Advancing the Science of Air Monitoring: Research Priorities and New Approaches for Enhancing Monitoring Data

Tim Watkins
National Exposure Research Laboratory
Office of Research and Development

National Ambient Air Monitoring Conference
November 9, 2006
Presentation Overview

- Monitoring Objectives and Research Priorities
- Monitoring Research in EPA’s Office of Research and Development (ORD)
- Approaches for Enhancing Ambient Monitoring
Monitoring for Multiple Objectives

<table>
<thead>
<tr>
<th>Monitoring Purpose</th>
<th>Measurements Needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with NAAQS</td>
<td>FRM / FEM</td>
</tr>
<tr>
<td>Public Information/Reporting</td>
<td>Continuous / real time measurements</td>
</tr>
<tr>
<td>Air Quality Management Activities</td>
<td>Continuous / semi-continuous sampling</td>
</tr>
<tr>
<td>- Development of Emission Reduction Strategies</td>
<td>PM Speciation</td>
</tr>
<tr>
<td>- Evaluation of Emission Reduction Strategies</td>
<td>Precursor species</td>
</tr>
<tr>
<td>- Air Quality Trends</td>
<td>Air Toxics</td>
</tr>
<tr>
<td>Research/Scientific Studies</td>
<td>Continuous / semi-continuous sampling</td>
</tr>
<tr>
<td>- Health Assessments</td>
<td>PM Speciation</td>
</tr>
<tr>
<td>- Ecological Assessment</td>
<td>Precursor species and co-pollutants</td>
</tr>
<tr>
<td>- Source-Receptor Relationships</td>
<td>Air Toxics</td>
</tr>
<tr>
<td>- Model Development and Evaluation</td>
<td>Deposition</td>
</tr>
</tbody>
</table>
Monitoring Priorities to Support EPA Programs

- NAAQS Development
 - PM Size Fractions
 - Coarse and Ultrafine
 - PM Speciation / Components
- NAAQS Implementation
 - FRM / FEM
 - Emission Reduction Strategies Development
 - Accountability
- Public Reporting
 - AirNOW and AQI
- National Ambient Air Monitoring Strategy (Dec 05 Draft)
 - Continuous Measurements
 - Multipollutant Measurements (NCORE Sites)
 - Increased integration with Science Objectives
 - Integration of Air Toxics into monitoring networks
 - Ecological Assessment
Monitoring Priorities from External Recommendations:
National Research Council Reports

 ▪ Challenge - Enhancing Air Quality Monitoring for Research
 ▪ Move from a focus on compliance with NAAQS toward multiple monitoring purposes
 • Continuous / semi-continuous measurements
 • PM species
 ▪ The report specifically mentions the need to measure ultrafine PM, soluble metals, and organic species.

• Air Quality Management in the US (2004)
 ▪ Recommendation – Enhance Air Pollution Monitoring
 ▪ Expanded to other important objectives beyond compliance
 ▪ Use of semi-continuous methods
 ▪ Develop more reliable methods and analytical procedures for chemical composition of PM

• Improve integration of atmospheric and health sciences to understand relationships between PM and public health impacts.
 ▪ “Health impacts based on epidemiological studies can only be derived for PM characteristics for which ambient measurements are available.”

• Improve the understanding of carbonaceous aerosols
 ▪ Chemical speciation
 ▪ Spatial and temporal resolution
 ▪ Composition

• Develop methods to identify important markers or tracer species to relate ambient concentrations to sources.

