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Agenda for Workshop on UNMIX and PMF as Applied to PM2.5

Dates: 2/14/2000–2/16/2000
Location: EPA Administrative Building Auditorium, RTP, NC

February 14, 8:30 a.m. – 5:00 p.m.

Morning Session: (Session 1)
 General presentations on the methodology behind the tools and a brief presentation of the solutions found

for both the Phoenix and the synthetic data set. This session is geared toward a general audience with the
purpose of giving an overview of the tools and the results from their applications. The following 4 sessions
will go into the details and will be at an advanced technical level, thus not for a general audience.

8:30–8:45 Welcome and Introductions (Chuck Lewis, ORD, and John Bachmann, OAQPS)
8:45–10:00 Presentation on UNMIX methodology and results for Phoenix and synthetic data set (Dr.

Ron Henry)
10:00–10:15 Break
10:15–11:30 Presentation on PMF methodology and results for Phoenix and synthetic data set (Dr. Phil

Hopke)
11:30–12:00 Overview describing the synthetic data set and a pictorial presentation of how close the

tools reproduce the “known” profiles (OAQPS)
12:00–1:00 Lunch

Afternoon Session: (Session 2)
 Thorough discussions of the results from the synthetic data set analysis. Includes description of the data

generation, the metric used by EPA to determine how well the tools reproduced the “known” profiles, data
preprocessing (e.g., outlier identification), selection criteria for which species to use in the models and the
number of sources to try to fit, and a description of the solutions (identification of the fitted sources and
the uncertainties with these solutions).

1:00–1:15 Description of the data generation process (OAQPS)
1:15–2:00 Presentation of processing of synthetic data and resulting solutions for PMF (Dr. Phil

Hopke)
2:00–2:45 Presentation of processing of synthetic data and resulting solutions for UNMIX (Dr. Ron

Henry)
2:45–3:00 Break
3:00–4:00 Description of metric of the goodness of fits of the solutions and the results of applying the

metric (OAQPS)
4:00–5:00 General discussion topics such as what it means to say that one solution is better than

another, how to use “known” profiles to compare with derived solutions for source
identification, and whether it is realistic to have an automated source identification process
(General discussion)

February 15, 8:00 a.m. – 5:00 p.m.

Morning Session: (Session 3)
 Thorough discussions of the results from the Phoenix analysis. Includes steps used to preprocess the data

to identify potential outliers, selection of species and number of sources used in the model, estimates of
confidence (error bars) in the source compositions and contributions, and degree of fit obtained.

8:00–8:45 Results from other recent source apportionment studies in Phoenix (Mark Hubble, Arizona
Department of Environmental Quality)
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8:45–9:00 Data quality issues associated with Phoenix measurements used in current analyses, and
supplementary analyses (SEM and trajectory analyses) performed to confirm sources (ORD)

9:00–12:00 (Break when needed.) Presentations by Hopke and Henry on their respective Phoenix
analyses, addressing the issues listed above.

12:00–1:30 Lunch

Afternoon Session: (Session 4)
 Thorough discussions on how the tools really work. In trying to use the tools over the past few months,

EPA has had some questions about operating the tools and interpreting the output. This session will be
a “question and answer” session, where many of the questions will have examples to illustrate them.

1:30–1:45 Reexamination of the synthetic data results (OAQPS)
1:45–2:15 Demonstration of UNMIX Program (Dr. Ron Henry)
2:15–2:45 Demonstration of PMF Program (Dr. Phil Hopke)
2:45–3:15 Potential effects of MDL on modeling results (Rich Poirot, Vermont Department of

Environmental Conservation)
3:15–5:00 Open discussions on how the tools really work. Questions of interest include:

(1) Can the tools identify a source that has a discrete profile change? How different do the before and
after profiles have to be for the tools to find two unique sources? (OAQPS has constructed an
example.)

(2) Should the measured total mass or the reconstructed mass (PM 2.5) be included as a fitting species or
not?

(3) How to identify and handle outliers?
(4) UNMIX specific questions: What are the equations behind R^2 and strength/noise? What do they

measure? How are “edges” fit, especially in light of errors? Do the interior (non-edge) points have any
influence on the solution? Why is it that UNMIX uses at most ~15 species and finds at most ~6
sources? Why does UNMIX often find no feasible solution? How does a user wisely use the new
feature in UNMIX2 that allows for source compositions with very negative entries? Implications of
not using MDLs and uncertainties (which is a continuation of the discussion started in (3))?

(5) PMF specific questions: What is rotmat and how can it be used to understand better how much
rotation freedom there is in the solution? What is the appropriate FPEAK to use? Should multiple
passes be made using various FPEAKS: one pass to improve source identification at the expense of
the contribution component, and the second pass to accurately reflect the contribution component
at the expense of source identification? How are FPEAK, FKEY, and GKEY implemented? Are they part
of the regularization component of Q? (OAQPS has constructed an example that shows slightly
negative FPEAKs are preferable.)

February 16, 8:30 a.m. – 12:00 p.m.

Morning Session: (Session 5)
 Discussion of general problems and potential solutions regarding issues such as treatment of secondary

sources, regional vs local source identification, and recommendations for further research and testing of
methods. Discuss why factor analysis is “ill-posed” (i.e., produces infinitely many solutions) and begin
a discussion about how to use multiple receptors with these tools.

8:30–9:15 Results from applying PMF to data from the Lake Michigan area (Dr. Kurt Paterson,
Michigan Technological University)

9:15–12:00 Work on issues listed above.

12:00 End of workshop
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Introduction

This  report provides a summary of the Workshop on
UNMIX and Positive Matrix Factorization (PMF) as Applied to
PM2.5. This 2½-day workshop was held at the EPA administrative
building auditorium in Research Triangle Park, NC, during 14–16
February 2000. Sponsored jointly by EPA's Office of Research
and Development (ORD) and Office of Air Quality Planning and
Standards (OAQPS), the workshop was intended to facilitate an
exchange of technical information on the use of two source
apportionment tools as applied to particulate matter (PM). PMF
and UNMIX represent the current state of the art in multivariate
receptor modeling. Both methodologies attempt to generate
source contribution estimates as well as source compositions
using only the ambient data.

The workshop evaluation of PMF and UNMIX was
accomplished by examining the results of applying both models
to two ambient PM2.5 data sets, one real and one synthetically
generated. Both data sets were supplied in advance to a
proponent of each model (UNMIX: Dr. Ron Henry, University of
Southern California; PMF: Dr. Phil Hopke, Clarkson University).
Each brought to the workshop the results of independently
applying their model to both data sets. The source 

contributions underlying the synthetic data set were of course
known to the EPA personnel who generated the data set, but this
information was not made available prior to the workshop.

Approximately 40 attendees representing primarily EPA,
universities, and state environmental agencies attended the
workshop. A list of attendees is provided at the end of this
volume. 

The purpose of this report is to briefly summarize the
technical exchange and major conclusions reached during the
workshop. The organization of the report follows the workshop
agenda. The text of the report is intentionally brief to spare the
reader from overwhelming detail. Interested readers who seek
more detailed information are referred to the appendices (Volume
II) for hard copies of individual presentations and supporting
materials.

The references given at the end of this report are intended
to provide a complete list of all known publications relating to
the theory and application of PMF and UNMIX.

In addition to this report, the workshop was recorded on
videotape and the tapes are available for loan on request from Dr.
Charles Lewis, EPA (tel: 919-541-3154; e-mail: lewis.charlesw@
epa.gov).
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Session 1
14 February, a.m.

Opening Remarks
Chuck Lewis (ORD), John Bachmann (OAQPS), and Shelly
Eberly (OAQPS)

Chuck Lewis opened the workshop by acknowledging the
efforts of Shelly Eberly who was the primary organizer of the
workshop and who alternated with Chuck Lewis as session
moderator. Lewis stressed that the workshop was not intended
as a “shoot-out” between two competing receptor modeling
approaches in order to declare a winner. Rather, the intent was to
provide researchers with a better understanding of the methods
in order to assess the potential of these tools for regulatory and
research applications.

