## Understanding the Components of FRM mass

## Part 2: Carbonaceous Mass by Mass Balance

Neil Frank For Presentation to SAMWG May 13-15 2004 Point Clear, Alabama

> Draft Data -- Results are Preliminary

# Background on Constructing Masser

- <u>Current Approach (use speciation measurements</u>)
  - PM2.5 Mass = SO4 + NH4 + NO3 + "Organic Carbon Mass]

+ EC + "crustal" + unknown

- The unknown (generally positive) is apportioned to all components
- How can we better assign the unknown?
- Do we have the PM2.5 chemical components correctly characterized?



*Source: EPA Speciation Network, 200* From EPA Trends Report

Crustal

## Better characterization of PM2.5 mass

## Adjustments are needed to account for what is <u>actually on the filter</u>

- Retained NO3
- Particle bound water (sulfates and nitrates)
- <u>Retained</u> carbonaceous mass
- Other
  - Metallic oxides (crustal material)
  - Passively collected particles (FRM filter blank ~0.3-0.5ug/m3)
  - Salt and metal oxides can also be considered

PM2.5 = NO3FRM + SO4 + NH4 + Water + Crustal + TCM + Blank + Other What PM2.5 FRM mass components can we confidently characterize?

- Sulfates
- Nitrates  $\rightarrow$  FRM NO3
- Ammonium
- Water associated with inorganics
  - Thermodynamic model (AIM)
- Crustal Material
- Other (FRM filter blank)
- What about OC and EC <u>mass</u>?

## Carbonaceous Mass from measured C data is a very uncertain calculation Commonly, as 1.4\*OC+EC

Many Sources of error

✓ Blank correction (avg value ~1.5ug/m3 OC)

- Varies among our 5 different urban speciation samplers
- We cant do site or seasonal adjustments

✓ Conversion of OC to OCM ( $\pm$  33%)

- 1.4 < k < 1.8 ("typical" urban)
- 2.0 < k < 2.4 ("typical" rural)
- Weighted average for mixed urban/regional aerosol
- Turpin's revised estimates based on limited speciation data
- ✓ OC- EC split (and unaccounted mass for "EC")
- Retained carbon mass on tellon vs quartz
  - Volatile OC [teflon OC =~0.8 \* quartz OC in Pittsburgh]
    - Potentially more for predominantly urban aerosol
  - Water [10-24% of PM2.5 water]

# How to Estimate FRM Carbon Mass

- Use **k\*OC+EC** (despite all known uncertainties)
  - k =1.4 or k=1.8 or ???
  - What approach is best for blank correction??
- <u>Alternative approach:</u>
  - Use precise PM2.5 mass and other better characterized chemical measurements
    - With collocated speciation measurements or suitable estimates
  - Then, calculate TCM by difference
  - TCMmb = PM2.5 { [SO4] + [NO3<sub>FRM</sub>] +[NH4] +[water] + [crustal] +[blank]}

 $\rightarrow$  OCMmb = TCMmb - EC

- ✓ Advantages
  - "Unknown" mass is completely associated with TCMmb
  - No need to estimate blanks, retained carbon, water, etc.

# A new fine particle chemical "SANDWICH"

 Sulfates, Adjusted Nitrates, Derived Water, Inferred Carbonaceous Mass and estimated aerosol acidity (H+
the greatest thing since sl bread!

#### The "Frank"SANDWICH







Fits the new Patriotic Theme

#### Comparison of TCMmb (red) with TCM1.4 (blue) -- Fits "Conceptual" Model



### Estimated Carbonaceous Mass as TCMmb



| cityname | TCM14 | TCM <sub>mb</sub> | %diff |
|----------|-------|-------------------|-------|
| Mayville | 1.9   | 2.8               | 53%   |
| Chicago  | 4.6   | 4.9               | 6%    |
| Indianap | 4.7   | 4.4               | -5%   |
| Clevelan | 5.7   | 4.1               | -29%  |
| New York | 4.4   | 4.2               | -4%   |
| Birmingh | 8.0   | 7.3               | -8%   |



#### Putting it all Together: Preliminary Results (Jan-Dec 2003)

# **Preliminary Summary**

## Expected IMPACT of SANDWICH in the East

- Ammonium Sulfate (AS) would be ~15-35% higher
- Ammonium Nitrate (AN) would be ~30-85% lower
- New mass associated with sulfates+nitrates is similar to old
- Changes in sulfates+nitrates (SAN) offset by carbon

| cityname | delta AS | delta AN | delta SAN |
|----------|----------|----------|-----------|
| Mayville | 13%      | -44%     | -16%      |
| Chicago  | 17%      | -30%     | -4%       |
| Indianap | 23%      | -51%     | -1%       |
| Clevelan | 33%      | -39%     | 9%        |
| New York | 25%      | -52%     | -1%       |
| Birmingh | 21%      | -85%     | 2%        |

Draft Jan-Dec 03 data

Applications of SANDWICH to Support NAAQS Implementation

- Better partition of major chemical components to guide control strategy development
- Estimate and track changes in TCMmb (major local contribution to PM2.5) at all PM2.5 design value sites without need for additional collocated speciation sampling (idea for review)
  - Quarterly composite sulfate, ammonium and nitrate (SAN) from FRM Teflon (cheap!)
  - Estimate carbon by difference (TCMmb) from PM2.5 and hydrated SAN
    - Assume average crustal is relatively constant and <10%</li>
  - Don't throw away 2001-2003 filters

End of Presentation

### Reconstructed Fine Mass (RCFM) is ~= PM2.5 Good Agreement because of Canceling errors!

| cityname | PM2.5 | RCFM | unknown | %,PM2.5 |
|----------|-------|------|---------|---------|
| Mayville | 10.0  | 8.7  | 1.3     | 13%     |
| Chicago  | 14.1  | 13.0 | 1.1     | 8%      |
| Indianap | 14.9  | 14.6 | 0.3     | 2%      |
| Clevelan | 16.8  | 17.7 | -0.8    | -5%     |
| New York | 14.5  | 14.1 | 0.4     | 3%      |
| Birmingh | 17.0  | 16.8 | 0.2     | 1%      |

## Estimate <u>Water</u> using a thermodynamic model (AIM)

Water is approximately 25% of the sulfate + ammonium concentration

Less during periods with high nitrates



Preliminary H20 predictions using monthly avg SO4, NH4, FRM NO3 and Calculated H+ from the 6 Study Sites

#### Monthly Particle Bound Water as % of PM2.5 Among 6 Study Sites



6% January(1ug/m3) and 12% August(4 ug/m3) reported by CMU researchers