• Replace integrated measurements with continuous, real-time measurements for PM mass and composition, where feasible and as technology evolves.
Monitoring Research in EPA’s Office of Research Development (ORD)
ORD Monitoring Research

- Methods Development and Evaluation
- Source Apportionment Applications
- Exposure Assessment Applications
- Health Effects Applications
ORD’s Monitoring Research Program: Methods Development and Evaluation

- Sampling Methods
 - Coarse particles
 - Semi-continuous PM species
 - Air Toxics
 - Acrolein and 1,3 butadiene
 - Mercury dry deposition

- Analytical Methods
 - Inorganic and Organic Source marker compounds

- Research Grants
 - Carbonaceous PM
 - Source Apportionment
 - Continuous PM

- PM Supersites
ORD’s Monitoring Research Program: Source Apportionment and Exposure Applications

• Detroit Exposure and Aerosol Research Study (DEARS)
 ▪ PM Components and Size Fractions
 ▪ Air Toxics

• Steubenville Source Apportionment Study
 ▪ Integrated and Continuous PM
 ▪ Continuous Criteria Gases
 ▪ Deposition
 ▪ Ambient Mercury Speciation

• Coarse PM Methods Evaluation
 ▪ FRM / FEM
 ▪ Continuous Methods
 ▪ Saturation Samplers

• Near Roadway Exposures
 ▪ PM Composition and Size Fractions
 ▪ Mobile Source Air Toxics
Preliminary DEARS Results
(Concentration Ratios – Outdoor Residential to Community Central Site)

Increased Variability

Benzene

PM$_{2.5}$

Sulfur

Industrial, Diesel, Traffic, Highway, Regional

RESEARCH & DEVELOPMENT
Building a scientific foundation for sound environmental decisions
Steubenville PMF Apportionment Results 2003 & 2004

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Factor 1</th>
<th>Factor 2</th>
<th>Factor 3</th>
<th>Factor 4</th>
<th>Factor 5</th>
<th>Factor 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oil/Incineration</td>
<td>Crustal</td>
<td>Iron/Steel</td>
<td>Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>*</td>
<td>105.12</td>
<td>568.88</td>
<td>29.24</td>
<td>191.09</td>
<td>*</td>
</tr>
<tr>
<td>Al</td>
<td>76.43</td>
<td>*</td>
<td>365.66</td>
<td>38.50</td>
<td>56.26</td>
<td>38.94</td>
</tr>
<tr>
<td>P</td>
<td>*</td>
<td>65.72</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>S</td>
<td>*</td>
<td>*</td>
<td>534.38</td>
<td>*</td>
<td>*</td>
<td>11832.0</td>
</tr>
<tr>
<td>Cl</td>
<td>2167.7</td>
<td>*</td>
<td>*</td>
<td>712.45</td>
<td>263.86</td>
<td>709.84</td>
</tr>
<tr>
<td>V</td>
<td>1.11</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>2.87</td>
</tr>
<tr>
<td>Cr</td>
<td>0.53</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>2.44</td>
</tr>
<tr>
<td>Mn</td>
<td>*</td>
<td>16.36</td>
<td>37.42</td>
<td>*</td>
<td>53.67</td>
<td>*</td>
</tr>
<tr>
<td>Fe</td>
<td>118.82</td>
<td>28.71</td>
<td>25.63</td>
<td>*</td>
<td>343.61</td>
<td>36.17</td>
</tr>
<tr>
<td>Ni</td>
<td>3.54</td>
<td>0.55</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cu</td>
<td>14.17</td>
<td>2.26</td>
<td>*</td>
<td>8.68</td>
<td>*</td>
<td>20.25</td>
</tr>
<tr>
<td>Zn</td>
<td>45.88</td>
<td>3.85</td>
<td>*</td>
<td>14.83</td>
<td>3.99</td>
<td>16.15</td>
</tr>
<tr>
<td>As</td>
<td>0.58</td>
<td>0.03</td>
<td>0.07</td>
<td>0.31</td>
<td>0.04</td>
<td>0.76</td>
</tr>
<tr>
<td>Se</td>
<td>0.22</td>
<td>0.02</td>
<td>*</td>
<td>1.39</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>0.21</td>
<td>0.27</td>
<td>0.14</td>
<td>0.09</td>
<td>*</td>
<td>0.25</td>
</tr>
<tr>
<td>Sr</td>
<td>2.78</td>
<td>1.57</td>
<td>5.77</td>
<td>*</td>
<td>0.56</td>
<td>1.25</td>
</tr>
<tr>
<td>Mo</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>3.84</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Cd</td>
<td>0.23</td>
<td>*</td>
<td>*</td>
<td>0.26</td>
<td>0.10</td>
<td>0.37</td>
</tr>
<tr>
<td>La</td>
<td>0.11</td>
<td>*</td>
<td>0.64</td>
<td>0.01</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ce</td>
<td>*</td>
<td>*</td>
<td>1.26</td>
<td>*</td>
<td>0.04</td>
<td>*</td>
</tr>
<tr>
<td>Hg</td>
<td>*</td>
<td>0.004</td>
<td>*</td>
<td>*</td>
<td>0.012</td>
<td>0.142</td>
</tr>
<tr>
<td>Pb</td>
<td>5.92</td>
<td>0.18</td>
<td>0.22</td>
<td>1.34</td>
<td>1.03</td>
<td>4.57</td>
</tr>
<tr>
<td>NO₃</td>
<td>6143.4</td>
<td>104.33</td>
<td>1010.7</td>
<td>*</td>
<td>*</td>
<td>6515.2</td>
</tr>
</tbody>
</table>