Lewis provided the following definition of receptor models:

Receptor models are mathematical procedures for identi-
fying and quantifying the sources of ambient air pollutants
and their effects at a site (receptor)

• primarily on the basis of concentration measurements
at the receptor, and

• generally without need of emissions inventories and
meteorological data.

The two multivariate receptor models that are the subject of the
workshop are much more complicated to understand and use
than those presently in common usage. The potential reward for
the complexity is that these models “do it all.” That is, they
generate both source contributions and source profiles, all from
ambient data.

John Bachmann, Associate Director of OAQPS, stressed the
importance of receptor modeling from the regulatory perspective.
Receptor models can provide important scientific support for
current (or future) PM standards. In addition, receptor models

can be an important tool in understanding the associations
among PM, visibility, and health effects, and in developing
regulatory control strategies. State-of-the-art tools such as
UNMIX and PMF, as well as experienced users of these tools,
will be needed to interpret the large quantity of data expected
from the PM2.5 Speciation Monitoring Network.

Shelly Eberly had members of the audience introduce
themselves and briefly describe their experience in receptor
modeling. 

The remainder of Session 1 consisted of overviews of the
UNMIX and PMF models and results by their principal
proponents, Drs. Ron Henry and Phil Hopke, respectively, and
an overview of the synthetic data set. Session 1 was intended as
a less technical summary of the methods and results for the
benefit of managers and others who were unavailable for the
entire workshop.

Session 1A: UNMIX Methodology
Dr. Ron Henry, University of Southern California
(Full presentation is in Appendix 1A.) 

Dr. Henry presented the theory of the UNMIX model from
a geometric perspective. The fundamental problem for receptor
models  is posed as follows: Given an ambient data set,
find—with as few assumptions as possible—the number of
sources, the composition and contributions of the sources, and
the uncertainties. However, the problem as presented in the
conventional mass balance formulation is statistically ill-defined,
i.e., there exist an infinite number of solutions that have the same
root mean squared error and that satisfy the non-negativity
requirement for source compositions and contributions. The
keys to finding a unique solution are therefore (1) to determine
the number of sources in the data that are above the noise level,
and (2) to find additional constraints that limit the number of
solutions.
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The UNMIX model takes a geometric approach to these two
key problems that exploits the covariance of the ambient data.
Simple two-element scatterplots of the ambient data provide a
basis  for understanding the UNMIX model. For example, a
straight line and high correlation for Al versus Si can indicate a
single source for both species (soil), while the slope of the line
gives information on the composition of the soil source. In the
same data set, iron does not plot on a straight line against Si,
indicating other sources of Fe in addition to soil. More
importantly, the Fe-Si scatterplot reveals a lower edge. The
points defining this edge represent ambient samples collected on
days when the only significant source of Fe was soil. Success of
the UNMIX model hinges on the ability to find these “edges” in
the ambient data from which the number of sources and the
source compositions are extracted. UNMIX uses principal
component analysis to find edges in m-dimensional space, where
m is the number of ambient species. The problem of finding
edges is more properly described as finding hyperplanes that
define a simplex. The vertices at which the hyperplanes intersect
represent pure sources from which source compositions can be
determined. However, there is measurement error in the ambient
data that “fuzzes” the edges making them challenging to find.
UNMIX employs an “edge-finding” algorithm to find the best
edges in the presence of error. Once the edges are found, the
major issue remains of estimating the number of sources. UNMIX
finds the number of sources using a resampling technique
(NUMFACT algorithm) in which random subsets of samples are
successively fit with UNMIX. Results for major sources change
little during the resampling, while minor sources show
considerable variability. NUMFACT calculates a signal-to-noise
(S/N) ratio for each factor, and results with real data sets indicate
that a S/N ratio >2 is an effective rule of thumb in estimating the
number of quantifiable sources. 

Using only ambient data, UNMIX outputs the following
information:

• Number of sources

• Composition of each source

• Source contributions to each sample

• Uncertainties in the source compositions

• Apportionment of the average total mass, if total mass
is included in the model

The major assumptions employed in UNMIX are as follows:

• Source compositions remain approximately constant.

• There are at least N*(N-1) points that have low or no
impact from each of the N sources, i.e., need some
points with one source missing or low.

Advantages  of the UNMIX tool were given as the following:

• No assumptions about the number or compositions of
sources are needed.

• No assumptions or knowledge of errors in the data are
needed.

• UNMIX automatically corrects source compositions for
effects of chemical reactions.

A major difference between UNMIX and PMF is that
UNMIX does not make explicit use of errors or uncertainties in
the ambient concentrations. This is not to imply that the UNMIX
approach regards data uncertainty as unimportant, but rather
that the UNMIX model results implicitly incorporate error in the
ambient data.

UNMIX Results on Synthetic Data Set
Henry summarized his seven-source UNMIX model for the

synthetic data set. UNMIX source apportionment results are
summarized in the following table:

Source
Mean Source Contribution

(µg/m3)

Soil 28

Vehicles 25

Steel sinter 6

Residual oil 5

Combustion 4

Palladium source 3

Asphalt roofing 2

The soil, vehicles, residual oil, and combustion sources had S/N
ratios significantly above 2. The remaining sources are not
statistically quantifiable but are identifiable in terms of charac-
teristic species. The remaining sources included asphalt roofing
(defined by Cs and Co), steel sinter (Cu, Cr), aircraft jet fuel (As,
NO3), as well as sources associated with Mg, Pd, and Se.

Using wind-directional analysis, Henry showed that one can
extract information on source locations even for sources that are
well into the noise. As an example, Henry showed a wind-
directional plot of the steel sinter source (next page). Only the
highest 10% of the data (samples showing the highest estimated
contribution from the steel sinter source) are plotted. The hourly
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wind directions for these samples are normalized to the hourly
wind-direction data for all samples and the relative frequency is
then plotted for each 10-degree wind sector. The plot shows that
on days when the steel sinter source has a high expected source
contribution, the winds are three times more likely to be from 200
to 220 degrees than the average frequency over all samples.

UNMIX Results on the Phoenix Data Set
Dr. Henry presented a six-source UNMIX solution for the

Phoenix PM2.5 data set as summarized in the following table:

 

Source
Mean Source Contribution

(µg/m3)

Vehicles 4.7

Secondaries 2.6

Soil 1.8

Diesels 1.2

Vegetative burning 0.7

Unexplained 1.6

Secondaries include sulfates and organic carbon. Source
compositions are shown in Appendix 1A. It should be noted that
the “unexplained” source represents a real source (or mixture of
real sources) that was extracted by UNMIX but could not be
specifically identified.

The identification of the “diesel” source hinged on the high
Mn concentration and the high OC and EC concentrations, as
well as the fact that this source contributed only one-fourth as
much on the weekends as on weekdays. Henry speculated that
the Mn is a fuel additive used (probably illegally) by diesel truck
operators to prevent engine fouling. Time-series plots for the
different sources are consistent with their identification, e.g.,
vehicle source peaks during the winter months, while the
secondary source peaks during the summer.

Session 1B: PMF Methodology
Dr. Philip Hopke, Clarkson University
(Full presentation is in Appendix 1B.)

PMF is a recently developed least squares formulation of
factor analysis with built-in non-negativity constraints. PMF was
developed by Dr. Pentti Paatero in Finland in the mid-1990s. The
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tool is  currently being refined jointly by Paatero and Hopke. The
following is excerpted from Hopke and Song, Appendix 2B:

“Suppose X is a n by m data matrix consisting of the
measurements of n chemical species in m samples. The
objective of multivariate receptor modeling is to
determine the number of aerosol sources, p, the chemical
composition profile of each source, and the amount that
each of the p sources contributes to each sample. 

The factor analysis model can be written as:

X = GF + E (1)

where G is a n by p matrix of source chemical
compositions (source profiles) and F is a p by m matrix
of source contributions (also called factor scores) to the
samples. Each sample is an observation along the time
axis, so F describes the temporal variation of the
sources. E represents the part of the data variance un-
modeled by the p-factor model.

