STANDARD FORM 83-I SUPPORTING STATEMENT FOR OMB REVIEW OF EPA ICR No. 1858.01 :

INFORMATION COLLECTION REQUEST FOR ELECTRIC UTILITY STEAM GENERATING UNIT MERCURY EMISSIONS INFORMATION COLLECTION EFFORT

Emission Standards Division U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711

September 3, 1998

PART A OF THE SUPPORTING STATEMENT FOR OMB FORM 83-I

ELECTRIC UTILITY STEAM GENERATING UNIT MERCURY EMISSIONS INFORMATION COLLECTION EFFORT INFORMATION COLLECTION REQUEST

1. Identification of the Information Collection

(a) <u>Title of the Information Collection</u>

"Electric Utility Steam Generating Unit Mercury Emissions Information Collection Effort." The Environmental Protection Agency (EPA) tracking number for this information collection request (ICR) is EPA ICR No. 1858.01. This is a new ICR.

(b) <u>Short Characterization</u>

This information collection is being conducted by EPA's Office of Air and Radiation (OAR) to assist the Administrator of EPA in determining, as required by section 112(n)(1)(A) of the Clean Air Act, as amended (the Act), whether it is appropriate and necessary to regulate emissions of hazardous air pollutants (HAPs) by electric utility steam generating units under section 112. In the event that the Administrator determines that regulation of such units under section 112 is appropriate and necessary, the information being collected would also be used in developing an applicable emission standard. The information would also be made available to the public.

There will be three components to the information collection. Information necessary to identify all coal-fired units is publicly available for facilities owned and operated by publiclyowned utility companies, Federal power agencies, rural electric cooperatives, and investor-owned utility generating companies. However, similar information is not publicly available for nonutility generators qualifying under the Public Utility Regulatory Policies Act (PURPA). Such units include, but may not be limited to, independent power producers (IPPs), qualifying facilities, and cogenerators. To obtain the information necessary to identify all coal-fired electric utility steam generating units in this sector, and to confirm information from the other sector, for both the coal sampling and analysis (second component) and for selection of units for speciated stack sampling (third component), the Agency will in the first component of the information collection solicit from all coal-fired electric utility steam generating units, under authority of section 114 of the Act, information relating to the type of coal used, the method of firing the coal, and the method of sulfur dioxide (SO_2) control.

The second component consists of acquiring accurate information on the amount of mercury contained in the as-fired coal used by each electric utility steam generating unit (as defined in section 112(a)(8) of the Act, but generally those with a capacity greater than 25 megawatts electric [MWe]), as well as accurate information on the total amount of coal burned by each such unit. The information will be obtained by requiring, through the issuance of a letter pursuant to the authority of section 114 of the Act, the owner/operator of each such unit to provide the results of analyses performed, in accordance with a demonstrably acceptable protocol, to determine the mercury content of the coal to be fired in that unit and to submit the results of those analyses to EPA's OAR, Office of Air Quality Planning and Standards, Emission Standards Division (ESD). The letter will also require each owner/operator to submit data on the total amount of coal received. This approach is based on available knowledge that such data are available from the information used to verify compliance with the coal delivery contract; that samples taken to ensure this compliance are taken by the supplier after any coal cleaning or by the electric utility steam generating unit at point of receipt; and that no further cleaning of the coal is undertaken prior to the coal being fired to the boiler. Thus, "as-shipped" or "as-received" coals are equivalent to "as-fired" coals and mercury analyses from such samples would be representative of the mercury entering the boiler.

The third component consists of requiring, again through the issuance of a letter pursuant to the authority of section 114 of the Act, the owners/operators of a total of 138 coal-fired electric utility steam generating units selected at random from 15 categories on a statistically weighted basis to conduct, sometime during a 1-year period, in accordance with an EPA-approved protocol, simultaneous before and after control device stack testing. The testing is to consist of three runs using paired sampling trains at each sampling location, and is to be in accordance with a specified mercury speciation method. The owner/operator of each selected electric utility steam generating unit will also be required to collect and analyze, in accordance with an acceptable procedure, a statistically appropriate number of coal samples from the coal fed

to the pulverizer during each stack test. The results of the stack tests and the coal analyses will again be required to be submitted to the ESD.

The EPA estimates the cost of the information verification component of the information collection to be \$36,838; the cost of the mercury content and coal use data component to be \$12,873,079; and the cost of the stack testing and coal sampling component to be \$7,304,449, for a total cost of \$20,214,365.

The owner/operator of each coal-fired electric utility steam generating unit required to report the results of analyses of coal samples will be required to keep records: i) documenting that each coal sample analyzed was a sample taken for contract verification purposes; ii) establishing proper chain of custody for each coal sample; iii) describing the quality assurance/quality control (QA/QC) procedures followed in preparing each coal sample for analysis and performing the required analysis; iv) setting forth the results of the analysis performed on each coal sample; and, v) documenting the volume of coal received that is represented by each sample.

The owner/operator of each coal-fired electric utility steam generating unit required to conduct stack testing and concurrent coal sampling and analysis will be required to keep records: i) documenting that coal samples taken during each stack test run were obtained in accordance with an approved sampling protocol; ii) establishing proper chain of custody for each coal sample; iii) describing the QA/OC procedures followed in preparing each coal sample for analysis and performing the required analysis; iv) setting forth the results of the analyses performed on each coal sample; v) documenting that each stack test was conducted in accordance with an approved testing protocol; and, vi) setting forth the results of each stack test.

All records required under the proposed information collection must be retained for 3 years.

2. <u>Need for and Use of the Collection</u>

(a) <u>Need/Authority for the Collection</u>

Section 112(n)(1)(A) of the Act requires the EPA to perform a study of the hazards to public health reasonably anticipated to occur as a result of emissions by electric utility steam generating units of HAPs after imposition of the requirements of the Act and to prepare a Report to Congress containing the results of the study. The Agency is to proceed with rulemaking activities under section 112 to control HAP emissions from electric utility steam generating units if EPA finds such regulation is appropriate and necessary after considering the results of the study. The study has been completed and the Final Report to Congress was issued on February 24, 1998.

In the Final Report to Congress, the EPA stated that mercury is the HAP of greatest potential concern for coal-fired electric utility steam generating units and that additional research and monitoring are merited. The EPA also listed a number of research needs related to such mercury emissions. These include obtaining additional data on the mercury content of various types of coal as fired in electric utility boilers and additional data on mercury emissions (e.g., how much is emitted from various types of units; how much is divalent vs. elemental mercury; and how do factors such as control device, fuel type, and plant configuration affect emissions and speciation).

As indicated above, in addition to requiring the Administrator to perform a study of the hazards to public health reasonably anticipated to occur as a result of HAP emissions by electric utility steam generating units after imposition of the requirements of the Act and to report the results of that study to Congress, section 112(n)(1)(A) further requires the Administrator to regulate electric utility steam generating units under section 112 of the Act if the Administrator finds that such regulation is appropriate and necessary after "considering the results of the study are to play a principle, but not exclusive, role in informing the Administrator's decision as to whether it is appropriate and necessary to regulate electric utility steam generating units utility steam generating units under section 112. The Administrator believes that in addition to considering the results of the study, she may consider any other available information in making her decision. The Administrator also believes that she is authorized to collect and evaluate any additional information which may be necessary to make an informed decision.

