Field monitoring of ozone precursor type and air toxic compounds with a small, fast GC analyzer: the microFAST GC

Edward B. Overton (ebovert@lsu.edu), Scott Miles, Buffy Ashton, and Scott McDaniel
LSU Dept of Environmental Sciences and Analytical Specialists Inc. (ASI)
Why HRVOC verses VOC Analysis?

Lower tropospheric ozone production

HRVOC → OH → R → H₂O

HRVOC → RO₂ → OH → ROOH → Removal

NO₂ + O₃ → NO₂ + O₂

NO₂ + hv → NO + O³(³P)(phot)

O³(³P) + O₂ + M → O³ + M(fast)

Uses up ozone

Produces ozone

NO₅ + VOCs + cities (cars/trucks)

VOCs + forests

NO₅ + power plants
Important VOCs

Ethane**
Ethene* & **
Propane**
Propene* & **
Butanes**
Butenes*
Pentane**
Pentenes*
Isoprene* & **
Benzene**
Toluene**
Xylenes & Ethyl Benzene**

*biogenic sources ** geogenic and anthropogenic sources
Environmental HRVOC Analysis

On-Site

Laboratory

Traditional analytical scheme

Temp, wind speed, RH → GC, GC-MS

LSU Analytical Scheme

microFAST GC for HRVOCs
Temp, wind speed, RH

and

TD-GC-TOF-MS
HRVOCs are reactive compounds, can be loss in sample transport

On Site Speciation
- Larger number of analyses
- Real time feed-back
- No sample loss
- less chance for contamination

Pros
- Difficult to do speciation
- Slightly less sensitive

Cons
- Slow analysis
- Target compounds
- Possible sample alteration

Lab Speciation
- Traditional approach
- Good QA/QC
- Controlled Environment (GC-TOF-MS full scanning)

HRVOCs (olefins) have half lives measured in minutes and are important ozone precursors
VOCs (NMHC) are stable and less subjected to sample loss, also less important in ozone formation
TD-GCMS
HRVOC Component Identification

1. Ethane
2. Ethylene
3. Propane
4. Propylene
5. Butane (2ppm)
6. 1-butene
7. 1,3-butadiene
8. Pentane (2ppm)
9. 1-pentene
10. Isoprene
11. Hexane (2ppm)
12. 1-hexene
13. Heptane
14. Benzene
15. Isooctane
16. Octane
17. Toluene
18. Nonane
19. Ethylbenzene
20. m,p-Xylene
21. o-Xylene
microFAST Near-Shore Averages: 76 Samples

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Grand Isle 8/20-22/07</th>
<th>Cameron 9/5-6/07</th>
<th>Port Fourchon 9/17/07</th>
<th>Port Fourchon 10/1-4/07</th>
<th>Green Canyon 6/9/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethane</td>
<td>1.1</td>
<td>1.1</td>
<td>0.7</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Ethylene</td>
<td>8.5</td>
<td>2.2</td>
<td>2.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Propane</td>
<td>2.3</td>
<td>0.4</td>
<td>0.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Propylene</td>
<td>0.6</td>
<td>0.0</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Butane</td>
<td>1.5</td>
<td>0.3</td>
<td>11.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1-Butene</td>
<td>0.4</td>
<td>0.0</td>
<td>6.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Pentane</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1-Pentene</td>
<td>2.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Hexane/Isoprene</td>
<td>2.2</td>
<td>0.1</td>
<td>7.7</td>
<td>0.0</td>
<td>10.0</td>
</tr>
<tr>
<td>1-Hexene</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.8</td>
<td>8.4</td>
</tr>
</tbody>
</table>
microFAST GC set-up at Green Canyon Site

Dual microFAST GC instruments operating on the aft deck in the Green Canyon sampling area
0.5 liter H2 high pressure Storage Cylinder (1500 psi) with required regulator
~ 50 L of Hydrogen