In PMF, sources are constrained to have non-
negative species concentration, and no sample can have
a negative source contribution. The error estimates for
each observed data point were used as point-by-point
weights. The essence of PMF can thus be presented as:

min Q(X,ó,G,F) (2)
G,F

where

(3)Q
X GF e

F G

ij

ijji
=

−
=









∑∑

( )

,σ σ

2 2

(4)e x g fij ij ik kj
k

p

= − ∑
=1

with g ik $ 0 and fkj $ 0 for k = 1,...,p, and ó is the known
matrix of error estimates of X. Thus, this is a least
squares  problem with the values of G and F to be
determined. That is, G and F are determined so that the
Frobenius norm of E divided by ó (point-wise) is
minimized. As shown by Paatero and Tapper [1], it is
impossible to perform factorization by using singular
value decomposition (SVD) on such a point-by-point
weighted matrix. PMF uses a unique algorithm in which
both G and F matrices are varied simultaneously in each

least squares step. The algorithm was described by
Paatero [2].

Application of PMF requires that error estimates for
the data be chosen judiciously so that the estimates
reflect the quality and reliability of each of the data
points. This  feature provides one of the most important
advantages  of PMF, the ability to handle missing and
below-detection-limit data by adjusting the correspond-
ing error estimates. In the simulated data, there were
some below-detection-limit values for different chemical
species. As the input to the PMF program, the con-
centration data and the associated error estimates were
constructed as follows: For the measured data (above
detection limit), the concentration values were used
directly, and the error estimates were built as the
analytical uncertainty plus a quarter of detection limit.
For the below-detection-limit data, half of the detection
limit was used as the concentration value, and as the
error estimate as well. This strategy [3] appeared to work
well in the present study.”

Excerpt from Appendix 1B:

“Another important aspect of weighting of data
points is the handling of extreme values. Environmental
data typically shows a positively skewed distribution and
often with a heavy tail. Thus, there can be extreme values
in the distribution as well as true “outliers.” In either
case, such high values would have significant influence
on the solution (commonly referred to as leverage). This
influence will generally distort the solution and thus an
approach to reduce their influence can be a useful tool.
Thus, PMF offers a “robust” mode. The robust factori-
zation based on the Huber influence function [Huber,
1981] is a technique of iterative reweighing of the
individual data values.”

A critical step in PMF analysis is the determination of the
number of sources. Plots of the scaled residuals for all species
can help determine the number of factors. It is desirable to have
symmetric distributions and to have all the residuals within ±3
standard deviations. If there is asymmetry or a larger spread in
the residuals, then the number of factors should be reexamined.

Note: The definition of F and G are interchanged throughout
this  report. In some places F represents the source compositions
and G represents the source contributions and in other places F
represents  the source contributions and G represents the source
compositions. From a mathematical perspective, this is permis-
sible, although it may lead to confusion for the reader. Most of
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the current literature refers to F as the source composition matrix
and G as the source contribution matrix.
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PMF Results on Synthetic Data Set 
Hopke presented a nine-factor solution for the simulated

data set as summarized in the following table:
 

Source
Mean Source Contribution

(µg/m3)

Area source 26

Inner highway 24

Residual oil combustion 6

Steel sinter 1.5

Asphalt roofing 2

Municipal incinerator 1

Petroleum refinery 1

Lime kiln 5

Extra area source 2

The major sources were the area source and the inner
highway source. All factors showed a reasonable relationship to
the true source profiles provided to the modelers: For many
factors, concentrations of most species were within 1-sigma
uncertainty of the synthetic concentrations. Plots of residuals for
selected species were generally symmetric and were contained
within ±2 sigma. Residual plots are a useful aid in deciding how
many factors are optimal. In the case of the synthetic data set,
residual peaks for some species were relatively broad and
asymmetric when fewer than nine factors were used. A
scatterplot of the modeled mass versus the synthetic mass
showed excellent agreement. 

PMF Results on Phoenix Data Set 
PMF yielded a six-source model for the Phoenix PM2.5 data

set as summarized in the following table:
 

Source
Mean Source Contribution

(µg/m3)

Biomass burning 4.4

Motor vehicles 3.5

Coal-fired power plant 2.1

Soil 1.9

Smelter 0.5

Sea salt 0.1

Motor vehicle emissions and biomass burning were the
major sources. It is noteworthy that PMF was able to extract the
sea-salt factor even though concentrations for the key
determining species (Na and Cl) were mostly below their
respective detection limits. This source was not found with the
UNMIX model because the Na and Cl were not good-fitting
species. Time-series plots for the six factors showed that most

source contributions generally peaked during the winter; how-
ever, the sea-salt source showed aperiodic episodes. Modeled
mass and observed mass were generally in good agreement. PMF
was also applied to the PM coarse  data and a five-factor model gave
best results. The five sources were identified as (1) soil, (2) con-
struction, (3) road dust, (4) sea salt, and (5) coal-fired power
plant. Soil and construction were the major sources.

In summary, Hopke cited the following advantages of PMF:

• PMF allows optimal weighting of individual data points.
This  in turn makes it possible to include less robust
species (those with many missing values or values
below the detection limit) that may nevertheless define
real sources.

• PMF provides for natural inclusion of non-negativity
and other constraints.

• The PMF approach will allow future inclusion of better
algorithms for finding the optimal number of factors.

Session 1C: Overview of Synthetic
Data Set Results
Shelly Eberly, OAQPS
(Full presentation is in Appendix 1C.)

Ms. Eberly provided a brief overview of the synthetic data
and a comparison of the PMF and UNMIX results to the
synthetic data. Eberly’s remarks addressed the following topics:

• A description of how the synthetic data set was
generated.

• Discussion of the 16 distinct sources that were input
into the model. (Temporal modulation of the synthetic
sources was critical in being able to resolve individual
sources.)

• The geographic layout of “Palookaville.”

• A summary of the average source contributions used to
generate Palookaville’s ambient data.

• Summary of the materials provided to the analysts
(Hopke and Henry).

• Summary of the materials received from the analysts.
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• Side-by-side comparison of the sources identified
by UNMIX and PMF and the source contribution
estimates.

• Comparison of UNMIX and PMF results to the known
results. This comparison is shown below:

 
*Note: Originally the above chart did not have the “muni-
cipal incinerator” source in the category of “Sources identi-
fied by both tools.” UNMIX had identified the source, but
under the label “Combustion source located to NE of site.”

• Comparison of UNMIX and PMF residual oil com-
bustion source profiles to the synthetic  source profile.

• Scatterplots of UNMIX source strength versus true
source strength and PMF source strength versus true
source strength for the residual oil combustion source.

Eberly offered the following conclusions:

• The largest three known sources were correctly
identified by both tools and the modeled mass was
close to the simulated mass for all three sources.

• The fourth largest source (coal combustion, presence
of source withheld from analysts) was not identified by
either tool. PMF found a source similar to the coal
combustion source but identified it as an extra area
source. UNMIX did not find the source.

• Three to four smaller known point sources were
identified but the estimated source contributions were
larger than the true source strengths.

Following  Eberly’s presentation, the session was opened
for questions to any of the previous presenters. Eberly was
asked how the synthetic uncertainties and minimum detection
limits (MDLs) were determined. Response: Each of the 50 species
had a single MDL and a single uncertainty, which were fixed
across the entire data set. For each species a number was
randomly chosen between 5% and 10%. These numbers were
used as the coefficients of variation (CVs) for log-normal
distributions of the measurement errors of the species. Daily
random measurement error drawn from this distribution was
applied after the “true” species concentration at the receptor was
computed.

An MDL for each species was provided. These MDLs were
computed as a function of the average concentration and the
species’ measurement error CV. Specifically, the MDL for each
species was computed as the maximum of 1.5 × CV × (mean
concentration) and 0.001 µg/m3. The data below the MDL were
not modified in any way.

As a consequence of not modifying the data below MDL,
Henry pointed out that scatterplots of certain species revealed
an unrealistic structure of sub-MDL data in the synthetic data
set. For example, although all values of iodine were below the
MDL, scatterplots of iodine values versus other selected species
showed high r2 values, indicating that the synthesized iodine
data were not truly noise.