After carefully considering the Final Report to Congress, the Administrator has concluded that obtaining additional information which may be helpful to inform this decision, as well as possible subsequent decisions, is appropriate. In the Final Report to Congress the EPA stated

that at this time, the available information, on balance, indicates that electric utility steam generating unit mercury emissions are of sufficient potential concern for public health to merit further research and monitoring. The EPA acknowledged that there are substantial uncertainties that make it difficult to assess electric utility steam generating unit mercury emissions and controls, and that further research and/or evaluation would be needed to reduce those uncertainties. The EPA believes that among those uncertainties are: i) the actual cumulative amount of mercury being emitted by all electric utility steam generating units on an annual basis; ii) the speciation of the mercury which is being emitted; and iii) the effectiveness of various control technologies in reducing the volume of each form of mercury which is emitted (including how factors such as control device, fuel type, and plant configuration affect emissions and speciation).

To address the question of the cumulative amount of mercury actually being emitted by all electric utility steam generating units on an annual basis, the EPA believes that it is necessary to require the owners/operators of all such units to provide information on the mercury content of the coal received for each unit, as well as the amount of coal received for each unit. The EPA can then apply appropriate correction factors to this data to calculate the amount of mercury emitted on an annual basis by each unit. Thus, the mercury emission data collection effort includes a requirement for all coal-fired electric utility steam generating units as defined in section 112(a)(8) of the Act to provide analyses of the mercury content of the coal which they receive and report the results of that analysis together with the volume of coal received. Section 112(a)(8) of the Act defines electric utility steam generating unit as follows:

The term "electric utility steam generating unit" means any fossil fuel fired combustion unit of more than 25 megawatts that serves a generator that produces electricity for sale. A unit that cogenerates steam and electricity and supplies more than one-third of its potential electric output capacity and more than 25 megawatts electrical output to any utility power distribution system for sale shall be considered an electric utility steam generating unit.

When preparing the Final Report to Congress, the Agency had available mercury emission data from a number of utility boilers. These data included measurements of the mercury emitted during various stages of the process (e.g., exiting the boiler, exiting the various control devices).

Research conducted during the period between the acquisition of these data and the release of the report has highlighted the importance of the specific valence state (i.e., species) of the emitted mercury on the ability of a particular control device to remove mercury from the exhaust gas stream. During the same time period, advances have been made in emission testing methodologies that more accurately differentiate among the various species of mercury that may be emitted from an electric utility steam generating unit. The mercury emission data gathering effort, therefore, includes provisions for acquiring additional speciated emission data so that the correlation between mercury in the coal, the species of mercury formed, and the mercury removal performance of various control devices may be further evaluated.

The information will be collected under authority of section 114 of the Act.

Section 114(a) states, in pertinent part:

For the purpose...(iii) carrying out any provision of this Chapter...(1) the Administrator may require any person who owns or operates any emission source...to-...(D) sample such emissions (in accordance with such procedures or methods, at such locations, at such intervals, during such periods and in such manner as the Administrator shall prescribe); (E) keep records on control equipment parameters, production variables or other indirect data when direct monitoring of emissions is impractical...(G) provide such other information as the Administrator may reasonably require...

Section 114 is set forth in its entirety in Attachment 1.

(b) <u>Use/Users of the Data</u>

The data collected pursuant to the mercury emissions collection effort, along with other information, will be used by the Agency in evaluating whether regulation of electric utility steam generating units under section 112 of the Act is appropriate and necessary. Specifically, the data will respond in part to the two research needs noted above, providing the Agency with updated information on the mercury content of coals fired by, and on the speciation and controllability of mercury emitted from, electric utility steam generating units. The data will be added to the existing database and will be used to further evaluate the emission of mercury by electric utility steam generating units. In the event that the Administrator determines that it is appropriate and necessary to regulate electric utility steam generating unit HAP emissions under section 112, the data will be used in the development of an applicable emission standard(s).

3. <u>Nonduplication, Consultations, and Other Collection Criteria</u>

(a) <u>Nonduplication</u>

The EPA recognizes that some of the information requested as part of the mercury emission data gathering effort (e.g., amount of coal fired per year) may already be included in the submittals being made by individual utilities pursuant to various requirements of the Department of Energy/Energy Information Administration (e.g., Form 423, Form 767). Electric utility steam generating unit owners/operators are given the option of submitting already available information if that information suits the needs of, and is of sufficient quality for, this data gathering effort. However, the Agency does not believe that it can rely entirely on the future availability of this information because of actions underway to cause some, or all, of this information to be treated as confidential business information. Other information requested pursuant to the mercury emissions data gathering effort (e.g., mercury content of coal received; speciation of mercury emissions; effectiveness of various control devices at removing mercury) is not believed to be available from other sources and, therefore, will be used to supplement the information which may currently be available from other sources.

The EPA expects that the information requested as part of this effort will only be required for one year. The Agency will shortly propose a regulation to lower the Emergency Planning and Community Right-to-Know Act (EPCRA) section 313 activity thresholds for reporting releases of certain toxic chemicals, including mercury and mercury compounds, to the Toxic Release Inventory (TRI). The EPA plans to begin collecting information on mercury emissions from electric utility steam generating units under the new threshold in the year 2000.

Under EPCRA section 313, facilities are not required to monitor their emissions to report to TRI, but may use readily available data (including monitoring data) collected pursuant to other provisions of law. This ICR is authorized by section 114 of the Clean Air Act, which allows EPA to require electric utility steam generating unit owners and operators to perform analyses that they may not currently perform and, therefore, that would allow emissions estimates that may be more precise than those that would otherwise be provided under EPCRA section 313. Facilities that have emissions information gathered through actual emissions monitoring or testing would be required to use the results of such monitoring or testing in compiling their reports under EPCRA

section 313. Other facilities would be required to apply the results of the stack testing performed under this ICR (i.e., the publicly available data and the emissions factors developed from those data) to estimates of the mercury content of coal when reporting mercury releases to the TRI.

A final decision has not yet been made as to the new threshold for mercury under EPCRA section 313. If, after providing an opportunity for notice and comment, the EPA decides on a threshold for mercury that omits a significant portion of coal-fired power plants, the EPA may require that information be submitted under section 114 of the Clean Air Act for additional years. Also, if for any reason, information collection on mercury emissions under the new lower threshold for mercury is delayed beyond the year 2000, the EPA may require the coal sampling, but not the stack testing beyond one year.

(b) <u>Public Notice Required Prior to ICR Submission to OMB</u>

This ICR was submitted for public review as required by the Paperwork Reduction Act of 1995 (PRA) and the subsequent rule issued by the Office of Management and Budget (OMB) on August 29, 1995 (60 FR 44978). The <u>Federal Register</u> notice required under 5 CFR 1320.8(d), soliciting comments on this collection of information, was published on April 9, 1998 (63 FR 17406) (see Attachment 2); over 120 comments were received. A summary of comments received and EPA's responses to those comments is presented in Attachment 3.

