Speciation Data Validation & Analysis Tool (SDVAT)

USEPA National Air Monitoring Conference November 6, 2006

Max R. Peterson RTI International Research Triangle Park, North Carolina

Background

- EPA's PM2.5 Speciation Trends Network (STN)
 - Start date February 2000
 - Laboratory support contractor RTI International
- PM2.5 Sampling and Analysis Data Reported
 - Field data (15-20 parameters, varies by sampler type)
 - Laboratory analysis data
 - 4 laboratories (Grav., Ions, XRF, OC/EC)
 - 6 analyses (mass, sulfate, nitrate, anions, elements, OC/EC)
 - 63 analytes (mass, 6 ions, 48 elements, 8 carbon fractions)

Tools for Validation of PM_{2.5} Chemical Speciation Data

- Data Sources
- Data Validation
- Speciation Data Validation Analysis Tool (SDVAT)
 - Developed by RTI under contract to EPA in 2002
 - Updated in 2006

DATA SOURCES

- Field Sampling Data
- **RTI Monthly Analytical Reports**

DATA SOURCES: Field Sampling Data Sent to RTI

- Custody and Field Data Form (C&FDF or COC)
 - different C&FDF used for each supported sampler type
- Field Sampling Null Value And Validity Coding Form (FSNV&VCF)
 - same FSNV&VCF Form Used for All Samplers
- C&FDF and FSNV&VCF are:
 - supplied with sampling modules,
 - completed by field operator, and
 - returned to lab with sample.
- Field data are:
 - double-entered into RTI's database,
 - subjected to several verification and validation checks, and
 - reported back to agencies in monthly analytical reports.

DATA SOURCES: Field Sampling Data Kept By Monitoring Agency

- Operator's Notes and Site-Specific Information
- Electronic Data Transmittals from Sampler
- Systems Audit Reports
- Performance Audit Results
- Collocated Sample Results
- Shipping Records

DATA SOURCES: Completed Field Data Forms

- Examples of completed Field Data forms represent a grab sample of forms arriving in RTI's Sample Handling & Archiving Laboratory (SHAL) on a single day.
- The forms in this set were selected based on a single criterion:

Field sampling personnel wrote at least one comment on the selected forms.

DATA SOURCES: RTI Monthly Analytical Reports

- Report.rtf
- Spreadsheet.xls
- MassSummary.xls
- ConcSummary.xls

DATA SOURCES: RTI Monthly Analytical Reports

- Field Data
 - Transcribed by field operator from sampler screen to C&FDF
 - Double-entered into RTI's database
 - Included in monthly analytical reports.
- Laboratory Analysis Data
 - Gravimetry: mass
 - <u>X-Ray Fluorescence</u>: Al, Sb, As, Ba, Br, Cd, Ca, Ce, Cs, Cl, Cr, Co, Cu, Eu, Ga, Au, Hf, In, Ir, Fe, La, Pb, Mg, Mn, Hg, Mo, Ni, Nb, P, K, Rb, Sm, Sc, Se, Si, Ag, Na, Sr, S, Ta, Tb, Sn, Ti, V, W, Y, Zn, Zr
 - <u>Ion Chromatography</u>: Na⁺, K⁺, NH₄⁺, NO₃⁻, SO₄²⁻
 - <u>Thermal-Optical Carbon Analysis</u>: OC, EC, TC, and OC Peaks (Pk1C, Pk2C, Pk3C, Pk4C, and PyrolC)

DATA CODES & FLAGS

- Data codes and flags in RTI monthly reports include:
 - Flags generated by the samplers
 - Informational flags generated by RTI (3 characters)
 - Null Value Codes (2 letters or 4 numeric digits) for ARS (Null Value Codes are reported to ARS instead of the data values.)
 - Validity Status Codes (1 character) for ARS (Validity Status Codes are reported to ARS along with the data values.)
- A complete list of the most recent codes and flags appears at the end of each RTF monthly report.

DATA SOURCES: RTI Monthly Analytical Reports, cont.

Filename	Content	Possible Use
Report.rtf	Rich text format report all reported data and flags (~5 pages/sample plus a list of all current flags with descriptions)	Print human- readable hard copy report for detailed review of data
Spreadsheet.xls	Spreadsheet report all reported data and flags (1 row/data item)	Import into a database
MassSummary.xls	Spreadsheet summary of valid analyte mass data (1 row/sample)	Overview and comparison (routine samples, FBs, and TBs)
ConcSummary.xls	Spreadsheet summary of valid analyte concentration data (1 row/sample)	Overview and comparison (routine samples)

DATA VALIDATION

- Validation Levels (0, 1, 2, and 3)
- RTI Partial Validation
- State/Local Validation

DATA VALIDATION: Validation Levels

- Level 0 -- Basic review of data with respect to their provenance.
- Level 1 -- Process of evaluating the correctness and acceptability of individual items or groups of items within the data set using statistical methods and other screening techniques.
- Levels 2 & 3 -- May include correlations between sites, timeseries analyses, collocated bias and precision, correlations between analytes and/or methods at the sampling site, modeling, etc.
- **NOTE**: Activities for the verification/validation levels described above overlap.