Comparison to Known Profiles
(Amended)*

Sources identified by both tools
(known / UNMIX / PMF)
–  Area / Soil / Area 28 / 28 / 26

–  Inner Hwy / Vehicle / Inner Hwy 26 / 25 / 24

–  Residual Oil Combustion   5 /   5 /  6

–  Muni. Incin.   1/   4 /   1

–  Steel Sinter 0.8 /  6 /  1.5

–  Asphalt Roofing 0.4 /  2 /  2

Source identified by UNMIX only
–  Palladium source (~3)

Sources identified by PMF only
(known / PMF)
–  Petro. Refin. / Petro. Refin. 0.8 / 1
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Session 2
14 February, p.m.

Drs. Hopke and Henry described in more detail their PMF
and UNMIX solutions for the synthetic data set. Dr. Basil
Coutant discussed goodness of fit (GOF) metrics for evaluating
receptor model solutions and the results of applying GOF metrics
to the PMF and UNMIX solutions.

Session 2A: Description of the
Synthetic Data Generation Process
Dr. Basil Coutant, OAQPS
(Full presentation is in Appendix 2A.)

Dr. Coutant provided a more detailed description of how the
synthetic data set was generated. Sixteen distinct source profiles
were used in Palookaville—nine point sources, four industrial
complexes, one area source, and two highways. The area profile
was a mixture of dust and road profiles. All source profiles with
the exception of the petroleum refinery were fixed. The latter
profile had some built-in variability (coefficient of variation of
approximately 25%). Temporal modulation of the source
strengths (50% CV for most) was found to be essential in being
able to resolve the sources by PMF or UNMIX. A total of 366,
24-h samples were generated at the receptor site.

There was further discussion regarding MDLs. Data below
the MDL should be noise with no structure. What does it mean
to quote a value below the MDL? Some laboratories report
values and uncertainties only for data above the MDL, while
other labs (and the IMPROVE network on occasion) report
values below MDL. Lewis presented EPA documentation
reflecting the EPA view that it is perfectly allowable to report
sub-MDL values (at least in the AIRS database for VOCs). See
Appendix 6, quote from JAWMA 48, 71 (1998).

Session 2B: Processing of Synthetic
Data and Resulting Solutions for PMF
Dr. Phil Hopke
(Full presentation is in Appendix 2B.)

Dr. Hopke described how the synthetic data set was
analyzed. Initial trials with PMF yielded low Q values indicative
of incorrect weighting of the data. Alternative data weights were
evaluated until the Q values became more reasonable (approxi-
mately equal to the sample size). At this  point, plots of residuals
are very helpful in determining the optimum number of factors.
Generally, residual peaks that are broad for a whole suite of
elements imply the need for more factors; residual peaks that are
positively skewed imply the need for another factor(s); residual
peaks that are negatively skewed imply the need for fewer
factors. PMF with nine factors seemed to yield the best results.
Trials  with eight factors left some residual peaks with positive
tails, while PMF with 10 factors failed to extract a physically
interpretable 10th factor. Scatterplots of predicted mass versus
the actual mass reveal whether PMF results consistently
underpredict or overpredict the known mass and may provide
additional guidance on whether the optimal number of factors
has been used. The PMF model was run multiple times starting
with totally random source profiles to ensure there was a robust
solution. 

Session 2C: Processing of Synthetic Data
and Resulting Solutions for UNMIX
Dr. Ron Henry
(Full presentation is in Appendix 2C.)

Dr. Henry typically begins an UNMIX analysis with
graphical analysis of the data. UNMIX provides the ability to
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view scatterplots of the data. Scatterplots of all species versus
mass are very useful in choosing those species that influence the
mass and should be included in the analysis. Henry looks for
straight lines between species, which can suggest a common
source. He also tries to select species whose scatterplots yield
well-defined edges. Scatterplots can also be used to identify
outliers in the data, which can be removed if desired.

Henry typically runs UNMIX multiple times, varying the
fitting species and/or the number of factors. UNMIX will
consistently extract the major sources, but the minor sources
come and go during successive runs. Wind-frequency plots can
be helpful in locating and identifying sources, even weak
sources that cannot be quantified. Based on these plots, Henry
located his Palookaville sources as follows: residual oil
combustion (10–30 degrees); incineration combustion (broad,
30–50 and 60–80); Se source (broad, 20–40); steel sinter
(200–220); aircraft jet fuel (200–220); asphalt roofing (210–230);
Pd source (260–280); Mg source (215–235). Interestingly, the
location for the airport (aircraft jet fuel source) determined by
Henry disagreed with the airport location as shown on the
Palookaville map (see Appendix 1C), which placed the airport
north of the receptor. Subsequent examination of the synthetic
data set simulation by OAQPS revealed that the airport, asphalt
roofing manufacture, and steel sinter sources were, in fact,
inadvertently located in the same place—about 200 degrees from
north, just as found by Henry and in subsequent wind-direction
analyses by Hopke.

Session 2D: Description of Metric of
the Goodness of Fits of the Solutions
and the Results of Applying the Metric
Dr. Basil Coutant, OAQPS.
(Full presentation is in Appendix 2D.) 

Dr. Coutant discussed goodness of fit (GOF) metrics
developed by EPA to determine how well the tools reproduced
the “known” profiles and/or contributions. Ideally, one would
like a single GOF number that can indicate how closely the model
results approximate the profile matrix or the contribution matrix.
Two GOF metrics were described—a mean based and a median
based, both of which measure the relative error in the
apportioned species mass from a source. Both metrics sum these
relative errors for the largest three sources only.

Both metrics were applied to the PMF and UNMIX synthetic
data set solutions. The mean- and median-based GOFs yielded
substantially different results. In particular, the mean-based
metric is very sensitive to the largest relative errors. In these
metrics developed by Coutant, all species are treated equally (no
weights). There was some discussion as to the merits of (1)
unequal weighting of species and (2) making the metrics

independent of the number of fitting species. In addition to GOF
metrics for the source profiles, Coutant described GOF metrics
for (1) the source contribution matrix and (2) the raw data, and
discussed the results of applying these metrics to the PMF and
UNMIX solutions. Coutant presented an algorithm intended to
automatically identify source profiles generated by UNMIX or
PMF. For a given source profile, the algorithm finds the best
match from a list of candidate profiles. (These might come from
the SPECIATE source profile library, for example). The automated
profile identification algorithm was applied to the PMF source
profiles with promising results. The algorithm works better as
more species are included. A minimum of 30 species is recom-
mended. Some of the audience expressed concern about making
such a tool available to inexperienced receptor modelers, while
others felt that such a tool could assist even experienced
receptor modelers in coming up with a short list of potential
source identifications. There followed some discussion of the
quality and reliability of SPECIATE source profiles. SPECIATE
profiles certainly have error associated with them; are these
errors considered in the spectral matching algorithm? In some
cases, automated source identification using the SPECIATE
library might be a step backward compared to reliance on
knowledge of local sources. Coutant concluded that “the profile
GOF metrics have worked well: they let one objectively identify
sources, [and] they provide a systematic way of measuring the
overall quality of the fit.”

Session 2 concluded with a general discussion and
questions for the presenters. Henry responded to a question
about physical constraints in UNMIX. UNMIX presently does
not allow the user to impose constraints on the source profiles
(e.g., the user may know from experience that a certain species is
absent from a source), but this could be implemented in future
versions. PMF presently has only non-negativity constraints
built-in, but it is possible through the regularization functions to
force specific source contributions or profile components toward
zero. Henry expressed his concern that the errors in both tools
are not being properly estimated. As a next step in model
validation, Henry proposed development of a synthetic data set
with variable source profiles and more realistic error structure.
UNMIX and PMF should be run on 1000 different data sets and
the errors estimated by the models should be compared with the
standard error of the synthetic data set to see if the model error
estimates are realistic.

There was some discussion regarding how well the models
deal with secondary aerosols. Basically, secondaries are a
challenge for the models. In the case of regional transport, one
might be able to combine UNMIX or PMF with back-trajectory
methods or regional transport models. Stratifying the ambient
data set by season and/or wind direction may improve the
apportionment of secondaries; however, one must be careful not
to make the data sets too small in the process.
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Asked how Henry and Hopke view each other’s model,
Henry reiterated his philosophy that it is best to do as little as
possible to the data and let the data speak for itself. He
expressed his concern that by weighting the data as PMF does,
one runs the risk of putting additional distance between the
statistical model and the physical reality. Hopke argues that the
ability to weight individual data points allows the modeler to
extract the most information from the data.
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Session 3
15 February, a.m.