(c) <u>Consultations</u>

Significant input and information was received from the affected industry, State and local governments, environmental groups, the public, and other Federal agencies during development of the Final Report to Congress. The comments received were reviewed and utilized in the development of the Final Report to Congress. The public comments are located in the docket for the study (Docket A-92-55).

A public meeting was held on May 21, 1998 to discuss the proposed mercury emission data gathering effort. At the public meeting, the industry, other potentially interested Federal agencies, the environmental community, and the general public were afforded an opportunity to comment on the proposed mercury emissions data gathering effort. This opportunity was in addition to that provided by the <u>Federal Register</u> notice concerning the availability of the ICR for public review and comment.

(d) <u>Effects of Less Frequent Collection</u>

This ICR requires the owner/operator of each facility at which a coal-fired electric utility steam generating unit is located to provide analyses for each coal shipment received from each distinct coal supplier to that facility. The frequency of the analyses would depend on the frequency that samples are collected to determine compliance with the coal contract. Since the amount of coal burned at any given facility is largely based on the size of the facility and the total megawatt output, collection of data representative of the coal received will allow a true correlation to be drawn on the mercury content of the coal burned. Any less frequent collection could potentially still be an undue burden on smaller facilities while under sampling the larger facilities. An unrepresentative collection of data from less frequent collection could cause an unnecessary determination to regulate.

For the stack testing component of this information collection, one of the most important problems in sample design is that of determining how large a sample is needed for the estimates obtained in those selected samples (or units) to be reliable enough to meet the objectives of the study. In the determination of sample sizes for studies where virtual certainty (i.e., a high level of reliability) is needed, a level of 95 percent confidence is established to assure the objectives of the study will be met. For this particular collection effort, 138 samples will need to be collected out of the estimated total population of 1,141 units (boilers), which will each be allocated into one of 15 stratum (i.e., categories) that has been established. Since assessing only one sample would not provide a basis for analysis, each category that would have had only one sample taken from it will be changed to a three-sample set in order for basic statistical calculations to be made. To collect the most representative data, triplicate simultaneous before and after control device stack sampling with a specified mercury speciation method will be collected once per selected unit within a one year period using a paired sampling train at each location.

(e) <u>General Guidelines</u>

This ICR adheres to the guidelines for Federal data requestors, as provided at 5 CFR 1320.6.

(f) <u>Confidentiality</u>

(i) Confidentiality. Respondents will be required to respond under the authority of section 114 of the Act. If a respondent believes that disclosure of certain information requested would compromise a trade secret, it should be clearly identified as such and will be treated as confidential until and unless it is determined in accordance with established EPA procedure as set forth in 40 CFR Part 2 not to be entitled to confidential treatment. All information submitted to the Agency for which a claim of confidentiality is made will be safeguarded according to the Agency policies set forth in Title 40, Chapter 1, Part 2, Subpart B -- Confidentiality of Business Information (see 40 CFR 2; 41 FR 36902, September 1, 1976; amended by 43 FR 39999, September 28, 1978; 43 FR 42251, September 28, 1978; 44 FR 17674, March 23, 1979). Any information subsequently determined to constitute a trade secret will be protected under 18 U.S.C. 1905. If no claim of confidentiality accompanies the information when it is received by the EPA, it may be made available to the public without further notice (40 CFR 2.203, September 1, 1976). Because section 114[©] of the Act exempts emission data from claims of confidentiality, the emission data provided may be made available to the public. Therefore, emissions data should not be marked confidential. A definition of what the EPA considers emissions data is provided in 40 CFR 2.301(a)(2)(i).

(ii) <u>Sensitive questions</u>. This section is not applicable because this ICR does not involve matters of a sensitive nature.

4. <u>The Respondents and the Information Requested</u>

(a) <u>Respondents/SIC Codes</u>

Respondents affected by this action are owners/operators of coal-fired electric utility steam generating units as defined by section 112(a)(8) of the Act. For the purposes of this information collection, "coal" includes anthracite, bituminous, subbituminous, lignite, and waste coals (generally termed culm and gob). The standard industrial classification (SIC) code for the respondent class is 4911.

(b) <u>Information Requested</u>

(i) <u>Data items, including recordkeeping requirements</u>. The proposed mercury emissions data gathering effort has three components: i) identification of nonutility generators

meeting the definition of electric utility steam generator under section 112(a)(8) of the Act and confirmation of certain information from all units; ii) analyses of as-fired coal; and iii) mercury speciation stack testing. The first component would apply to all coal-fired electric utility steam generating units, including all nonutility generators identified as utilizing combustion. The second component would apply to the owners/operators of all coal-fired electric utility steam generating units meeting the section 112(a)(8) definition. The third component would apply to a limited number of entities within specified subsets. Attachment 4 presents a copy of the questionnaire that would be mailed to each owner/operator.

The first component, identification of nonutility generators meeting the section 112(a)(8) definition and confirmation of information from all units, would require each electric utility steam generating units, including nonutility generators, to provide information to the Agency that would allow identification of coal-fired units for the second component and information such that the units could be categorized for selection for the third component. This information is not currently publicly available for nonutility units.

The second component, analyses of as-received coal, would require the owner/operator of each facility at which a coal-fired electric utility steam generating unit is located to provide analyses for each coal fired from each distinct coal supplier to that facility. The frequency of the analyses would depend on the mode of shipment used to receive the coal.

(1) <u>Shipment by rail car, barge, or ship</u>. Owners/operators of units receiving coal by rail car (i.e., unit train, super unit train, or individual car), barge (i.e., barge tow or individual barge), or ship would be required to provide certain information about each shipment, and the results of particular analyses of a composited coal sample that represents each particular coal shipment that is taken and maintained to determine compliance with the respective coal contract.

(2) <u>Shipment by truck</u>. Owners/operators of units receiving coal by truck would be required to provide certain information about each shipment received and the results of particular analyses of a composited coal sample that represents each particular shipment that is taken and maintained for normal coal delivery contract verification purposes. It is expected that

these analyses would be performed on samples composited from individual truck samples that are taken to determine compliance with individual supplier contracts.

(3) <u>Shipment by conveyor</u>. Owners/operators of units receiving coal by conveyor belt (i.e., "mine-mouth" units) would be required to provide certain information about coal received in increments not to exceed 10,000 tons. For each increment, they are also required to report the results of particular analyses of corresponding coal samples taken for contract verification purposes.

Coal samples collected for contract verification purposes that represent "as-received," (and, as noted earlier, also represent "as-shipped" and "as-fired") coal would be analyzed. The owner/operator would also be required to document and provide the amount and type of each coal received for each unit and identify the source of each coal (i.e., State, county, seam, etc.). Each owner/operator would be required to provide the proximate and ultimate analyses of each coal obtained for contract verification purposes and provide analyses for mercury and chlorine content. To be accepted, all analyses must be shown to be: i) traceable from the supplier to the unit; ii) representative of as-received or as-fired coal used during the period in question (i.e., cleaned rather than raw coal and no further cleaning performed after receipt of the coal); and iii) obtained using standardized sampling and analytical procedures following appropriate QA/QC procedures. Reports of all analyses would be due to the EPA 45 days after the close of the preceding quarter.

