

Proposed Changes to Data Handling and NAAQS Interpretation

Ozone Update

AQS Conference Colorado Springs June 2010

David Mintz
US EPA, Office of Air Quality Planning and Standards

Overview

- Proposed primary and secondary NAAQS forms and ranges
- Proposed changes to Appendix P data handling
- Secondary NAAQS (W126) in more detail

Proposed Revisions to Ozone NAAQS

- On January 6, 2010, EPA proposed revisions to the National Ambient Air Quality Standards for ground-level ozone
- The proposed revisions would affect two types of ozone standards:
 - Primary standard to protect public health, including the health of at-risk populations such as children, people with asthma, and older adults
 - Secondary standard to protect public welfare and the environment, including sensitive vegetation and ecosystems

Proposed Forms and Ranges

- Specifically, EPA is:
 - Proposing to revise the level of the primary 8-hour ozone standard to a level within the range of 0.060-0.070 parts per million (ppm)
 - Proposing to establish a separate cumulative secondary standard within a range of 7-15 ppm-hours
- EPA is also proposing to update the Air Quality Index (AQI) for ozone
- EPA plans to issue final standards by August 31, 2010
- For more information go to http://www.epa.gov/ozonepollution

Data Handling Revisions (Appendix P)

- V. Revision of Appendix P—Interpretation of the NAAQS for O₃ and Proposed Revisions to the Exceptional Events Rule
 - A. Background
 - B. Interpretation of the Secondary O₃ Standard
 - C. Clarifications Related to the Primary Standard
 - D. Revisions to Exceptions From Standard Data Completeness Requirements for the Primary Standard
 - E. Elimination of the Requirement for 90 Percent Completeness of Daily Data Across Three Years
 - F. Administrator Discretion To Use Incomplete Data
 - **G. Truncation Versus Rounding**
 - H. Data Selection
 - I. Exceptional Events Information Submission Schedule

Source: Federal Register / Vol. 75, No. 11 / Tuesday, January 19, 2010 / Proposed Rules, pp. 3027-3033

Available at: http://www.epa.gov/air/ozonepollution/fr/20100119.pdf

E. Elimination of the Requirement for 90 Percent Completeness of Daily Data Across Three Years

- App P currently requires 75 percent of days in each of 3 years AND the average of the percent completeness from those years must be at least 90 percent.
- Proposes to eliminate the 90 percent requirement.

G. Truncation Versus Rounding

Current Appendix P:

- When computing the 8-hour average, truncate result to 3 decimal places
- When computing the 3-year average of the fourth-highest daily maximum 8hour concentration, truncate to 3 decimals

New Appendix P proposes:

- When computing the 8-hour average, retain all digits to the right of the decimal place
- When computing the 3-year average of the fourth-highest daily maximum 8hour concentration, round to 3 decimals

Why do I need to know W126?

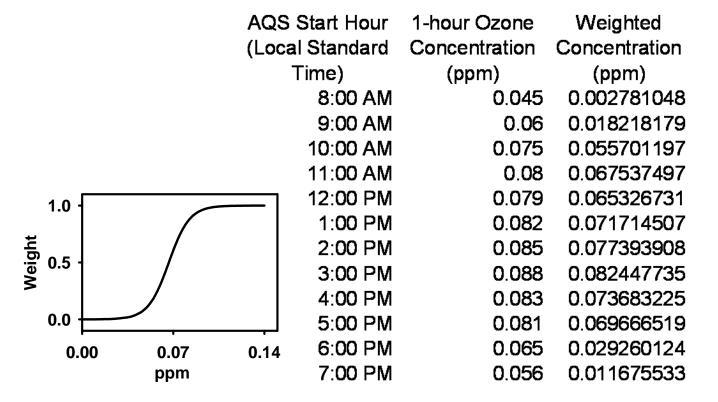
- Sudoku is "out", W126 is "in"
- Impress your Facebook friends

How is it calculated?