Session 3 began with a description of the Phoenix area and
results from three earlier source apportionment studies. This was
followed by results from an independent analysis of the same
Phoenix data set to which the UNMIX and PMF models were
applied. The session concluded with thorough discussions of
the UNMIX and PMF results from Phoenix, including steps used
to preprocess the data to identify potential outliers, selection of
species and number of sources used in the model, estimates of
confidence (error bars) in the source compositions and con-
tributions, and degree of fit obtained.

Session 3A: Phoenix Source
Apportionment Studies
Mark Hubble, Arizona Department of Environmental Quality
(Full presentation is in Appendix 3A.)

Mark Hubble described the Phoenix geography, meteor-
ology, and major emissions sources. Hubble also presented
results from three source apportionment studies carried out in
the Phoenix area: 

1. 1989–1990 Urban Haze Study (principal investigators:
John Watson and Judith Chow, Desert Research
Institute) 

2. 1994–1995 Maricopa Association of Governments/DRI
Brown Cloud Analysis (principal investigators: Tom
Moore et al., Arizona Department of Environmental
Quality, and Eric Fujita, Desert Research Institute)

3. 1994–1996 ADEQ/ENSR Analysis (principal investi-
gators: Tom Moore et al., Arizona Department of
Environmental Quality, and Steven Heisler, ENSR)

The first two studies were conducted during the fall and winter,
while the last study was conducted during all seasons. The

Urban Haze Study used conventional chemical mass balance
(CMB7) to apportion fine mass (PM 2.5) and light extinction to
source categories. Local motor vehicle and geological source
profiles were generated. The Brown Cloud Study used con-
ventional and extended CMB to apportion fine mass only. The
extended CMB included selected semivolatile organic com-
pounds and polycyclic aromatic hydrocarbons to separately
apportion gasoline and diesel combustion. The ADEQ/ENR
Study used conventional CMB to apportion fine mass and light
extinction. 

Results from the first two studies were in general agreement
and showed that motor vehicles contributed the bulk of PM2.5 (in
the range of 44–75%) and that geological sources were typically
the second most abundant source of (PM 2.5), accounting for
approximately 10–20% of PM2.5. Ammonium nitrate and am-
monium sulfate were smaller but significant contributors to PM2.5.
The third study differed from the first two studies in that it was
conducted year-round and it attempted to apportion vegetative
burning using soluble potassium. The apportionment results
showed a significant increase in vegetative burning (11–17% of
PM2.5) and geological sources (26–33%) at the expense of motor
vehicles (typically <40%of PM2.5). However, the vegetative
burning source is probably overestimated since the model
indicates that it contributes 15–20% of PM2.5 during the summer
months, when there should be little vegetative burning. 

In conclusion:

• All studies show that most fine mass comes from
combustion.

• All show similar proportions between geological and
combustion source categories.

• All show rather low contributions from secondary
nitrate and sulfate.
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Session 3B: Phoenix NERL Platform
Studies—Data Quality Issues and
Supplementary Analyses
Dr. Gary Norris, NERL
(Full presentation is in Appendix 3B.)

Dr. Norris discussed the following topics in regard to the
Phoenix NERL platform data:

• NERL Platform data (measurements, sampling equip-
ment)

• Receptor modeling results

• Scanning electron microscopy results

• Health effects studies

The NERL monitoring platform in Phoenix provided data that
was submitted to Drs. Henry and Hopke for the UNMIX and
PMF analyses. The data consisted of collocated measurements
from a dual fine-particle sequential sampler (DFPSS), a dichoto-
mous sampler, TEOMs, and a 10-m meteorological tower. The
DFPSS data were the subject of analysis unless otherwise noted.
The data were collected between 1 February 1995 and 30 June
1998. Norris et al. carried out their own chemical mass balance
receptor modeling study, which has recently been submitted for
publication. This study attributes 42.2% of PM2.5 to motor
vehicles, 24.5% to road dust, 17% to secondary organics, 9.5%
to ammonium bisulfate, 5.4% to wood smoke, and 1.4% to marine
aerosol. Norris suggested that secondary organics may represent
a positive artifact on the quartz filter, which may account for
some of Hopke’s “biomass burning” source and Henry’s
“secondary” source.

Scanning electron microscopy was used to validate the
receptor model results and to provide evidence for additional
weak sources. For example, back-trajectories pointing toward the
Pacific combined with SEM images of salt aerosols provided
confirmation of the marine source. SEM also identified particles
suggestive of smelting operations and an unrelated source(s) of
Pb particles. 

Health effects associated with the Phoenix aerosol were
analyzed in a recent study by Mar et al. (Associations between
Air Pollution and Mortality in Phoenix, 1995–1997). Cardio-
vascular mortality was significantly associated with PM2.5, coarse
PM, and elemental carbon. Factor analysis revealed that
combustion-related pollutants (motor vehicle exhaust and
vegetative burning) and secondary aerosols (sulfates) were
associated with cardiovascular mortality.

Session 3C: PMF Analysis of Phoenix Data
Dr. Phil Hopke
(Full presentation is in Appendix 3C.)

Dr. Hopke discussed his PMF analysis of the Phoenix data.
Hopke found a six-source model for Phoenix. In order of
descending mass contribution, these sources were biomass
burning, motor vehicles, coal-fired power plant, soil, Cu smelter,
and sea salt. Time-series plots of the six sources showed reason-
able seasonal trends. Sea salt and soil were episodic in nature;
motor vehicles, biomass burning, and perhaps the Cu smelter
source appear to peak in winter. Wind-directional analysis of the
copper smelter source might clarify whether this is being
transported across the Mexican/U.S. border. Because PMF
allows the user to fill in missing data or replace sub-MDL data,
Hopke was able to use Na, Cl, and Cu species to advantage in
extracting the sea-salt and copper smelter sources, in contrast to
the UNMIX solution.

Determining the number of factors to include in the model is
a multistep process. After obtaining a trial PMF solution, the
total mass (PM2.5) is regressed on the source contributions to
apportion the mass to each of the sources. If any of the
coefficients in this regression are negative, then there likely are
too many factors in the model. Another technique for evaluating
the number of factors is to examine the standardized residuals by
species. If these residuals are not symmetric or if there are a
number of residuals more than three standard deviations from the
mean, this may indicate there are too many or too few factors
(although it may also indicate that the uncertainties provided to
PMF by the user are not appropriate).

Once the number of factors has been determined, then the
correct rotation for the solution needs to be determined. One
easy way to rotate the solution is through the parameter FPEAK.
Graphing Q against different values of FPEAK is a useful
diagnostic for selecting the appropriate rotation. As a general
rule of thumb, one should increase FPEAK until Q starts to rise.

Although the selection of the number of factors and the
appropriate rotation are presented here as independent steps,
they, in fact, interact. For example, after selecting FPEAK, one
should reexamine the residuals to be sure they are still small and
symmetric and reexamine the regression coefficients to be sure
they are still non-negative.

As an aside, Hopke separately applied PMF to data col-
lected with the DFPSS and to data collected with the collocated
dichot sampler. The results lent support to the modeling results
since the resulting source profiles for the two samplers looked
very similar with the exception of sea salt and soil. These
typically represent coarse-fraction intrusion and were affected by
the different inlet efficiencies for the two sampling systems.
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Note: An eight-source model, whose results differ con-
siderably from the six-source model presented at the workshop
and are much more similar to the UNMIX results, has been
submitted for publication (Ramadan et al., JAWMA, in press).

Session 3D: UNMIX Analysis of Phoenix Data
Dr. Ron Henry
(Full presentation is in Appendix 3D.)