The third component, stack testing for mercury speciation, would require triplicate simultaneous before and after control device stack sampling with a specified mercury speciation method using paired emission sampling trains at each location. This sampling would be done on one occasion during a 1-year period. During the stack testing, collection and analyses of three as-fired coal samples taken at intervals throughout the testing period would be required. The results of each series of stack tests and coal sample analyses would be required to be reported to the EPA by using a specified standardized electronic format within 45 days of the date of testing. Specified QA/QC procedures would be required for each part of the mercury emissions data collection effort.

The Agency requires that for all environmental data operations (EDOs) a Quality Assurance Project Plan (QAPP) be written to document the type and quality of data needs for environmental decisions. An EDO is any work performed to obtain, use, or report information pertaining to environmental processes and conditions. For the purposes of the stack testing requirement, a generic QAPP will be sent with the section 114 letter requesting a particular unit to be tested. Any modifications that need to be made to this QAPP for any given facility should be sent to the EPA for review.

Although a separate QAPP for the coal sampling effort should be established, due to the options each facility has been given to collect mercury-in-coal information and the various techniques any given laboratory could use in analyzing a coal sample for mercury, a generic QAPP would be impossible to develop. In lieu of requiring individual QAPPs to be developed, each laboratory conducting an analysis for mercury in coal will first be required to analyze a National Institutes of Standards and Technology (NIST) standard reference material (SRM) to within +/-15 percent of the true value and report these results.

(ii) <u>Respondent activities</u>. The activities a respondent must undertake to fulfill the requirements of the information collection are presented in Table 1. These include: i) read instructions; ii) provide source information; iii) secure stack test contractor and review proposal (if one of the units selected); iv) conduct coal sampling (if one of the units selected for stack testing); v) conduct coal analyses; vi) conduct stack testing (if one of the units selected); vii) monitor stack testing (if one of the units selected); viii) process, compile, and review coal sampling data for accuracy and completeness; ix) review stack sampling data for accuracy and completeness; ix) submit coal sampling data; and xi) submit stack sampling data (if one of the units selected).

5. <u>The Information Collected--Agency Activities, Collection Methodology, and</u> <u>Information Management</u>

(a) <u>Agency Activities</u>

A list of activities required of the EPA is provided in Table 2. These include: i) develop questionnaire; ii) review and analyze Part I responses; iii) develop generic QAPP; iv) determine sites to be emission tested; v) review and comment on stack sampling test plans (and QAPPs, if

modifications are received to accommodate a unit at any particular facility); vi) answer respondent questions; vii) audit stack tests; viii) review coal analysis data for accuracy and completeness; ix) review stack sampling data for accuracy and completeness; x) analyze coal sampling data; xi) analyze stack sampling data; and xii) analyze requests for confidentiality.

(b) <u>Collection Methodology and Management</u>

In collecting and analyzing the information associated with this ICR, the EPA will use personal computers and applicable database software. The EPA will ensure the accuracy and completeness of the collected information by reviewing each submittal. The information collected pursuant to the mercury emissions data gathering effort will be maintained in a computerized database. To better facilitate uniformity in the format of the reports that are received, and, thus, increase the ease of database entry, standardized reporting forms will be developed and distributed.

(c) <u>Small Entity Flexibility</u>

All respondents required to comply with the mercury emissions data gathering effort will be subject to the same requirements. The EPA expects that a portion of the respondents could be small governmental jurisdictions; however, any individual small entity would be expected to receive only one section 114 letter so their response burden will be minimized.

(d) <u>Collection Schedule</u>

The EPA anticipates issuing the first section 114 letters by November 15, 1998. These section 114 letters would require the owner/operator of each coal-fired electric utility steam generating unit meeting the section 112(a)(8) definition to: i) begin the required coal sampling and analysis by January 1, 1999; ii) submit the first quarterly report on the results of the coal sampling and analysis by May 15, 1999; iii) complete all required coal sampling and analysis by December 31, 1999; and, iv) submit a final report on the results of the required coal sampling and analysis by February 15, 2000. The second section 114 letter will require the owner/operator of each of the 138 selected coal-fired electric utility steam generating units to: i) submit to EPA for approval a stack testing and coal sampling and analysis protocol, together with any modifications to the QAPP, if necessary, and a schedule for completing the required stack testing and coal sampling and analysis, by April 15, 1999; ii) commence stack testing, including concurrent coal

sampling and analysis, by the date specified in the EPA approved facility-specific schedule; and iii) complete stack testing and concurrent coal sampling and analysis by May 31, 2000.

6. <u>Estimating the Burden and Cost of the Collection</u>

(a) <u>Estimating Respondent Burden</u>

The average annual burden estimate for reporting and recordkeeping requirements are presented in Table 1 for all recipients. These numbers were derived from estimates based on the EPA's experience with other emission test programs and other information collections. These estimates represent the average annual burden that will be incurred by the recipients.

(b) <u>Estimating Respondent Costs</u>

Table 2 presents estimated costs for the required recordkeeping and reporting activities. Labor rates and associated overhead costs are based on estimated hourly rates of \$30.16 for technical personnel, \$34.39 for management personnel, and \$16.09 for clerical personnel. These values were taken from the Bureau of Labor Statistics Internet website and reflect the latest values available (March 1998).

(c) <u>Estimating Agency Burden and Cost</u>

The costs the Federal Government would incur are presented in Table 4. Labor rates and associated costs are based on the estimated hourly rates of \$25.20 for technical personnel (GS-12, step 5); \$41.66 for management personnel (GS-15, step 5); and \$14.21 for clerical personnel (GS-7, step 5).

(d) <u>Estimating the Respondent Universe and Total Burden and Costs</u>

The potential respondent universe consists of 1,100 coal-fired utility facilities. Of these, all would be required to complete Part I, 766 would be required to conduct coal sampling, and 138 would be required to conduct stack testing. For the purposes of estimating burden, all units believed to utilize combustion and greater than 20 MWe identified on the publicly available list of nonutility generators (703 units) would be required to complete Part I to confirm how many are coal-fired (fuel use by nonutility generators is not publicly available information). For the purposes of estimating burden for the second and third components, it has been assumed that one-half of these units (352 units) are coal fired.

(e) <u>Bottom Line Burden Hours and Costs Tables</u>

Respondent tally. The bottom line industry burden hours and costs, presented in Tables 1 and 2, are calculated by summing the person-hours column and by summing the cost column.

The annual burden and cost to the industry is 45,445 hours and \$20,214,365 (see Tables 1 and 2).