DATA VALIDATION: RTI Partial Validation

Level 0 (RTI)	Level 1 (RTI)		
Sample Identification	Conservation of Mass:		
Operator Observations	\sum Species Conc \approx Mass Conc		
Sampler Flags	Conservation of Charge:		
Shipping & Disassembly	Cation/Anion Ratio		
Laboratory Checks (per SOPs)	Analyte Correlations:		
Range Checking:	Sulfate/Sulfur Ratio		
Flow Rate	$Sodium(IC) \approx Sodium(XRF)$		
Exposure Duration	Other Correlations		
Elapsed Time before Retrieval			
Holding Times			

DATA VALIDATION: RTI Partial Validation, cont.

For a complete description of RTI's Level 0 and Level 1 data validation procedures see:

Data Validation Process for the PM2.5 Chemical Speciation Network, Updated February 2005

This document can be downloaded from:

http://www.epa.gov/ttnamti1/files/ambient/pm25/spec/05datval.pdf

DATA VALIDATION: State/Local Validation

- Confirm RTI Level 0 and Level 1 Validation Checks
- Perform Level 2 and Level 3 Validation Checks
- For a discussion of monitoring agency validation of chemical speciation data see: *Quality Assurance Project Plan: PM*_{2.5} Speciation Trends Network Field Sampling, 2000.

This QAPP can be downloaded from:

http://www.epa.gov/ttn/amtic/files/ambient/pm25/spec/1025sqap.pdf

• Other helpful documents can be downloaded from:

http://www.epa.gov/ttn/amtic/specguid.html

SPECIATION DATA VALIDATION ANALALYSIS TOOL (SDVAT)

- Overview
- Data Selection Features
- Data Analysis Features
- Data Manipulation Features
- Hands-On Practice

SDVAT: Overview

- The Speciation Data Validation Analysis Tool (SDVAT) was developed in 2002 to assist monitoring agencies in reviewing and validating data from RTI's Spreadsheet.xls monthly analytical reports.
- The SDVAT is useful for:
 - Combining data from multiple reports into a single database,
 - Creating charts and graphs for Level 2 and Level 3 checks,
 - Looking at temporal and spatial data trends.
- The SDVAT User's Guide (UG) explains features and uses in detail.
- Minimum System Requirements for the 2006 Version: Windows 2000 or Windows XP; 256 MB RAM (minimum); MS Excel 2000 (MS Office XP preferred); sufficient hard drive space.

SDVAT: Data Manipulation Features

• Import Data (UG 3 = User's Guide, Section 3)

Includes a "Migrate Data" option for moving data from a previous version of the SDVAT into the new version.

- Export Data (UG 6.3)
- Delete Data (UG 6.2)
- Edit/Add Data (UG 6.1)
- Omit Data from Analysis (UG 4.8.2)
- Add Comments (UG 4.8.1)

SDVAT: Data Selection Features

- Select Site(s) (UG 4.2)
- Select Analysis or Analyses (UG 4.3)
- Select Analyte(s) (UG 4.4)
- Select Date Range (UG 4.5)
- Select Sample Type(s) (UG 4.6)
- Select Data Validity Type(s) (UG 4.7)
- Select Status for Omitted Data (UG 4.8)

Output:

- Output from the SDVAT is always in the form of an Excel workbook.
- Each data analysis performed using the SDVAT creates a single Excel workbook with one or more charts each linked to its own separate worksheet containing the data used to generate the associated chart. In the workbook, Chart-1 is linked to data in spreadsheet Data-1, Chart-2 to Data-2, etc.
- The Excel workbooks can be viewed, printed, formatted, manipulated, etc. using Excel.

- Data Completeness (UG 5.1)
- Time Series (UG 5.2)
- Mass Reconstruction (UG 5.3)
- Species Distributions (UG 5.4)

1. <u>Data Completeness</u> – the ratio of valid data to total data and expressed as a percentage:

NOTE: "Valid" data has its [OVERALL_INVALID] field equal to FALSE or NULL.

NOTE: Data completeness is used as an indicator of data capture and is calculated separately for each analyte/parameter.

