USEPA Region 5 Inter-lab comparability program

Motria Caudill, EPA-R5, Air Monitoring & Analysis Section

Need for air toxics analysis comparability assessment

- Non-criteria pollutant monitoring data considered unreliable by some – varied lab methods
 - perception of questionable QA/QC
- Air toxics programs are growing and gaining visibility
- Are monitoring data from State/Local networks as good as national programs like UATMP?

Origins of lab comparability program in R5

- Late 1990s State toxics monitoring staff initiated canister exchange program to assess comparability of VOC results
- Expanded effort to include carbonyls and TSP metals in 2002

Initially Wisconsin DNR collected parallel ambient samples

- 6-8 VOC canisters
- multiple pairs of carbonyl cartridges
- TSP filter cut into strips

NOTE: "true" HAP conc. is unknown, unlike NATTS performance tests (PT) spiked with known amount.

Current participants

- State agencies
 - Illinois Environmental Protection Agency
 - Indiana Department of Environmental Management
 - Michigan Department of Environmental Quality
 - Minnesota Pollution Control Agency
 - Ohio Environmental Protection Agency
 - Wisconsin Department of Natural Resources
- Eastern Research Group (ERG)
 - joined program in 2004
 - took over sample collection for VOCs and carbonyls
- EPA R5 Central Regional Laboratory, 2006

Carbonyl result, 2008a

Data analysis similar to CARB "round robin" program

Region 5 2008a carbonyl exchange																		
Analytical results, ug/m3							Ave.	Percent difference from average					ιcv	нсv	Adj			
	С	D1	D2	F1	F2	G1	G2	ug/m3	С	D1	D2	F1	F2	G1	G2	LCV	0.0	Ave
Formaldehyde	3.6	3.6	3.4	3.5	3.8	3.5	3.5	3.6	1.5	-0.2	-4.7	-1.6	6.8	-0.4	-1.4	3.40	3.72	3.5
Acetaldehyde	1.3	1.3	1.3	1.3	1.5	1.3	1.4	1.3	-3.0	-3.0	-3.7	-3.0	11.9	-1.0	1.8	1.24	1.44	1.3
Acetone	1.9	2.0	2.0	2.1	1.9	1.9	1.9	2.0	-1.2	2.4	0.4	7.6	-2.7	-4.9	-1.6	1.85	2.05	1.9
Benzaldehyde		0.2	0.2	0.2	0.2	0.2	0.2	0.2		-9.5	-4.4	-4.4	10.6	5.1	2.6	0.18	0.22	0.2
Propionaldehyde		0.3	0.2	0.3	0.4	0.3	0.3	0.3		-7.6	-14.7	3.1	28.0	-5.8	-3.0	0.23	0.33	0.3

% diff. from adj. ave. (abs) w/o incl.											
С	D1	D2	F1	F2	G1	G2	outl.	all			
1.9	0.2	4.3	1.2	7.3	0.0	1.0	0.9	2.3			
1.0	1.0	1.8	1.0	14.2	1.0	3.8	1.6	3.4	λ.		
0.1	3.7	1.7	8.9	1.5	3.7	0.4	1.8	2.8	e. I art		
	9.5	4.4	4.4	10.6	5.1	2.6	6.1	6.1	Av C		
	2.1	9.6	9.2	35.5	0.2	2.8	4.8	9.9			
1.0 3.3 4.4 4.0 6.0 2.0 2.1 w/o outl.											
1.0	3.3	4.4	5.0	13.8	2.0	2.1	incl.				
Average by Laboratory											

Adjusted average

- excludes outliers
- treated as "true"

Average carbonyl results for 4 exchanges in 2007-08

Earlier carbonyl results, 2004-06

What happened with Lab-D?

- Collocated sampler study confirmed results higher than ERGs
- Found that <u>certified</u> calibration gases from 2 different vendors gave different readings
- Lab-D purchased new gas from the same vendor as ERG

Lab-D is now in line as shown in NATTS PT results

Accepted	Warning 🗾 Outside	Outlier	NE Not Evaluated	NR Not Reported
	Carbonyls	-01 - formald	lehyde	
				%
Lab Result				Diff
<u>01-01-C</u> 2.80				-6.7
<u>01-02-C</u> 2.63				-12.3
<u>01-03-C</u> 2.89				-3.7
<u>01-04-C</u> 2.89				-3.7
<u>02-01-C</u> 2.80				-6.7
<u>03-01-C</u> 2.69				-10.3
<u>03-02-C</u> 2.77				-7.6
<u>03-03-C</u> 2.90				-3.3
<u>04-02-C</u> 2.72				-9.3
<u>04-03-C</u> 2.54				-15.3
<u>04-04-C</u> 2.67				-11.0
<u>05-01-C</u> 3.00				2.0
05-03-0 2.80				-0./
05-04-C 2.74				-8.7
00-01-C 2.70				-10.0
<u>07-02-C</u> 2.09				-10.5
<u>09-03-C</u> 2.85				-9.7
<u>10-01-C</u> 4.54				51.3
<u>10-02-C</u> 2.92				-2.7
<u>11-01-C</u> 2.71				-9.7
			1 I I I I I I I I I I I I I I I I I I I	

Recent metals result, 2007a

Combined metals results, 4 exchanges 2007-08

Combined metals results summarized by laboratory

Precision vs. concentration

Recent result (2009) for select VOC compounds

Combined results by laboratory for ~18 VOCs

Precision vs. conc. (2004-06)

What about acrolein?

- Not all participants report it
- Those who report acrolein, may or may not follow EPA method
- Those following EPA method need some time to work out the kinks
- The best we've seen is ~ 56% average difference from the adjusted group average

Acrolein measurements in 4 recent VOC exchanges

Guess who had a faulty gas standard?

Conclusions

- Results are best for..
 - Most experienced laboratories, i.e. years of practice with a particular method. Don't assume EPA contract lab is the only reliable option.
 - Compounds well above detection limits
- Need for better source of certified VOC and carbonyl calibration gases