- Transform
- Add 3 times
- Average

Start with hourly values...

12-hour period 8am-8pm


1-hour Ozone
Concentration
(ppm)
0.045
0.06
0.075
0.08
0.079
0.082
0.085
0.088
0.083
0.081
0.065
0.056

Transform

Transform the hourly values

$$O_{3i} * (\frac{1}{1 + (4403 * e^{-126 * O_{3i}})})$$

Cheat sheet: The formula is preprogrammed in Excel at http://www.epa.gov/ttn/analysis/w126.htm

Add

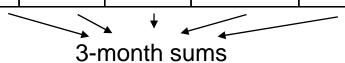
Add the weighted hourly values for each day

AQS Start Hour	1-hour Ozone	Weighted	
(Local Standard	Concentration	Concentration	
Time)	(ppm)	(ppm)	
8:00 AM	0.045	0.002781048	
9:00 AM	0.06	0.018218179	
10:00 AM	0.075	0.055701197	
11:00 AM	0.08	0.067537497	
12:00 PM	0.079	0.065326731	
1:00 PM	0.082	0.071714507	
2:00 PM	0.085	0.077393908	
3:00 PM	0.088	0.082447735	
4:00 PM	0.083	0.073683225	
5:00 PM	0.081	0.069666519	
6:00 PM	0.065	0.029260124	
7:00 PM	0.056	0.011675533	
		0.625406204	Daily Value

Add

- Add the daily values for each month
- This example is just May

```
Daily Value
 5/1/2007
                 0.79
 5/2/2007
                0.657
 5/3/2007
                0.664
 5/4/2007
                0.703
 5/5/2007
                0.698
 5/6/2007
               0.596
 5/7/2007
                  0.7
 5/8/2007
                0.822
 5/9/2007
                0.786
5/10/2007
                 0.82
                0.867
5/11/2007
5/12/2007
                0.854
                0.888
5/13/2007
5/14/2007
               0.841
5/15/2007
                0.839
5/16/2007
                0.783
5/17/2007
                 0.78
               0.776
5/18/2007
5/19/2007
                0.787
5/20/2007
               0.751
5/21/2007
               0.652
5/22/2007
                0.671
5/23/2007
                0.673
5/24/2007
               0.717
               0.766
5/25/2007
               0.789
5/26/2007
5/27/2007
                0.737
5/28/2007
                0.678
5/29/2007
               0.662
5/30/2007
               0.845
               0.773
5/31/2007
              23.365
```


→ Monthly Value

Add

Add the monthly values for each 3-month period

	April	May	June	July	August	September	October
Monthly Value	4.442	9.124	12.983	16.153	13.555	4.364	1.302
3-Month sum			26.549	38.260	42.691	34.072	19.221

In this example, there are five 3-month sums in the year

Average

Average the highest 3-month sum from each of the three years

Year 2004	April	May	June	July	August	September	October
Monthly Value	4.442	9.124	12.983	16.153	13.555	4.364	1.302
3-Month sum	na	na	26.549	38.260	42.691	34.072	19.221

Year 2005	April	May	June	July	August	September	October
Monthly Value	3.114	7.214	8.214	8.111	7.455	7.331	5.115
3-Month sum	na	na	18.542	23.539	23.780	22.897	19.901

Year 2006	April	May	June	July	August	September	October
Monthly Value	4.574	5.978	6.786	8.214	5.579	4.331	2.115
3-Month sum	na	na	17.338	20.978	20.579	18.124	12.025

W126 value = (42.691 + 23.780 + 20.978)/3 = 29.149666... rounds to **29 ppm-hours** \rightarrow This is it!!!

Congratulations!

- Now you know how the W126 statistic is calculated!
- For additional information, including data summaries, see http://www.epa.gov/ttn/analysis/w126.htm

Contact Information

David Mintz 919-541-5224 mintz.david@epa.gov