Dr. Henry discussed his six-source solution for Phoenix
using UNMIX. He excluded Na, Cl, and Cu from the list of fitting
species because scatterplots versus mass indicated that little
mass was associated with these species. Also, there were a large
number of measured values below the detection limit. Henry’s six
sources in order of decreasing mass contribution were non-diesel
vehicles (37%), secondaries (20%), soil (15%), diesels (10%),
vegetative burning (5%), and unexplained (12%). In contrast to
Hopke, Henry used soil-corrected potassium as a fitting species.
The correction was made by using the lower edge in the
potassium versus silicon scatterplot as an estimate of the soil
potassium. Non-soil potassium proved to be very important in
being able to extract the weak vegetative burning source. The
secondaries source was high in S and organic carbon. The
unexplained source, distinguished by Br and OC, is probably a
mixture of sources according to Henry. (Phoenix has a surprising
number of local OC sources according to Henry, although
regional transport of OC is another possibility.) Several factors
supported Henry’s labeling of the diesel source. First was the
high EC component. Second, Henry compared the diesel
contributions on weekdays versus weekends and found nearly
a factor of 4 decrease on the weekends, consistent with com-
mercial truckers’ reluctance to work on weekends. (The other
sources, if anything, may have shown a tendency toward higher
contributions on the weekends.) Third, some research on the
Internet indicated that it is common practice among truckers
(though possibly illegal) to add MMT (an octane-enhancing fuel
additive) to their fuel to minimize engine fouling. This could then
explain the large Mn component in the diesel source profile.
Unfortunately, no traffic count data were available in the Phoenix
area showing the number of diesel vehicles on weekends versus
weekdays. Henry also presented the 1-sigma source composition
errors that can be generated by UNMIX. By dividing each
contribution in the source profile matrix by its associated error,
one calculates the normalized signal-to-noise values for the
source profiles. With the exception of vegetative burning (the
weakest source), the great majority of these values are greater
than 2.

Time-series plots of the six sources showed reasonable
seasonal cycles. Vegetative burning and non-diesel vehicle
sources peaked in winter, while the secondaries peaked in

September–October. “Unexplained” had no discernible pattern.
In contrast to the synthetic data set, wind-directional plots
showed little directionality to the sources, and any directional
trends that did show up were probably driven by seasonal
changes in wind direction. (Winds are more likely to come from
the north during the winter and the top 10% samples for the
vehicle source are most likely to occur in the winter, so the wind-
direction plot for the vehicle source will be skewed toward the
north.)

As an aside, Henry included PM10 and PM2.5 masses from
collocated TEOM samplers in the UNMIX model and generated
a seven-source solution. Six of the sources reproduced the
previous six-source solution very well. In addition, the DFPSS
fine mass and the TEOM fine mass apportioned to each of the six
sources were in remarkable agreement. The additional seventh
source appeared to be associated with PM 10.

Session 3 concluded with a brief comparison of the UNMIX
and PMF solutions to the Phoenix data as summarized in the
following table:

PMF UNMIX

Biomass burning 35% Non-diesel 37%

Motor vehicles 28% Secondary 20%

Coal-fired power
plant

17% Soil 15%

Soil 15% Diesel 10%

Smelter 4% Vegetative burning 5%

Sea salt 1% Unexplained 12%

There were some major differences in the two solutions. The
largest source in the PMF solution was biomass burning,
accounting for nearly 35% of the mass. By comparison,
UNMIX’s vegetative burning accounted for only 5% of the
mass. It is worth noting that Henry used non-soil K to extract his
vegetative burning source, while Hopke did not. Hopke
speculates that his biomass burning source may be a
combination of Henry’s diesel and unexplained sources, which
account for about 22% of the mass. Motor vehicles account for
about 28% of the mass in PMF versus 47% in UNMIX
(combining diesels plus non-diesel). Based on profile similarities,
Hopke’s coal-fired power plant source, accounting for about 17%
of the mass, appears to be equivalent to Henry’s secondaries
source, representing 20% of the mass. Hopke’s soil source
accounts  for about 15% of the mass, the same as Henry’s soil
source estimate. 
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Session 4
15 February, p.m.

Session 4 included a reconsideration of the synthetic data
results, discussions of how the tools really work, and live
demonstrations of PMF and UNMIX by Hopke and Henry. 

Session 4A: Reexamination of
the Synthetic Data Results
Shelly Eberly

Eberly reviewed the PMF and UNMIX results for the
synthetic data set and made some corrections. Specifically,
UNMIX identified four sources larger than noise, including the
municipal incinerator source (identified by Henry as solid
material combustion) with an estimated strength of 4 µg/m3. Both
tools  tended to overestimate the contributions from the minor
sources. Henry explained that this is simply a consequence of
the fact that both tools attempt to explain all of the observed
mass with only seven or nine sources rather than the 16 sources
that were used to generate the synthetic data. Therefore, some
of the source contributions will necessarily be overestimated.
Henry emphasized the need to put error bars on estimated source
contributions when comparing results from different tools.

Other issues pertaining to the synthetic data results
included the actual location of the airport in Palookaville. With
regard to putting labels on sources, Henry encouraged modelers
to provide a one-sentence justification for each source label so
that readers will understand how the sources were identified.

Session 4B: Demonstration
of UNMIX Program
Dr. Ron Henry

Dr. Henry presented a live demonstration of the UNMIX
program. UNMIX is copyrighted to Henry. The current version

(UNMIX2.1) is available at no charge from Dr. Henry, who
requests that users  not distribute the program to others. E-mail
Dr. Henry at rhenry@usc.edu to request a copy. In addition to
the program, users will receive a user’s manual (PDF format) and
some test input files. Users must have MatLab 5.3 in order to run
UNMIX. 

Ambient data is input to UNMIX as a flat ASCII text file with
column  headings. UNMIX has a user-friendly Windows
interface. UNMIX provides some statistical measures to guide
the user toward the best solution. These include minimum
r-square (r2) and minimum signal-to-noise (S/N). Recommended
values are r2 > 0.8 and S/N > 2. UNMIX allows the user to set one
species as a “tracer” if desired. This forces all measured mass for
that species into one source. UNMIX has an option for
displaying scatterplots of any species against any other species.
This is very useful in selecting fitting species. In the same plots
one can identify outliers and remove them (temporarily) from the
data set. One can also display “edge” plots. Henry recommends
this  as a good way to find out which species are important. In
selecting fitting species, Henry had the following suggestions:
(1) Major species must be included or the model won’t be able to
find a solution. (2) Select “robust” species—i.e., those with few
missing or sub-MDL values. (3) Use as few species as possible,
since each additional species adds error to the analysis and
usually degrades the S/N. UNMIX outputs include the source
composition matrix and the source contributions. Additionally,
UNMIX can estimate errors in the UNMIX source compositions
using a bootstrap approach in which the model is applied to 100
random subsets of the data. “UNMIX overnight” is another
useful feature that allows the user to try all possible subsets of
a selected set of fitting species in order to find the optimal
solution. This can be a lengthy process and the user will
probably want to limit the number of candidate species to seven
or less.

Future improvements that Henry would like to see include
(1) a stand-alone version that would not require MatLab and
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could potentially run much faster, (2) the ability to input
constraints  on source compositions, and (3) the ability to save
“fitting sessions” with all pertinent information so users can
remember where they’ve been or reproduce earlier analyses.
Asked whether the quoted uncertainties in the ambient data
could be used to some advantage, Henry reiterated his philo-
sophy that it is best to assume that you know nothing about the
data and that, in his experience, uncertainties are often meaning-
less. Nevertheless, Henry did not entirely rule out the possibility
that future versions of UNMIX may try to use the information
present in the quoted uncertainties.

Session 4C: Demonstration
of the PMF Program
Dr. Phil Hopke

The PMF programs are available from Dr. Pentti Paatero via
the ftp site rock.helsinki.fi/pub/misc/pmf. First-time users can get
PMF for a 6-month free trial period after which there is a license
fee. PMF is still primarily a research tool and does not have a
nice graphical interface. Researchers interested in learning to use
PMF are invited to spend a week with Hopke at Clarkson
University.

PMF can be run through a programmer’s file editor (PFE),
which is free shareware downloadable from the Internet. Every
PMF job begins by setting up an *.INI file, which contains all the
parameters needed for the analysis, including the file names and
paths for input data files. 

The output of PMF includes three matrices: the G matrix of
source contributions, the F matrix of source compositions, and
the matrix of residuals. PMF also outputs a text file containing a
log of the current analysis session. The G matrix can be input to
a statistics program in order to carry out the regression versus
mass to get the scaled source contributions. The PMF program
has no built-in diagnostic tools (e.g., for displaying residual
plots).