SDVAT: Data Analysis Features 1. <u>Data Completeness</u> – Spreadsheet Output

LOCATION_NAME	AIRS_CODE	POC	SAMPLE_	TYPE	CHANNE	L_NAME	ANALYSIS				
Main Street - R&P	00000001	5	ROUTINE		Orange		Organic and	d elemen	tal carbon	Ext3	PM2.5
	ANALYT	E	TOTA	L_COUN	NT VALIE	COUNT	PERCENT	_VALID			
	Elementa	al carbo	n		9	9		100			
	Organic	Organic carbon			9	9		100			
	Pk1_OC				9	9		100			
	Pk2_OC				9	9		100			
	Pk3_OC				9	9		100			
	Pk4_OC				9	9		100			
	PyrolC				9	9		100			
	Total car	bon			9	9		100			

Note: Data output from the SDVAT is in the form of a spreadsheet with data fields linked to a chart.

1. Data Completeness – Graphic Output

Main Street - R&P AIRS Code 00000001 POC 5 (ROUTINE) Channel: Orange Analysis: Organic and elemental carbon Ext3 PM2.5

11/28/2006

2. <u>Time Series</u> – A plot of the mass or concentration of an analyte or some field-reported value versus time.

NOTE: These are simple plots of values in the database versus sampling date and require no further calculations.

2. <u>Time Series</u> –XY-Line Plot

2. <u>Time Series</u> –Stacked Column Plot

11/28/2006

3. <u>Mass Concentration Reconstruction Analysis</u> -- A plot of gravimetric mass concentration vs. reconstructed mass concentration.

 $\begin{bmatrix} \text{Reconstructed} \\ \text{Mass} \\ \text{Concentration} \end{bmatrix} = \begin{bmatrix} \sum \text{Anions(IC)} + \sum \text{Cations(IC)} + \text{Total Carbon} \\ + \sum \text{Trace Elements(XRF), excluding S, Na, K} \end{bmatrix}$

NOTE: Concentrations must be used in the equation. (Adding masses of analytes on filters does not work because different channels in the sampler have different flow rates and sample volumes.)

NOTE: S, Na, and K are excluded because they are measured as ions by IC.

NOTE: Performed on Routine Samples only.

3. <u>Mass Concentration Reconstruction Analysis</u> – XY-Line Plot

Main Street - R&P AIRS Code 00000001 POC 5 (ROUTINE) Date(s): 3/15/2006 - 5/11/2006

4. <u>Species Distribution Analysis</u> -- Graphic representations of the composition of $PM_{2.5}$ by major components:

•Nitrate (total)	•Elemental Carbon
•Sulfate	•Crustal Component (calculated below)
•Ammonium	•Other (calculated below)
•Organic Carbon	
Crustal Component] =	2.2[Al] + 2.49[Si] + 1.63[Ca]+ 2.42[Fe] + 1.94[Ti]
Other = Concentratio	$n = \begin{bmatrix} NO_3^{-} + SO_4^{2-} + NH_4^{+} + OC + EC + \begin{bmatrix} Crustal \\ Component \end{bmatrix} \end{bmatrix}$

NOTE: Concentrations (not masses) are used in the calculations. NOTE: If Other < 0, then Other = 0.

SDVAT: Data Analysis Features 4. <u>Species Distribution Analysis</u> –XY-Line Plot

Main Street - R&P AIRS Code 00000001 POC 5 (ROUTINE)

SDVAT: Data Analysis Features 4. <u>Species Distribution Analysis</u> –Stacked Plot

Main Street - R&P AIRS Code 00000001 POC 5 (ROUTINE)

SDVAT: Data Analysis Features 4. <u>Species Distribution Analysis</u> –Pie Chart

Main Street - R&P AIRS Code 000000001 POC 5 (ROUTINE) Date(s): 3/15/2006 - 5/11/2006 Average Concentration (µg/m³)

SDVAT: Applicability of Selection Criteria

Selection Criterion	Data Completeness	Time Series	Mass Conc. Reconstruction	Species Distribution
Site(s)	~	1	1	1
Analysis(es)	~	\checkmark	N/A	N/A
Analyte(s)	~	√	N/A	N/A
Date(s)	~	1	1	1
Sample Type	\	1	Routine Only	Routine Only
Validity Type	N/A	1	1	1
With Comment		1	~	✓
Analysis Omit		1	✓	✓

11/28/2006

Hands-On Practice

- Real data (names changed to protect the guilty)
 - 8 exercises using the SDVAT
 - 1 optional exercise using Excel to scan RTI data reports for flags
- Exercises include:
 - Running SDVAT data analyses
 - Excluding data
 - Editing data
 - Adding data
 - Assigning custom flags

Conclusions

- The SDVAT is a simple but powerful tool for $PM_{2.5}$ data analysis and validation.
- The new version of the SDVAT eliminates some of the annoying import problems experienced by users when RTI spreadsheet reports were changed to accommodate new ARS data fields.