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Three components of an optimal spatial design problem  
(D.L. Zimmerman, Optimal spatial design.  

In: Encyclopedia of Environmetrics)

1. Specification of a design space of 
candidate sites (finite, or in principle, 
continuous spatial domain).

2. Specification of a model for the existing 
observations (if any) and the potential 
observations at candidate sites.

3. Specification of an optimality criterion.



3-5 December 2001 EPA Spatial Data Analysis Technical 
Exchange Workshop

4

 

National and Regional Surveys 

Program names link to pages with maps, measurements, and other program information. 

Table of Contents 

BBS Breeding Bird Survey 

CASTNET Clean Air Status and Trends Network 

EMAP 
Environmental Monitoring and Assessment 
Program 

FHM Forest Health Monitoring 

FIA Forest Inventory and Analysis 

NADP/NTN  
National Atmospheric Deposition Program/ 
National Trends Network 

NAMS/SLAMS 
National Air Monitoring Stations/ State and Local 
Monitoring Stations 

NSGN National Stream Gaging Network 

NAWQA National Water Quality Assessment Program 

NRI National Resources Inventory 

NS&T 
National Status and Trends (Mussel Watch 
Program) 

PAMS Photochemical Assessment Monitoring Stations 

RAWS Remote Automatic Weather Stations 

SNOTEL Snowpack Telemetry  

 
http://www.epa.gov/cludygxb/programs/index2.html
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National

And 

Regional

Surveys

 

NAMS/SLAMS- National Air Monitoring Stations/ State and Local Air 
Monitoring Stations 

Program Name (Acronym) NAMS/SLAMS 

Agency EPA,State &loc agen ow 

Year Initiated 1979 

Measures AIR-criteria pollutnts, visibility/fine particulates, 
toxics 

Collection Source  

Point Yes 

Source No 

Transect No 

Other area No 

Locations for Data Collection 5000 samplrs,3150 sites 

Temporal Interval Hourly,Pb&PM10 variable 

Sampling Design Selected 

Data Available Yes 

Accessible EPA reg offices,AIRS 

Extent for Reporting Primarily urban,some rura 

Annual Funding FY 96-$36 M in fed fnds 

Cost per Site for Installation $5 K-$100 K per site 

Cost per Site for Op. & Mgmt Avrg $1 K per site/yrly 

Partners  

International No 

Agency EPA Regions 

State State agencies 

Local Local agencies,contrctrs 

Authorities/Reason for Running 
Prg. 40CFR58 

Users of Data per Year 450 

Program Meets Metadata 
Standards 

No 

Expansion of Prog (Needed/Not) Not needed 

Contact Person David Lutz 

Phone # 919-541-5476 

http://www.epa.gov/cludygxb/programs/namslam.html
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1. Spatial Monitoring Network 
Design Objectives:

Frameworks for optimal spatial design:

1. Exploratory, random sampling, and/or space-filling 
designs.  
Nychka, D. and Saltzman, N. (1998), Design of air 
quality networks. In Case Studies in Environmental 
Statistics

2. Designs for estimating a regression function in a 
spatially correlated field (with known spatial 
covariance):                                                    
W.G. Müller (2000, Collecting Spatial Data: Optimum 
Design of Experiments for Random Fields)                 
R.L. Smith (NSF-CBMS Lecture Notes, in prep).
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3. Designs for estimation of the spatial covariance or
variogram:                                                               
W.G. Müller and D.L. Zimmerman (1999, Environmetrics) 
R.L. Smith (NSF-CBMS Lecture Notes, in prep).

4. Designs for optimal spatial prediction, including designs 
specifically concerned with assessment of regulatory 
thresholds:  identification of sites or regions exceeding 
thresholds (for one or more pollutant measures) and/or the risk 
or expected cost of misclassifying sites according to a 
threshold (classifying a “contaminated” site as safe or vice 
versa).
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Criteria for optimal spatial prediction design:

• Average kriging variance (ave sq pred error) over target grid D

• Maximum kriging variance

• Kriging variance for estimation of a spatial average

• Weighted spatial average of kriging variances                   
(Cressie, Gotway, and Grondana (1990), Chem Intell Lab Syst.)

• Expected probability or cost (loss) for misclassification

• Entropy

21
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Entropy

• Guttorp P., Le N.D., Sampson P.D., and Zidek J.V. (1993).  
Using entropy in the redesign of an environmental 
monitoring network.  In: Multivariate Environmental 
Statistics, GP Patel and Cr Rao, eds., pp. 175-202.

• Le, N.D. and Zidek, J.V. (1994), Network designs for 
monitoring multivariate random spatial fields. In: Recent 
Advances in Statistics and Probability, M.L. Puri and  J.P.
Vilaplana, eds., pp. 191-206.