Looking to the future, the PMF program may not be refined.
Instead, programming efforts may be directed entirely into the
Multilinear Engine (ME) program, which Hopke sees as replacing
PMF (Paatero, 1999). ME is considered more flexible in its ability
to handle the imposition of physical constraints. A wish list for
future versions of ME includes a much more user-friendly
graphical interface, the ability to input fixed source profiles or
ratio constraints (e.g., Al:Si ratio), and a stand-alone version with
built-in diagnostics (e.g., residual plots), which will obviate the
need to export results to other software packages. Hopke
speculated that it might be possible to automate to some extent
the search for the optimal FPEAK by, for example, increasing
FPEAK until there is a substantial rise in Q.

Further discussion of MDLs  revealed a general consensus
that there is considerable lack of agreement on the meaning of
MDLs  and how they are reported by various labs. Lewis
provided the following definitions of the limit of detection
(equivalent to the MDL) and limit of quantitation:

It was noted that the above definitions define method limits,
as distinguished from sample limits. The latter vary from sample
to sample and are more realistic limits because they include the
effects of spectral interferences due to other analytes present in
the particular sample. Some labs report the fixed-method MDLs,
and some report variable-sample MDLs. Also, some labs report
values below the MDL, while others do not. Some statisticians
argue for reporting only raw values plus uncertainties and
dispense with the concept of MDLs. Hopke is currently
investigating the use of a statistical method known as “multiple
imputation” as a way to use existing data to impute missing data,
but this research is in a preliminary stage. The discussion did not
lead to any resolution of the difficult issue of how best to handle
and report nondetected values.

Session 4D: Potential Effects of Data
Artifacts on Receptor Modeling Results
Rich Poirot, Vermont Department of Environmental
Conservation
(Full presentation is in Appendix 4D.)

Data artifacts, which can include measurement errors, uncer-
tainties, and various hole-filling replacements for nondetects, can
interfere with the identification of real sources. Poirot discussed
his  experience with UNMIX and dealing with nondetect data.
There are two choices for dealing with nondetects: one can
censor the input data to screen out all nondetects, or one can

From Lloyd Currie, pg. 289, in “X-Ray Fluorescence
Analysis of Environmental Samples,” T.G. Dzubay, ed.,
Ann Arbor Science (1977):

Limit of Detection == 3.29 ó0

(false positive risk = 5%,
false negative risk = 5%)

Limit of Quantitation == 10 f  ó0

(RSD of measured
concentration = 10%)

where ó0 = (1.0 – 1.4) x standard deviation of blank
and       f = 1



19

use some hole-filling techniques to replace nondetects. The
former approach can create a small and biased subset of the
original data. Poirot discussed the results of using various hole-
filling techniques to modify the input data for UNMIX
calculations. In the end, Poirot felt that simple replacement of
nondetect values with zeros (or some small constant) yielded the
most consistent and interpretable UNMIX results.

Poirot showed a series of slides lending support to those
who mistrust reported uncertainties and MDLs. For example, Ni
and As measurements at Lye Brook, VT, are totally uncorrelated
and yet 

the reported uncertainties exhibit a significant positive
correlation (top figure below). Also, he said, “although concen-
trations of Ni and As are uncorrelated, their MDLs are highly
correlated, both as a function of three methods changes in
different time periods, and also within each of three different
reporting periods” (bottom figure below).



20

Poirot went on to say that “[this is] possibly due to common
interferences or instrumental drift, but not due to changing
ambient concentrations. Generally, in most long-term measure-
ment programs both ambient concentrations and detection limits
are likely to decrease over time, creating the possibility of false
positive correlations between source activity for some elements
and lab activity for other elements.” This latter point was
elegantly demonstrated by a plot of same-day, above-MDL As
concentrations at Acadia and Mt. Rainier IMPROVE sites. The
measured concentrations exhibit no correlation (as expected
given the continental distance between sites). However, same-
day As MDLs for these sites are correlated, generally due to
“progress” (improving detection limits over time) in the 10+  year
IMPROVE network. Poirot also provided evidence for
“misquantified” MDLs for Al in IMPROVE data. He presented
some encouraging results, which showed that despite wide
differences in data preprocessing and model input, both UNMIX
and PMF identified three common sources in an IMPROVE-like
data set. However, artifacts associated with changes in Se MDLs
due to a change from PIXE to XRF analysis during the sampling
period clearly influenced the UNMIX and PMF results in
different ways.

Poirot concluded by saying, “Data Artifacts, including
MDLs  and uncertainties as reported by labs and/or as processed
by data analysts, can and do influence receptor model results.”

Session 4E: Open Discussion 
There was further discussion of the MDLs. It was not

known whether the EPA PM2.5 Speciation Monitoring Network
will report the single method-based MDLs or the daily-varying
sample MDLs. Henry reconsidered his distrust of reported MDLs
and uncertainties and found it to be justified. In situations where
one cannot afford to lose data due to nondetects, Henry
recommends just replacing the nondetects with zero or a small
constant.

Important MDL-related questions include the following:
How are MDL and uncertainty values determined by analytical
laboratories? Do these reported values have the same meaning
at different labs or in different measurement programs? How have
analytical methods and the resultant data changed over the
course of a measurement program? And finally, what are the best
ways of processing this information as input to different receptor
models?

In response to the question of whether or not to use mass
as a fitting species, Henry and Hopke expressed different
philosophies. Henry likes to include the mass so that the total
mass is apportioned just like the species mass. Hopke has
traditionally kept the mass separate and likes to use the results
of the mass regression analysis as an added check on the
validity of the model results.

Henry expressed his concern that the errors reported in both
UNMIX and PMF have not been given adequate scrutiny. Hopke
believes that the error estimates in PMF are almost certainly
overestimates.

Several members of the audience commented on the dreaded
UNMIX message informing the user that there was “no feasible
solution” to a problem. Henry responded that rather than
viewing this as a bug or deficiency in UNMIX, it should instead
be viewed as a valuable feature in that a bad solution is worse
than no solution.

There was some discussion about dealing with outliers.
Henry relies heavily on UNMIX scatterplots to identify outliers.
He urged caution in eliminating suspected outliers because, if
real, they can provide very important information about source
compositions. Hopke typically does a principal components
analysis of the data and plots factor scores to identify outliers.
The “robust mode” option in PMF automatically downweights
outliers (but does not eliminate them) so that they do not exert
too much influence. If the user knows that a certain sample is an
outlier (e.g., fireworks on the Fourth of July), then it is best to
remove that data point before performing UNMIX or PMF
analysis.

The interpretation of source profiles remains one of the
biggest challenges in using these tools. Receptor modeling
should not be done in a vacuum. Ideally, the modeler will have
intimate knowledge of the modeled airshed, or will work closely
with someone who does. Rich Poirot suggested creating an
informal, unofficial bulletin board or site where modelers could
share source profiles (accompanied by some descriptive
information) generated by UNMIX or PMF. Lewis would like
modelers to show their profiles in publications. With emphasis
on PM2.5, there is likely to be increased mass being apportioned
to regional sources, which are typically dominated by secondary
species. It would be useful to compile a library of regional
“fingerprints.” Such a library could be helpful in proper source
identification. There are some good tools such as residence time
analysis, back-trajectory analysis, and partial source contribution
function (PSCF) analysis for identifying and quantifying regional
impacts. Hopke showed how PSCF was able to trace a Ni-V factor
in Vermont back to residual oil combustion in the Eastern urban
corridor.
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Session 5
16 February, a.m.

Session 5A: Application of PMF
in the Northern Great Lakes:
A Tale of Two Studies
Dr. Kurt Paterson, Michigan Technological University
(Full presentation is in Appendix 5A.)