50L H Bank Hydrogen Storage Cylinder
delivery pressure of ~50 psi

for microFAST GC PortaPack
HRVOC Installation
Soil Gas Sampling and Analysis

In 15 minutes or less
microFAST GC Analysis of Soil Gas Across Baton Rouge Fault

![Graph showing GC analysis](image)
The **microFAST GC** rapidly analyzes compounds using:

- two short, narrow bore capillary columns (1 -3 meters)
- ultra fast temperature programming (5-25°C/sec)
- high velocity hydrogen carrier gas flows with FIDs
- rapid injection via desorption from a focusing micro trap

The sophisticated sequence of **method-driven** events that enable the wide dynamic range of **microFAST GC** analyses includes the following steps:

- Sampling of air, liquid extracts, SPME, or aqueous solutions
- Purging the trap and injector of residual air or solvent
- Equilibrating the pressure within the injector and trap zones to the pressure at the head of the columns
- Rapidly heating the trap under no flow conditions
- Transferring thermally desorbed analytes from the trap to the head of the columns in a narrow plug
- Rapid temperature programming the separation columns and detecting eluting compounds
- Cleaning out of the trap simultaneously with the chromatographic separation process
- Cooling down the columns and trap in preparation for the next analysis
microFAST GC

analytical columns

assembly

Column Types:
- 100 to 320 micron ID
- 1 to 3 meters in length
- either open tubular or PLOT

Low Thermal Mass Heater & 2 Cap Columns

- **column #1**
 - 100 micron ID
 - DB-5

- **column #2**
 - 100 micron ID
 - DB-1701

ultra fast

temperature programming up to

25°C/second
microFAST™ GC’s Column Temperature Verses Heating Rates
GC Inlet Systems

<table>
<thead>
<tr>
<th>Method</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>flash evaporative injectors</td>
<td>neat liquids, organic solvent extracts of liquid and solid samples</td>
</tr>
<tr>
<td>sample loops</td>
<td>permanent gases gases under high pressure</td>
</tr>
<tr>
<td>solid sorbent traps</td>
<td>dilute gases, Industrial Hygiene Samples Purge and Trap VOCs, Static/Dynamic Headspace VOCs</td>
</tr>
<tr>
<td>Solid Phase Micro Extractions (SPME)</td>
<td>primarily VOCs in liquid and head-space samples</td>
</tr>
<tr>
<td>microFAST GC's flash evaporative solid sorbent trap injection system</td>
<td>all of the above, plus SCF and pyrolysis extracts and direct aqueous samples</td>
</tr>
</tbody>
</table>
Sorbent Trap Based Injector

Sample Valve for Continuous Sampling of VOCs/HRVOCs
Human Breath Volatile (HBV) Analyses

GC Dynamic Ranges

Carbon Number Range
(RI = Carbon # times 100)

- Permanent Gases
 - >250mmVP
 - % to ppm
 - Micropacked GC column, loop injector

- VOCs
 - 250 to 0.1mm VP
 - ppm to high ppb
 - Thick film capillary sorbent trap injector

- SemiVOCs
 - 0.1 to .000001mmVP
 - Low ppm to low ppb
 - Thin film capillary sorbent trap or flash heated injector

HBV-challenging
Dr. Phillips’ Analytes

HBV-straight-forward
Single Trap or Dual Trap microFAST GC Analysis?
Diagram of microFAST GC as a dual trap, dual column Air Analyzer

Dual trap HBA

Placing Trap #1 in MFGC
Step 1: collect breath sample on sampling trap

Dual-Bed Sampling Trap

Bed 1-Tenax GR

Connection to Tee Sampler

Bed 2-Carboxen

Connection to vacuum pump

Dual bed traps sample a broader range of compound volatilities than can be sampled using a single bed trap, but dual bed traps are also easier to contaminate than single bed traps.
Step 2: place sampling trap into heated injection port of the microFAST GC

Place sorbent trap into the heated injection port of the microFAST GC
Step 4

Run analytes desorbed from sampling trap using the microFAST GC, with cycle times of 5 minutes per analysis and with fast, dual column GC separations of Breath Volatiles