% Hg Explained | * | 2 | * | * | 5 | 74

* = Not Significant at 95% confidence interval

Source: Keeler et al, *Environment Science and Technology*, in press
ORD’s Monitoring Research Program: Health Effects Applications

- Epidemiological
 - Detroit Children’s Health Study
 - Childhood asthma and mobile sources
 - Multi-city
 - Compositional differences in Air Quality
 - Chronic exposures to PM

- Toxicological
 - Source-specific effects
 - Coarse particles

- PM Research Centers
 - Harvard University
 - New York University
 - University of Washington
 - Rochester University
 - UCLA
New Approaches for Enhancing Ambient Monitoring
Satellite Data

- Emerging source of air quality data
- Aerosol optical depth (AOD) used to estimate ground level concentrations
- Spatial and Temporal Gaps
 - Cloud cover
 - Reflective surfaces

MODIS Instrument on Terra Satellite in Orbit
Credit: NASA-GSFC
4 day sequence showing transport of regional pollution event. Posts show EPA PM2.5 ground-based measuring site. Color contours are MODIS aerosol optical depth (US EPA/NASA, 2003).
12 Sept. 2002-A close-up of Houston shows many of the hourly PM2.5 monitors recorded 24 averages in excess of 40.5 ug/m3, (AQI>100). High AOD extends into a large portion of TX.

Time Series shows agreement of hourly PM2.5 Concentrations (Surface Monitor) and Aerosol Optical Depth in Coincident MODIS pixel. Correlation Coefficient > 0.88.
“Data Fusion”

- Combining monitoring data with other sources of air quality data (e.g., modeled output, satellite) to generate air quality surfaces
 - Capitalize on the strengths of monitoring data (“true” measure) and modeling data (spatial and temporal coverage)
 - Minimize weaknesses of each data source
Data fusion results:
Spatially and temporally resolved surface enhanced with ground truth data from monitors

Monitors only
Interpolated from monitors
Modeled (CMAQ)

Data Fusion Example – PM Concentrations in NE US (Feb 14, 2001)
Summary

- Enhanced monitoring for multiple objectives
- Monitoring Priorities include
 - Continuous methods
 - PM species and size fractions
 - Air toxics
 - Increased integration with science objectives
- ORD Monitoring Research
 - Methods Development and Evaluation
 - Source Apportionment, Exposure, and Health Applications
- Approaches are emerging to enhance, not replace, ambient monitoring
 - Satellites
 - Data Fusion
For more information:

Tim Watkins
watkins.tim@epa.gov
919-541-2451