The average annual base reporting and recordkeeping burden and cost to the industry for this information collection for facilities subject to the first component of the mercury emissions data gathering effort is 1,266 hours and \$36,838 (see lines 1 and 2 of Tables 1 and 2). The average annual base reporting and recordkeeping burden and cost to the industry for this information collection for facilities having units subject to the second component of the mercury emissions data gathering effort is 31,712 hours and \$12,873,079 (see Tables 5 and 6). The average annual base reporting and recordkeeping burden and cost to the industry for this information collection for units subject to the third component of the mercury emissions data gathering effort is 12,467 hours and \$7,304,449 (see Tables 7 and 8).

(ii) <u>Agency tally</u>. The bottom line Agency burden and cost, presented in Tables 3 and 4 is calculated in the same manner as the industry burden and cost. The estimated annual burden and cost are 82,227 hours and \$2,057,379.

(iii) <u>The complex collection</u>. This ICR is a simple collection; therefore this section does not apply.

(iv) <u>Variations in the annual bottom line</u>. This section does not apply as this is a onetime collection.

(f) <u>Reasons for Change in Burden</u>

This is the initial estimation of burden for this information collection; therefore, this section does not apply.

(g) <u>Burden Statement</u>

Tables 1 and 2 present the annual respondent burden for those electric utility steam generating units required to comply with the first component of the mercury emissions data gathering effort, submission of unit information. Tables 5 and 6 present the annual respondent burden for those electric utility steam generating units required to comply with the second component of the mercury emissions data gathering effort, analyses of as-received coal. Tables 7 and 8 present the average annual respondent burden for those electric utility steam generating units required to comply with the third component of the mercury emissions data gathering effort, mercury speciation stack testing. The total annual reporting and recordkeeping burden for the first component of the mercury emissions data gathering effort is estimated to be 1,266 hours and \$36,838 (1.2 hour and \$33 per respondent for 1,100 respondents). The total annual reporting and recordkeeping burden for the second component of the mercury emissions data gathering effort is estimated to be 31,712 hours and \$12,873,079 (41 hours and \$16,806 per respondent for 766 respondents). The total annual reporting and recordkeeping burden for the third component of the mercury emissions data gathering effort is estimated to be 12,467 hours and \$7,304,449 (90 hours and \$52,931 per respondent for 138 respondents).

This ICR does not include any requirements that would cause the respondents to incur either capital or start-up costs. The EPA has assumed that all respondents will contract (i.e., purchase services/operation and maintenance costs) for the coal analyses and for the stack testing. These costs are \$11,991,000 for the coal analyses and \$6,900,000 for the stack testing.

Burden means the total time, effort, or financial resources expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to a collection of information; search data sources; complete and review the collection of information; and transmit or otherwise disclose the information. An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information that is sent to ten or more persons unless it displays a currently valid OMB control number. The OMB control numbers for EPA's approved information collection requests are listed in 40 CFR Part 9 and 48 CFR Chapter 15.

Send comments on the Agency's need for this information, the accuracy of the provided burden estimates, and any suggested methods for minimizing respondent burden, including through the use of automated collection techniques to the Director, Office of Policy, Regulatory Information Division, U.S. Environmental Protection Agency (2137); 401 M Street SW; Washington, DC 20460; and to the Office of Information and Regulatory Affairs, Office of Management and Budget, 725 17th Street NW; Washington, DC 20503; marked "Attention: Desk Officer for the EPA." Include the EPA ICR number in any correspondence.

PART B OF THE SUPPORTING STATEMENT FOR OMB FORM 83-I

ELECTRIC UTILITY STEAM GENERATING UNIT MERCURY EMISSIONS INFORMATION COLLECTION EFFORT INFORMATION COLLECTION REQUEST

1. <u>Respondent Universe</u>

In 1994, the number of coal-fired facilities owned and operated by publicly-owned utility companies, Federal power agencies, rural electric cooperatives, and investor-owned utility generating companies comprised 1,038 units (boilers) greater than 25 MWe, according to the database used for the utility toxics study, <u>Steam: Its Generation and Use</u> (Babcock and Wilcox), and the Department of Energy (DOE)/Energy Information Administration (EIA) database. Information available from 1996 DOE/EIA databases, including the Clean Coal Technology List, indicated some updates that needed to be made to the information provided in the 1994 database. All decisions regarding the stratification of the data employed in this study were based on the aforementioned databases, corrected to the extent possible using the 1996 databases and comments received. Final stratification and unit selection for stack testing will be based on the information requested in the first component of the information collection.

Due to the lack of publicly available, Federal-level reporting requirements for nonutility generators analogous to that available for the units noted above, only a limited amount of information encompassing all types of nonutility generators (e.g., cogenerators, IPPs, and industrial facilities meeting the section 112(a)(8) definition) is currently available. The limited publicly available information obtained by the Office of Air and Radiation's (OAR's) Acid Rain Division (ARD) indicated that potentially 703 nonutility generators exist. Although it is anticipated that not all of these units are coal-fired facilities, all 703 were used for preliminary considerations regarding the number of units required to complete Part I. Information from these facilities will be requested for stratification and sampling purposes. For the purposes of estimating the number of units for the second and third components, it has been assumed that one-half of these units (352 units) are coal fired.

2. <u>Respondent Universe Stratification</u>

1

Although the actual variables that affect mercury speciation are still being determined in on-going research efforts, two variables that appear to have an effect are the method of mechanical sulfur dioxide (SO_2) control (i.e., does not include use of coal blending or low sulfur coals) and coal source. For the purposes of grouping the coal-fired electric utility steam generating units into categories, these two variables were used so that a more representative sample of coal-fired units can be selected for testing. For both categories of electric utility steam generating units, the method of SO_2 control is defined as either a dry-scrubber (of any type/model), wet-scrubber (of any type/model), fluidized bed combustion (FBC; any type), coal gasification (any type; termed "coal gas"), or no mechanical control at all (termed "no scrubber"). Coal source is defined as bituminous (including anthracite and the waste coals culm and gob), subbituminous, or lignite.

According to Babcock and Wilcox, lignite is the lowest rank coal and is relatively soft and brown to black in color.¹ The volatile content is high and, therefore, lignite ignites easily. Subbituminous coals are black, having little of the plant-like texture and none of the brown color associated with the lower rank lignite coal. Subbituminous coals generally have less ash and are cleaner burning than lignite coals. Bituminous coal is the rank most commonly burned in electric utility boilers and appears black with banded layers of glossy and dull black. The volatile content is lower than that of subbituminous and lignite coals. Anthracite, which is the highest rank of coal, is shiny black, hard, and brittle, with little appearance of layering. Anthracite has a low volatile content which makes it a slow burning fuel but one that burns with a hot, clean flame. For the purposes of grouping, anthracite coal was combined with bituminous coal because of the limited use of anthracite coal in coal-fired electric utility steam generating units.

The 15 defined categories that each coal-fired electric utility steam generating unit (excluding nonutility generators) would fall into, and the number of units in each category, are as shown on the following table. For the publicly-owned utility companies, no units were identified for categories XIV or XV. It is anticipated that units from the nonutility generators will be

Steam: Its Generation and Use. Edited by S.C. Stultz and J.B. Kitto. 40th Edition. The Babcock & Wilcox Company, Barberton, Ohio. 1992.

