PM$_{2.5}$, Air Toxics, And Crankcase Emissions In The Truck Stop Environment

November 5, 2009
National Ambient Air Monitoring Conference
Nashville, Tennessee

John Storey, Jim Parks, and Teresa Barone
Fuels, Engines, and Emissions Research Center

storeyjm@ornl.gov
865-946-1232
Acknowledgements

- This work supported by the NTRC, Inc. with CMAQ funds ultimately from FHWA
- Collaboration with UT – Dr. Terry Miller et al.
- Dr. James Eberhardt and DOE’s Office of Freedom CAR and Vehicle Technologies’ Environmental Sciences Program provided support for the WRELI initiative
- EPA Office of Transportation and Air Quality provided some support for the crankcase emissions study
Average Annual Daily Truck Traffic

Source: Federal Highway Administration (DOT) [www.dot.gov/freight/]
Average Annual Daily Truck Traffic …
Expected to Grow

Source: Federal Highway Administration (DOT) [www.dot.gov/freight/]
Tennessee Truck Traffic

AADTT: Average Annual Daily Truck Traffic

1998

2020

Estimated Average Annual Daily Truck Traffic: 1998

Estimated Average Annual Daily Truck Traffic: 2020
Aerial view looking South

- Region in non-attainment for PM$_{2.5}$, near non-attainment for ozone
Why study the Watt Road interchange?

- Confluence of I-40 and I-75 for twenty miles
- Heavy commercial truck traffic (~20K/day)
 - FHWA interested in traffic influences on PM
- Multiple over-nighting facilities for Class 8 trucks, including truck stop electrification
 - CMAQ project interested in seeing effects of TSE
- Proximity to ORNL/UT
Watt Road-Interstate 40/75 Interchange

Elevation Exaggeration=3x

Weigh Station

Watt Road-I-40/75 Interchange

Three Major Truckstops
Air Quality Studies: Location of Roadside, Truckstop, and Ridgetop (Background) Sampling Points

- **Roadside**
 - Elevation: 877 ft
- **Truckstop**
 - Elevation: 920 ft
- **Ridgetop (Background)**
 - Elevation: 1182 ft
- **Idleaire Installation**
Idling Trucks at Truckstops are Largest NOx and PM2.5 Contributor to Roadside Air Quality (Interstate Off Ramp)

- Combination of data used to determine contribution of idling trucks to air quality at ramp site near roadway
 - NOx, PM Monitoring
 - Meteorological Data
 - EPA’s MOBILE 6.2 Emission Factors

- Despite >20,000 Trucks per day traveling interstate near interchange...
 - 100s of Idling trucks dominate the NOx and PM2.5 right next to the interstate
 - Traffic on interstate free-flowing for this study
Hot Spot” of High Pollutant Levels Formed by Idling Trucks at Truck Stops Near Roadway

- Truckstops form “Hot Spots” of poor air quality
 - NOx, PM, MSATs elevated

- Boundary of “Hot Spot” difficult to define
 - Dependent on number of factors

- Recent health risk studies link higher risk to residency near roadways

- Further studies of “Hot Spots” warranted
 - Health impacts of 2007/10 technology introduction
Measured NO and NO$_2$ well above NAAQS for NO$_2$

Monthly Mean NO and NO2 Concentrations at Trailer #1

chart courtesy of Dr. Terry Miller, UT
Measured Formaldehyde exceeds minimum risk level often
Mobile Source Air Toxics: Air Quality Near Truckstops

- High Concentrations of Formaldehyde and Acetaldehyde observed at truckstop especially in winter

- Formaldehyde may transport to roadside and background in winter

![Graph showing concentrations of formaldehyde and acetaldehyde at different locations: Truckstop, Roadside, and Background. The graph indicates higher concentrations in winter compared to summer.]
Year-round PM$_{2.5}$ levels at the truckstop exceed EPA’s required annual average.
24-Average PM2.5 Concentrations at Trailer #2

Time (Hour)

24-Hour Average PM2.5 Concentration (µg/m³)