• Zidek JV, Sun WM, Le ND (2000)  Designing and 
integrating composite networks for monitoring multivariate
Gaussian pollution fields. J Roy Stat Soc C-Applied 
Statistics 49: 63-79.
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• Entropy: scenario of adding sites to an existing network

Uncertainty in the vector  of observations on a spatial process is

The total uncertainty about a future realization and model 
parameters is fixed:

or
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Minimize predictive uncertainty by maximizing :

Under a Gaussian model with inverted Wishart prior on the 
spatial covariance matrix,

Where               is the residual (predictive) covariance matrix of          
conditional on               .

( ) ( , ) ( )add g gH G D H X X D H X D= +

1
( ) log

2 add gH G D const= Φ +

add gΦ
addX gX
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2. Air Quality Monitoring Objectives
Multiple scientific objectives are explicit in current guidelines for 

air quality monitoring networks. Three perspectives:

1.  Four general purposes for the ambient air monitoring 
program are (http://www.epa.gov/oar/oaqps/qa/monprog.html):

Ø to judge compliance with and/or progress made toward meeting 
ambient air quality standards;

Ø to activate emergency control procedures that prevent or alleviate air 
pollution episodes;

Ø to observe pollution trends throughout the region, including non-urban 
areas; and

Ø to provide data base for research evaluation of effects: urban, land-use, 
and transportation planning; development and evaluation of: 
abatement strategies and diffusion models.
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2.  Specific objectives of monitoring sites in the SLAMS 
network according to U.S. Code of Federal Regulations, Part 
58, Appendix D are:

Ø to determine representative concentrations in areas of high 
population density;

Ø to determine highest concentrations expected to occur in the area 
covered by the network;

Ø to observe pollution trends throughout the region, including non-
urban areas; and

Ø to determine general background concentration levels.

See also EPA guidelines (U.S.EPA, 1998, EPA-454/R-98-002):

Ø to determine the extent of air pollution transport into and out of an 
area.
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3.  EPA OAQPS criteria aims for monitoring network 
assessments:

In general terms:  What sampling coverage is required for

1. Compliance: attainment/non-attainment designation? 

2.  Exposure: to inform the public of exposure risks to the 
criteria air pollutants. 

3. Trends: to evaluate progress on implementation of emission 
reduction strategies for the criteria pollutants?  Progress could be 
viewed as the estimation of regional trends. 

4.  Emissions strategy development: to develop emission 
reduction strategies for the criteria pollutants?
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Strategy: ranking of sites based on site-specific evaluation of:

• Pollutant concentration (NAAQS criterion values)

• Estimation uncertainty (estimation of site from 5 nearest sites 
by inverse distance weighting scheme (w/ declustering)

• Deviation from NAAQS value (sites well above or well below 
NAAQS ranked low)

• Spatial coverage:  geographic area defined by Thiessen 
polygon around monitoring site)

• Persons/Station:  number of people (sum of census tracts) in 
Thiessen polygon around monitoring site

Note: This assessment apparently provides site specific measures/rankings 
only, not any numerical assessment of the network as a whole, and no 
assessment of spatial estimation beyond the current network.
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So, what does this suggest for numerical objective 
design criteria?

1. Criterion associated with maps of probability of 
exceeding standards (computed how?)

2. Criteria assessing spatial prediction accuracy (kriging 
error, entropy)

3. Utility functions for other criteria: 

• network representation of population

• network representation of sources 

• Cost

• Remark: 1 & 2 above are achievable using recent methods of spatial 
analysis
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Ø Many of these objectives assume some form of prior 
information regarding where: 

• people live, 

• pollutant sources are, and 

• high and background levels of pollutant 
concentrations are expected.  

Ø Information about where high and background 
concentrations may be expected requires, probably, a 
combination of available monitoring data and air quality 
model predictions in network design calculations. 

Ø Statistical network design methodology has apparently 
never been recommended to attempt to meet these 
objectives. 
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From “Guidance for Network Design and Optimum Site 
Exposure for PM2.5 and PM10” (EPA-454/R-99-022):

Network Design Philosophies:  statistical methods accounting 
for correlation, model-based methods, random sampling, 
systematic sampling, judgmental sampling, heterogeneous 
strategies.

“Monitoring networks for criteria pollutants always use 
judgmental sampling strategies that consider where source 
emissions are in relation to populations and which way the 
wind blows. … Most of this guidance is based on 
judgmental network design, though it is expected that 
networks will involve more of the hybrid approach as they 
are evaluated as future PM2.5 measurements and improved 
aerosol modeling techniques are developed.”
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Multivariate/multi-pollutant monitoring goals:

“Conceptual Strategy for Ambient Air Monitoring,” (draft 
document, www.epa.gov/ttn/amtic/cpreldoc.html) notes that, 
although many monitoring networks were designed for single 
pollutants, a multivariate perspective is necessary now as 
agencies attempt to optimize networks by measuring multiple 
pollutants whenever practicable.  E.g., recommended that: PAMS 
and CASTNET networks be upgraded to measure NOx in order to 
track effects of emission reductions programs;  that the resources 
of the PAMS and air toxics programs be combined to optimally 
address the objectives of both programs. In particular, it was 
suggested that PAMS might focus more on VOC trends and NOx
reductions with less emphasis on air quality model evaluation.  
è network design for criteria for multiple pollutants
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3.  Multiple Objective 
Monitoring Network Design: 

A. References to selected applications in 
publications

B. Pareto optimality approach
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A. Selected applications in publications

Cieniawski, Wayland Eheart, & Ranjithan, 1995.  Using genetic 
algorithms to solve a multiobjective groundwater monitoring 
problem.  Water Resources Research 31(2), 399-409.