Category	Scrubber type/coal source	Total number of units
Ι	Dry Scrubber/Bituminous Coal	5
II	Dry Scrubber/Lignite Coal	4
III	Dry Scrubber/Subbituminous Coal	14
IV	No Scrubber/Bituminous Coal	605
V	No Scrubber/Lignite Coal	9
VI	No Scrubber/Subbituminous Coal	211
VII	Wet Scrubber/Bituminous Coal	119
VIII	Wet Scrubber/Lignite Coal	14
IX	Wet Scrubber/Subbituminous Coal	46
Х	Fluidized Bed Combustion/Bituminous Coal	3
XI	Fluidized Bed Combustion/Lignite Coal	4
XII	Fluidized Bed Combustion/Subbituminous Coal	1
XIII	Coal Gas/Bituminous Coal	3
XIV	Coal Gas/Lignite Coal	0
XV	Coal Gas/Subbituminous Coal	0

identified for all of these categories. Exact units for each of these categories cannot be provided until proper information is collected.

Table 9 presents the list of electric utility steam generating units placed in their respective categories, based on available information (as of 1996). Table 10 presents the population of assumed coal-fired nonutility units larger than 20 MWe (as of 1996).

3. <u>Sample Size</u>

One of the most important problems in sample design is that of determining how large a sample is needed for the estimates obtained in those selected samples (or units) to be reliable enough to meet the objectives of the study. In the determination of sample sizes for studies where virtual certainty (i.e., a high level of reliability) is needed, a level of 95 percent confidence is established to assure the objectives of the study will be met. Sample size (n) is determined by:

 $\frac{9NP_y(1-P_y)}{(N-1)(.0556)^2 P_y^2 + 9P_y(1-P_y)}$

Setting N = 1,390, since there are 1,038 publicly-owned utility units plus 352 (assumed) potential coal-fired nonutility generator units, and $P_y = 0.95$, which provides 95 percent confidence in the sample size obtained, the sample size n = 138.104 or 138, given the number must be rounded to the nearest integer.

Given the 15 viable categories from which units to be sampled can be selected, the units to be sampled can be selected in a couple different ways: i) equally (or relatively so) among the 15 categories, or ii) proportional allocation of units to be sampled to stratified population (units within each category). In proportional allocation, the sampling fraction (n_h/N_h) is specified to be the same for each stratum (category). The number of units (n_h) taken from each stratum is given by:

$$n_h = (N_h) (n)$$

N

where N_h is the number of units in each stratum, n is the total number of units to be sampled (i.e., 138), and N is the total number of units (i.e., 1,390). Since assessing only one sample would not provide a basis for analysis, each category that would have had only one sample taken from it will be changed to a three-sample set in order for basic statistical calculations to be made. Since only 1,038 of the units have currently been stratified and are contingent on verification of their unit information, the actual number of samples to be obtained from each stratum cannot be determined at this time.

4. <u>Respondent Sample Collection</u>

A random selection process will be used to determine which units are required to participate in this testing program. If possible, once a unit from a particular plant (site) has been selected, no other unit(s) at that plant (site) will be chosen for that particular category (i.e., some plants have units with different methods of SO_2 control or that burn coal from different sources). This will provide us with more information from a larger number of plants given all plant operations are not the same due to differing environmental conditions (e.g., weather), equipment, and load (e.g., amount of coal burned per unit of time). Each plant (site) will also have a different mix of coal, since most plants obtain coal from multiple sources (i.e., different States and/or different seams of coal), and testing at multiple plants (sites) will provide additional information on the variability of emissions across the mix of coals.

5. <u>Response Rates</u>

Since the information will be requested pursuant to the authority of section 114 of the Act, EPA anticipates that all respondents requested to submit information will do so.

TABLE 1.	ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN HOUR ESTIMATE - TOTAL
----------	---

Collection activities				Burden	hours ²			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical hours	Management hours	Clerical hours	Total
1. Read instructions.	0.5	1	0.5	1,100	550	28	55	633
2. Complete and submit Part I.	0.5	1	0.5	1,100	550	28	55	633
3. Secure emission test contractor/review proposal.	40	1	40	152 ³	6,080	304	608	6,992
4. Coal sampling with stack testing. ⁴	0.5	3	1.5	138	207	10	21	238
5. Conduct coal analyses.	0	156 ⁵	0	766	0	0	0	0
6. Coal analyses with stack sampling.	0	3	0	138	0	0	0	0
7. Conduct stack testing.	0	1	0	138	0	0	0	0
8. Monitor stack testing.	24	1	24	138	3,312	166	331	3,809
9. Process/compile/review coal sampling data for accuracy and completeness.	8	4	32	766	24,512	1,226	2,451	28,189
10. Review stack sampling data for accuracy and completeness.	8	1	8	138	1,104	55	110	1,270
11. Submit coal sampling data.	1	4	4	766	3,064	153	306	3,524
12. Submit stack sampling data.	1	1	1	138	138	7	14	159
TOTAL			111.5		39,517	1,976	3,952	45,445

Management hours are assumed to be 5 percent of technical hours; clerical hours are assumed to be 10 percent of technical hours. Assume that 10 percent need to be done twice.

Each facility doing stack sampling will be required to acquire and analyze one additional sample for each run of the stack testing period. Assume three contract verification samples per week (average based on two 325 MWe units per site).

Collection activities				Co	st			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical, at \$30.16 ⁶	Management, at \$34.39 ⁷	Clerical, at \$16.09 ⁸	Total
1. Read instructions.	0.5	1	0.5	1,100	\$16,588	\$946	\$885	\$18,419
2. Complete and submit Part I.	0.5	1	0.5	1,100	\$16,588	\$946	\$885	\$18,419
3. Secure emission test contractor/review proposal.	40	1	40	152	\$183,373	\$10,455	\$9,783	\$203,610
4. Coal sampling with stack testing. ⁹	0.5	3	1.5	138	\$6,243	\$356	\$333	\$6,932
5. Conduct coal analyses.	0	156	0	766	\$11,949,600 ¹⁰	\$0	\$0	\$11,949,600
6. Coal analyses with stack sampling.	0	3	0	138	\$41,400	\$0	\$0	\$41,400
7. Conduct stack testing.	0	1	0	138	\$6,900,000 ¹¹	\$0	\$0	\$6,900,000
8. Supervise stack testing.	24	1	24	138	\$99,890	\$5,695	\$5,329	\$110,914
9. Process/compile/review coal sampling data for accuracy and completeness.	8	4	32	766	\$739,282	\$42,148	\$39,440	\$820,870
10. Review emission stack data for accuracy and completeness.	8	1	8	138	\$33,297	\$1,898	\$1,776	\$36,971
11. Submit coal sampling data.	1	4	4	766	\$92,410	\$5,269	\$4,930	\$102,609
12. Submit stack sampling data.	1	1	1	138	\$4,162	\$237	\$222	\$4,621
TOTAL			111.5					\$20,214,365

TABLE 2. ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN COST ESTIMATE - TOTAL

 TABLE 3.
 ELECTRIC UTILITY STEAM GENERATING ICR EPA BURDEN HOUR ESTIMATE

⁶ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 16, Special industries (public utilities); http://stats.bls.gov/news.release.ecec.t16.htm

⁷ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group; http://stats.bls.gov/news.release/ecec.t02.htm

⁸ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group

⁹ Each facility doing stack sampling will be required to acquire and analyze one additional sample for each run of the stack testing period.