Diamonds: 24-Average PM2.5 Concentrations at Trailer #2
Mean Dp decreases when PM numbers increase, and vice versa.
Size distributions show 10-fold increase in nano-particles and combustion aerosols during overnight hours

~35 nm!
Winter OC & EC show more variation

Carbon Count (ug/m^3)

error bars represent +/- COV

Summer

Winter

day

night

Truck Stop OC

Truck Stop EC

Road OC

Road EC

Truck Stop OC

Truck Stop EC

Road OC

Road EC
• The concentration of three- and four-ring PAHs follows the trend of PM\textsubscript{2.5} concentration
• PAHs are typically associated with combustion aerosols like diesel PM
Lube-related alkanes heavy on some winter days

![Bar chart showing concentrations of various alkanes from 16 Feb to 4 Mar.](chart.png)

- n-Eicosane
- n-Heneicosane
- n-Docosane
- n-Tricosane
- n-Tetracosane
- n-Pentacosane
Fast forward to a new understanding of crankcase emissions

- Looking at evaluation methods for field-aged, retrofit DPF technology (EPA-OTAQ)

- Crankcase emissions difficult to measure
 - No vacuum or pressure can be exerted on the engine
 - Particle sizes go well beyond SMPS
 - Aerosol Particle Sizer very sensitive to concentration - >1000:1 dilution required

- Contribute directly to PM$_{2.5}$ as primary organic aerosol
Exhaust Sampling System

Engine: 1999 Cummins B5.9 Diesel

Sampler for crankcase PM

DPF
Crankcase Emissions Sampling System

Primary Dilution Tunnel
- 70 mm filters
- Isokinetic probe
- Room Air ~190 LPM
- Crankcase
- HEPA
- 198 LPM To Pump (Roots Blower)
- Manometer to ensure vacuum not exerted on crankcase
- 1.5 in.

Secondary Dilution Tunnel
- 99 LPM
- Mass Flow Controller
- HEPA-filtered air
- Draft tube
- Re=8500
- Isokinetic probe
- SMPS*: measures particles < 1 um
- Aerodynamic Particle Sizer**: measures particles > 1 um
- 5 LPM To Pump

* Scanning mobility particle sizer (SMPS): measures particles < 1 um
** Aerodynamic particle sizer: measures particles > 1 um
Crankcase PM Mass Emissions

Total crankcase PM emitted during FTP
Mass collected:
~ 63 mg each filter

Exhaust PM collected during FTP
Mass sampled:
~1.1 mg
Crankcase PM Mass Emissions for FTP Cycles

For hot FTP:
Crankcase emissions ~ 3 X greater than DPF treated exhaust emissions

Soluble organics ~90% of crankcase PM

Transient Test
Crankcase Emissions
Number-Size Distribution

1400 RPM, 300 ft lbs

Increased Backpressure

Engine Baseline

\(\mu_g = 114 \pm 2 \text{ nm} \)
\(C_{tot} = 2.9 \times 10^7 \text{#/cm}^3 \)

\(d_p > 540 \text{ nm} \)
\(C_{tot} = 1.8 \times 10^6 \)

Backpressure 280 mbar at rated speed (1400 RPM)

\(\mu_g = 159 \pm 2 \text{ nm} \)
\(C_{tot} = 1.4 \times 10^8 \text{#/cm}^3 \)

\(d_p > 540 \text{ nm} \)
\(C_{tot} = 1.1 \times 10^7 \)
Summary

- Winter temperatures, overnight stays influenced PM2.5
 - higher in truck stop, despite heavy truck traffic on I-40
- OC/EC dominated by biogenics in summer levels of both EC and OC higher in winter
 - much more variability in winter
- Lube and PAH important in PM$_{2.5}$ at the truck stop
- Formaldehyde levels can get high in winter
 - strongly dependent on temperature/mixing
- Crankcase PM
 - mass emissions ~ 3 X greater than DPF-out PM emissions over FTP
 - For $d_p > 540$ nm, total number concentration was about 1×10^7 for case of elevated backpressure