Dutta, Das Gupta, & Ramnarong, 1998.  Design and optimization 
of a ground water monitoring sytem using GIS and  
multicriteria decision analysis.  Ground Water Monitoring and 
Remediation 18(1), 139-147.

Trujillo-Ventura & Ellis, 1991. Multiobjective air pollution 
monitoring network design. Atmos Environ 25A: 469-479.
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Example: Trujillo-Ventura A, Ellis JH, 1991. Multiobjective air 
pollution monitoring network design. Atmos Environ 25A: 469-
479.

Objectives combined for optimization:

1.  “Spatial coverage”: spatial integral of kriging estimate of 
pollutant concentration multiplied by kriging error, emphasizing
regions of high estimated concentration.

2.  Detection of violation of standards: sum over sites of 
probability of standard violation (assuming a random field model).

3.  “Data validity”: measure of spatial regularity of network 
(optimal for a triangular network)

4.  “Cost”: number of monitoring sites (considered as a constraint 
rather than an objective criterion)
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B.  Pareto optimal designs:

Alternative to optimization of a composite design criterion is to 
investigate the space of “Pareto optimal” designs.  

Given a vector of  n design criteria, X1,…,Xn, a design having 
attained numerical criteria values a1,…,an, is said to dominate
another design attaining values b1,…,bn, if ai ≤ bi for all i, and for 
at least one j, aj < bj.  

A design that is not dominated by any other is said to be Pareto 
optimal, and the Pareto optimal set or Pareto frontier is the set of 
all Pareto optimal designs. 

Consideration of the Pareto optimal set will allow better 
understanding (compared with optimization of a single criterion)
of the trade-offs necessary to obtain greater relative efficiency on 
given criteria. 
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• “population” of parameterizations = proposed networks

• evaluate performance of each network on a set of criteria

• nondominated sorting to assign parameterization (network) 
“fitness” (“niched” Pareto genetic algorithm)

• evolutionary iterations select parents (networks) for future 
generations by cross-over (exploration) and mutation 
(exploitation), updating current estimate of Pareto Frontier

Pomac-Evolve* evolutionary computation 
program for Pareto optimization:

*Reynolds & Ford (1999) Multicriteria assessment of ecological process 
models.  Ecology 80, 538-553.

*Ford, Turley & Reynolds (2000) Pareto-Evolve Users Manual: The Pareto 
Optimal Model Assessment Cycle Using Evolutionary Computation, 
www.nrcse.washington.edu/software.
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1. Illustration of evolutionary computation: optimization 
of 2 sites for a single minimax spatial coverage criterion 
over a square grid:

2. Demonstration of estimation of Pareto Frontier for a 2-
criterion problem: 

• minimax spatial coverage over the unit square

• average kriging error over lower left quarter of unit 
square

(Varying population size and number of evolutionary 
generations)
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Estimation of Pareto Frontier
from 1000 generations with pop size = 200

Ave kriging error over lower left quadrant
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Estimation of Pareto Frontier
from 200 generations with pop size = 300

Ave kriging error over lower left quadrant
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Estimation of Pareto Frontier
from 200 generations with pop size = 150

Ave kriging error over lower left quadrant
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Estimation of Pareto Frontier
from 100 generations with pop size = 300

Ave kriging error over lower left quadrant
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Estimation of Pareto Frontier
from 400 generations with pop size = 400

Ave kriging error over lower left quadrant
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Estimation of Pareto Frontier
from 500 generations with pop size = 150

Ave kriging error over lower left quadrant
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4. Summary
• Fact:  Multiple air quality monitoring objectives
• Some objectives require incorporation of prior 

information
– In models and model-based estimates of errors for 

spatial estimation
– In particular objectives of air monitoring that concern 

effects of pollutant sources & transport, and effects on 
human health

• Pareto optimal design calculations provide an 
effective way to make decisions in the context of 
multiple objectives.

• Evolutionary computation algorithms provide 
feasible tools for Pareto optimization.
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• To do:
– Redesign code for efficiency
– Implement spatial estimation criteria based on 

nonstationary spatial models
– Extend models, criteria and application to 

multiple pollutants
– Write code for network assessment/reduction 

scenario (not just current addition/relocation of 
sites)