¹⁰ Coal analyses are assumed to be contracted at a flat rate of \$100 per sample for mercury and chlorine.

¹¹ Emission testing is assumed to be contracted at a flat rate of \$50,000 per sampling event (three sample runs per event).

Collection activities				Burden	hours ¹²			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical hours	Management hours	Clerical hours	Total
1. Develop questionnaire.	80	1	80	1	80	4	8	92
2. Review and analyze Part I responses.	1	1	1	1,100	1,100	55	110	1,265
3. Determine sites to be emission tested.	8	1	8	1	8	0	1	9
4. Develop generic QAPP.	40	1	40	1	40	2	4	46
5. Review and comment on emission sampling test plans.	4	1	4	15213	608	30	61	699
6. Answer respondent questions.	0.25	1	0.25	110 ¹⁴	28	1	3	32
7. Audit stack tests.	40	1	40	5	200	10	20	230
8. Review coal analysis data for accuracy and completeness.	8	1	8	1,100	8,800	440	880	10,120
9. Review stack data for accuracy and completeness.	16	1	16	138	2,208	110	221	2,539
10. Analyze coal sampling data.	12	4	48	1,100	52,800	2,640	5,280	60,720
11. Analyze stack sampling data.	40	1	40	138	5,520	276	552	6,348
12. Analyze requests for confidentiality.	1	1	1	11015	110	6	11	127
TOTAL			286.25		71,502	3,575	7,150	82,227

Management hours are assumed to be 5 percent of technical hours; clerical hours are assumed to be 10 percent of technical hours. Assume that 10 percent need to be done twice.

¹⁰ percent of respondents are assumed to have one question.10 percent of respondents are assumed to claim information to be confidential.

Collection activities				Cos	st ¹⁶			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical, at \$25.20	Management, at \$41.66	Clerical, at \$14.21	Total
1. Develop questionnaire.	80	1	80	1	\$2,016	\$167	\$114	\$2,296
2. Review and analyze Part I responses.	1	1	1	1,100	\$27,720	\$2,291	\$1,563	\$31,574
3. Determine sites to be emission tested.	8	1	8	1	\$202	\$17	\$11	\$230
4. Develop generic QAPP.	40	1	40	1	\$1,008	\$83	\$57	\$1,148
5. Review and comment on emission sampling test plans.	4	1	4	152	\$15,322	\$1,266	\$864	\$17,452
6. Answer respondent questions.	0.25	1	0.25	110	\$693	\$57	\$39	\$789
7. Audit stack tests.	40	1	40	5	\$10,04017	\$417	\$284	\$10,741
8. Review coal analysis data for accuracy and completeness.	8	1	8	1,100	\$221,760	\$18,330	\$12,505	\$252,595
9. Review stack data for accuracy and completeness.	16	1	16	138	\$55,642	\$4,599	\$3,138	\$63,378
10. Analyze coal sampling data.	12	4	48	1,100	\$1,330,560	\$109,982	\$75,029	\$1,515,571
11. Analyze stack sampling data.	40	1	40	138	\$139,104	\$11,498	\$7,844	\$158,446
12. Analyze requests for confidentiality.	1	1	1	110	\$2,772	\$229	\$156	\$3,157
TOTAL			286.25					\$2,057,379

TABLE 4. ELECTRIC UTILITY STEAM GENERATING ICR EPA BURDEN COST ESTIMATE

Technical assumed at GS-12, Step 5; Management assumed at GS-15, Step 5; Clerical assumed at GS-7, Step 5. Includes \$1,000 per audit for other direct costs. 16

¹⁷

TABLE 5.ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN HOUR ESTIMATE - MERCURY
CONTENT AND COAL USE DATA COMPONENT

Collection activities		Burden hours ¹⁸							
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical hours	Management hours	Clerical hours	Total	
1. Read instructions.	0	1	0	766	0	0	0	0	
2. Conduct coal analyses.	0	156	0	766	0	0	0	0	
3. Process/compile/review coal sampling data for accuracy and completeness.	8	4	32	766	24,512	1,226	2,451	28,189	
4. Submit coal sampling data.	1	4	4	766	3,064	153	306	3,524	
TOTAL			36		27,576	1,379	2,758	31,712	

¹⁸ Management hours are assumed to be 5 percent of technical hours; clerical hours are assumed to be 10 percent of technical hours.

TABLE 6.ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN COST ESTIMATE - MERCURY
CONTENT AND COAL USE DATA COMPONENT

Collection activities		Cost							
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical, at \$30.16 ¹⁹	Management, at \$34.39 ²⁰	Clerical, at \$16.09 ²¹	Total	
1. Read instructions.	0	1	0	766	\$0	\$0	\$0	\$0	
2. Conduct coal analyses.	0	156	0	766	\$11,949,60022	\$0	\$0	\$11,949,600	
3. Process/compile/review coal sampling data for accuracy and completeness.	8	4	32	766	\$739,282	\$42,148	\$39,440	\$820,870	
4. Submit coal sampling data.	1	4	4	766	\$92,410	\$5,269	\$4,930	\$102,609	
TOTAL			36					\$12,873,079	

¹⁹ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 16, Special Industries (public utilities); http://stats.bls.gov/news.release.ecce.t16.htm

From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group; http://stats.bls.gov/news.release/ecec.t02.htm

²¹ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group

²² Coal analyses are assumed to be contracted at a flat rate of \$100 per sample for mercury and chlorine.

ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN HOUR ESTIMATE - STACK TABLE 7. TESTING AND COAL SAMPLING COMPONENT

Collection activities				Burden	hours ²³			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical hours	Management hours	Clerical hours	Total
1. Read instructions.	0	1	0	138	0	0	0	0
2. Secure stack test contractor/review proposal.	40	1	40	152 ²⁴	6,080	304	608	6,992
3. Conduct coal sampling.	0.5	3	1.5	138	207	10	21	238
4. Conduct coal analyses.	0	3	0	138	0	0	0	0
5. Conduct stack testing.	0	1	0	138	0	0	0	0
6. Supervise stack testing.	24	1	24	138	3,312	166	331	3,809
7. Review stack sampling data for accuracy and completeness.	8	1	8	138	1,104	55	110	1,270
8. Submit stack sampling data.	1	1	1	138	138	7	14	159
TOTAL			74.5		10,841	542	1,084	12,467

Management hours are assumed to be 5 percent of technical hours; clerical hours are assumed to be 10 percent of technical hours. Assume that 10 percent need to be done twice. 23

