nylon, Quartz
- Which Sites do we pick
 - Lab vs reality?
 - Dominant Semi-volatiles: nitrates and organics
- Time!! – limited windows for optimum effect
- Money!! – adequate number of events $$$
- Quality!! – Instrument variability; operators’ experience and expertise
The Study

| Sites: dominant pollutants | Atlanta: sulfates, organic carbon
| | Riverside, CA: nitrates
| | Tacoma, WA: woodsmoke carbon
| Instruments | 2 Collocated Metone™ SASS
| Channels per filter media | 1-2, 2-1 Teflon alternating days
| | 2-1, 1-2 Nylon alternating days
| | 2- Quartz
| Target no. sampling events | 30 24-hr periods

Data Quality Objectives

First approximation – reliance on network data for collocated instruments

<table>
<thead>
<tr>
<th>Species</th>
<th>Collocated Average (Abs Rel Diff)</th>
<th>Lab Average (Abs Rel Diff)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>9.3%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Organic C</td>
<td>14.2%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Sulfate (IC)</td>
<td>8.2%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Courtesy of James Flanagan, et.al., Ref 1.
Decision Points

Differences in measured pollutant concentrations would constitute a discernable and significant impact by ambient shipping if the values were at the 95% confidence limit:

- >10% for mass,
- >15% for nitrate and ammonium,
- >20% organic carbon, and
- >7% for sulfate.

Ref [2], [3], [4]
The Lynch-pin of the Study: Measurement Quality Objectives

- Flowrates 6.7 l/min
- Paired Channel Concentrations within network collocated values
Measurement Quality Control

- Careful Instrument installation and calibration
- Operator Training
- Weekly Flowchecks and recalibration
- Trip and Field Blanks
- Skipped rainy days
Gravimetric Mass: Cold vs Ambient Shipping

Using Averages of paired channels against a single

\[y = 0.9995x + 1.2087 \]

\[R^2 = 0.9434 \]
Comparison of Channels 2 & 3 Collecting Total Mass Shipped Cold and Ambient

Compared Channels 2 & 3 on each instrument when loaded with Teflon Filters

Cold-Shipped
Slope = 0.926
Intercept = 0.417
$r^2 = 0.977$
RSD = 0.044

Ambient-Shipped
Slope = 1.044
Intercept = -1.51
$r^2 = 0.983$
RSD = 0.048 ug/m³
Comparison of Sulfates on Channels 1 & 2
Nylon Filters

Channel 1 (ug/m³)

Channel 2 (ug/m³)

Cold shipped
\[y = 0.9977x + 0.2183 \]
\[R^2 = 0.9971 \]
Sulfate from Cold- vs Ambient-Shipped Nylon Filters

\[y = 0.9737x - 0.0017 \]

\[R^2 = 0.9897 \]
Lessons Learned

- The DQO process helps design the study
- Setting and diligently pursuing MQO’s is crucial to getting believable results
 - Make sure the instrumentation is completely serviced
 - The Data Quality Assessment can reveal things about the network
 - Weather can be a huge determinant factor
- Scope of this kind of study is a challenge logistically
 - Labor, materials and hardware (boxes), scheduling
Conclusions

- Appears Instruments sampled consistently on Nylon and Teflon Channels (#1-3)
- Some loss of mass does seem noticeable, but the difference appears to be within network variability DQOs.
- Sulfates do not appear to affect loss of mass
- More analysis of the Nitrate and carbon losses and variability should be conducted
References