Dr. Paterson presented an overview of two studies
conducted in the Northern Great Lakes in which PMF was
applied. The first study involved source apportionment of a
mixture of trace gases and particulate matter in order to identify
the sources that influence air quality in the northern Great Lakes.
PMF extracted three sources identified by Paterson as biogenic
(defined by isoprene), local, and regional transport. Paterson
combined PMF with residence time analysis, met data analysis,
and time-series analysis to confirm the identification of the
sources. In the second study PMF was used on particle size
distribution data, not to apportion sources, but to extract distinct
factors that could reveal the dynamics of different particle
modes. The original data comprised 100 size ranges from 5 nm to
7.5 µm and 1046 half-hour samples. PMF collapsed this data into
six factors, which fell out into distinct particle size ranges and
which exhibited different dynamic properties. Two factors, for
example, showed strong diurnal cycles. Two factors were most
influenced by long-range transport. And PM 2.5 mass was most
influenced by particles in the size range 220–800 nm. The
chemical composition data for these samples are now available
and Paterson will repeat these analyses, adding in the com-
position data and using both PMF and UNMIX.

Session 5B: Discussion of FPEAK, Open
Discussions, and Workshop Conclusion

Depending on the input data set, PMF may generate multiple
solutions that are all equally valid within the rotational ambiguity
of the PMF model. Somehow the user must decide which rotation
is the best. FPEAK is one parameter available in PMF that allows
the user to try various rotations. Positive FPEAK values force

the source composition matrix toward more extremes (zeros for
some species and large percentages for other species) and the
source contribution matrix toward less extremes, while negative
FPEAK values produce the opposite effect. Eberly presented a
simple example (seven samples, three species, two sources) to
show the effect of FPEAK (see Appendix 5B). PMF was executed
with FPEAK values of -0.5, 0.0, and 0.5, and the resultant source
composition and contributions were presented. All three of these
possible solutions are consistent with the measurements
recorded at the receptor, that is, the masses balance. Examination
of the solutions shows that (1) for the negative FPEAK value,
the source contributions are the most extreme, including some
days when one source is not contributing, and (2) for the
positive FPEAK value, the source compositions are the most
extreme, including a species whose proportions are 0.01 and 0.85.

UNMIX was also run on the simple example and the results
were presented. UNMIX produces only one solution and this
solution had compositions and contributions similar to those
from PMF where the FPEAK value was -0.5. The reason for this
is that the UNMIX algorithm assumes there are days when each
source is not contributing to the receptor. That is, UNMIX seeks
sources for which there are some contributions near zero, and
this is similar to what PMF does with negative FPEAK values.

As mentioned, a requirement of UNMIX is that there must
be sampling days when each source disappears or is insig-
nificant. How does UNMIX handle a source like motor vehicles
in Washington, DC, which never turns off? Henry responded
that this was the reason for putting the “tracer” option in
UNMIX. This option allows the user to select one species as a
tracer. This constrains the UNMIX solution by forcing all of the
tracer species mass into one source. For motor vehicles, Henry
recommended using CO as a tracer (not perfect, but usually good
enough). Without a tracer in this case, UNMIX may not find a
feasible solution.

Is there a rule of thumb for the number of samples needed by
UNMIX or PMF? It is really a signal-to-noise problem. PMF has
been applied to as few as 40 samples, but typically there is not
enough variability present in so few data points to be able to pull
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out distinct factors. Recent work by John Ondov (PM2000
Charleston Conference) has shown that by sampling with high
time resolution (half-hour) one can dramatically improve the
signal/noise for sources with temporal variability. Henry offered
the following rule of thumb for UNMIX: 200–300 samples may
get you five sources; 2000–3000 samples may be needed to
extract 9–10 sources.

How can receptor modelers take advantage of the EPA
Speciation Monitoring Network now coming online? What tools
are available to interpret these data? Instead of modeling multiple
species at a single site, one can model a single species across
multiple sites. In this way, one can extract spatial concentration
gradients, which, combined with wind-direction analysis, can
identify source locations. Alternatively, one can model multiple
species at multiple sites using three-way factor analysis (Hopke
et al., 1998).

A member of the audience pointed out the discrepancies in
the UNMIX and PMF solutions for the Phoenix data, most
notably the mass apportioned to vegetative burning in the two
models. Are such discrepancies the result of applying different
models, or the result of different people interpreting the same
information? Hopke responded by saying that the modeler needs
to tap into the local expertise to help identify important sources
and to screen out unreasonable solutions. It is always good to
come at a problem with as many tools as possible. If one can get
similar solutions using both PMF and UNMIX, this adds
confidence to the results.

Henry proposed a strategy that combines UNMIX and PMF
and should yield defensible solutions. In this combined ap-
proach, the modeler might start with UNMIX to estimate the
number of factors and to get good starting source profiles.
UNMIX profiles could be used as starting profiles for PMF, since
PMF is particularly good at finding smaller sources and including
additional species. (This will shorten the PMF analysis since the
model does not have to start with random profiles.) Applying
other information such as wind-direction plots, one can probably
come up with 10 or more sources. The ability to look at residuals
in PMF can be very helpful as a quality check at the end of the
modeling process.

Kurt Paterson suggested that it would be very useful to
have thorough training tutorials for both PMF and UNMIX
showing detailed applications of the tools in actual case studies.

There was a broad discussion regarding the roles of regional
planning bodies and state regulatory agencies in dealing with
compliance issues. Within a few years, regulatory agencies will
need to address reductions at both the regional and local levels,
with the regional planning bodies probably taking the lead. Will
the state and regional agencies have the resources and the
expertise to utilize the latest modeling tools? How can PMF and
UNMIX be used to separate the regional from the local sources?
Can the IMPROVE and Speciation networks be combined in
some way to help separate regional sources from local sources?

Henry responded that there presently exist a handful of good
tools  for dealing with regional sources. The challenge is for
someone to put these tools together and make people aware that
they exist. Perhaps the EPA regional offices can play a role in
disseminating information about these tools or providing training
to state agencies.
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206-526-2909 ugene@u.washington.edu

Tom Rosendahl U.S. EPA 919-541-5314 rosendahl.tom@epa.gov U.S. EPA
OAQPS (MD-15)
RTP, NC 27711

Cynthia Howard
Reed

U.S. EPA 703-648-5222 howard.cynthia@epa.gov U.S. EPA
12201 Sunrise Valley Dr.
555 National Center
Reston, VA 20192

Barbara Parzygnat U.S. EPA 919-541-5474 parzygnat.barbara@epa.gov U.S. EPA
OAQPS (MD-14)
RTP, NC 27711

Bob Willis ManTech Environmental 919-541-2809 willis.robert@epa.gov ManTech Environmental
P.O. Box 12313
RTP, NC  27709

Kaz Ito New York University 914-731-3540 kaz@env.med.nyu.edu New York University, Env.
Med.
57 Old Forge Rd.
Tuxedo, NY 10987

Shaibal Mukerjee U.S. EPA 919-541-1865 mukerjee.shaibal@epa.gov U.S. EPA
NERL (MD-47)
RTP, NC 27711

John Langstaff 919-967-6649 jlangstaff@mindspring.com 1105 Valley Park Dr.
Chapel Hill, NC 27514

Melissa Gonzales U.S. EPA 919-966-7549 gonzales.melissa@epa.gov U.S. EPA
MD-58A
RTP, NC 27711
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Tom Coulter U.S. EPA 919-541-0832 coulter.tom@epa.gov U.S. EPA
MD-47
RTP, NC 27711

Rich Poirot 802-211-3807 richpo@dec.anr.state.vt.us 103 South Main St.
Waterbury, VT 05671

Steve Fudge 919-933-9501 fudge.steve@ecrweb.com 1129 Weaver Dairy Rd.
Chapel Hill, NC 27514

Shelly Eberly U.S. EPA 919-541-4128 eberly.shelly@epa.gov U.S. EPA
NERL (MD-14)
RTP, NC 27711

Jong Hoon Lee Rutgers University 732-932-0306 jhlee@aesop.rutgers.edu Rutgers University
14 College Farm Rd.
New Brunswick, NJ 08901

Barbara Turpin Rutgers University 732-932-9540 turpin@aesop.rutgers.edu Rutgers University
14 College Farm Rd.
New Brunswick, NJ 08901

Kurt Paterson Michigan Tech
University

906-487-3495 Paterson@mtu.edu Michigan Tech University
Dept. Civil & Env.
Engineering
1400 Townsend Drive
Houghton, MI 49931