²⁴

TABLE 8.ELECTRIC UTILITY STEAM GENERATING ICR RESPONDENT BURDEN COST ESTIMATE - STACK
TESTING AND COAL SAMPLING COMPONENT

Collection activities				Co	st			
	Technical hours per occurrence	Occurrences per respondent	Technical hours per respondent	Respondents	Technical, at \$30.16 ²⁵	Management, at \$34.39 ²⁶	Clerical, at \$16.09 ²⁷	
1. Read instructions.	0	1	0	138	\$0	\$0	\$0	\$0
2. Secure stack test contractor/review proposal.	40	1	40	152	\$183,373	\$10,455	\$9,783	\$203,610
3. Conduct coal sampling.	0.5	3	1.5	138	\$6,243	\$356	\$333	\$6,932
4. Conduct coal analyses.	0	3	0	138	\$41,400 ²⁸	\$0	\$0	\$41,400
5. Conduct stack testing.	0	1	0	138	\$6,900,000 ²⁹	\$0	\$0	\$6,900,000
6. Supervise stack testing.	24	1	24	138	\$99,890	\$5,695	\$5,329	\$110,914
7. Review stack sampling data for accuracy and completeness.	8	1	8	138	\$33,297	\$1,898	\$1,776	\$36,971
8. Submit stack sampling data.	1	1	1	138	\$4,162	\$237	\$222	\$4,621
TOTAL			74.5					\$7,304,449

²⁵ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 16, Special Industries (public utilities); http://stats.bls.gov/news.release.ecce.t16.htm

²⁶ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group; http://stats.bls.gov/news.release/ecec.t02.htm.

²⁷ From Bureau of Labor Statistics, March 1998 Employment Cost Trends, Table 2, Civilian workers by occupational and industry group.

²⁸ Coal analyses are assumed to be contracted at a flat rate of \$100 per sample for mercury and chlorine.

²⁹ Emission testing is assumed to be contracted at a flat rate of \$50,000 per sampling event (three sample runs per event).

TABLE 9a.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
DRY SCRUBBERS USING BITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Cherokee	CO	4	Dry	Bituminous
East Bend	KY	2	Dry	Bituminous
Seward	PA	5	Dry	Bituminous
Whitewater Valley	IN	2	Dry	Bituminous
Wyodak	WY	1	Dry	Bituminous

TABLE 9b.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
DRY SCRUBBERS USING LIGNITE COAL

Plant	State	Unit no.	Scrubber type	Coal source
Antelope Valley	ND	1	Dry	Lignite
Antelope Valley	ND	2	Dry	Lignite
Coyote	ND	1	Dry	Lignite
Stanton	ND	10	Dry	Lignite

TABLE 9c.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
DRY SCRUBBERS USING SUBBITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Craig	СО	3	Dry	Subbituminous
GRDA	OK	2	Dry	Subbituminous
Healy	AK	1	Dry	Subbituminous
Healy	AK	2	Dry	Subbituminous
Holcomb	KS	1	Dry	Subbituminous
Holcomb	KS	2	Dry	Subbituminous
Holcomb	KS	3	Dry	Subbituminous
North Valmy	NV	2	Dry	Subbituminous
Rawhide	СО	1	Dry	Subbituminous
Riverside	MN	7	Dry	Subbituminous
Sherburne County	MN	3	Dry	Subbituminous
Shiras	MI	3	Dry	Subbituminous
Springerville	AZ	1	Dry	Subbituminous
Springerville	AZ	2	Dry	Subbituminous

TABLE 9d.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
NO SCRUBBER USING BITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Acme	ОН	2	None	Bituminous
Albright	WV	1	None	Bituminous
Albright	WV	2	None	Bituminous
Albright	WV	3	None	Bituminous
Allen	NC	1	None	Bituminous
Allen	NC	2	None	Bituminous
Allen	NC	3	None	Bituminous
Allen	NC	4	None	Bituminous
Allen	NC	5	None	Bituminous
AM Williams	SC	1	None	Bituminous
Amos	WV	1	None	Bituminous
Amos	WV	2	None	Bituminous
Amos	WV	3	None	Bituminous
Arapahoe	СО	1	None	Bituminous
Arapahoe	СО	2	None	Bituminous
Arapahoe	СО	3	None	Bituminous
Arapahoe	СО	4	None	Bituminous
Arkwright	GA	1	None	Bituminous
Arkwright	GA	2	None	Bituminous
Arkwright	GA	3	None	Bituminous
Arkwright	GA	4	None	Bituminous
Armstrong	PA	1	None	Bituminous
Armstrong	PA	2	None	Bituminous
Asheville	NC	1	None	Bituminous
Asheville	NC	2	None	Bituminous
Ashtabula	ОН	5	None	Bituminous
Avon Lake	ОН	6	None	Bituminous
Avon Lake	ОН	7	None	Bituminous
Avon Lake	ОН	9	None	Bituminous
Baldwin	IL	1	None	Bituminous
Baldwin	IL	2	None	Bituminous
Baldwin	IL	3	None	Bituminous
Barry	AL	1	None	Bituminous
Barry	AL	2	None	Bituminous
Barry	AL	3	None	Bituminous
Barry	AL	4	None	Bituminous
Barry	AL	5	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Bay Shore	ОН	1	None	Bituminous
Bay Shore	ОН	2	None	Bituminous
Bay Shore	ОН	3	None	Bituminous
Bay Shore	ОН	4	None	Bituminous
BeeBee	NY	12	None	Bituminous
Belews Creek	NC	1	None	Bituminous
Belews Creek	NC	2	None	Bituminous
Big Bend	FL	1	None	Bituminous
Big Bend	FL	2	None	Bituminous
Big Bend	FL	3	None	Bituminous
Big Bend	FL	4	None	Bituminous
Big Sandy	KY	1	None	Bituminous
Big Sandy	KY	2	None	Bituminous
BL England	NJ	1	None	Bituminous
Blount Street	WI	6	None	Bituminous
Blount Street	WI	7	None	Bituminous
Blue Valley	МО	3	None	Bituminous
Bonanza	UT	1	None	Bituminous
Bowen	GA	1	None	Bituminous
Bowen	GA	2	None	Bituminous
Bowen	GA	3	None	Bituminous
Bowen	GA	4	None	Bituminous
Brandon Shores	MD	1	None	Bituminous
Brandon Shores	MD	2	None	Bituminous
Brayton Point	MA	1	None	Bituminous
Brayton Point	MA	2	None	Bituminous
Brayton Point	MA	3	None	Bituminous
Bremo Bluff	VA	3	None	Bituminous
Bremo Bluff	VA	4	None	Bituminous
Bridgeport Harbor	СТ	3	None	Bituminous
Brunner Island	PA	1	None	Bituminous
Brunner Island	PA	2	None	Bituminous
Brunner Island	PA	3	None	Bituminous
Buck	NC	3	None	Bituminous
Buck	NC	4	None	Bituminous
Buck	NC	5	None	Bituminous
Buck	NC	6	None	Bituminous
Bull Run	TN	1	None	Bituminous
Cameo	СО	2	None	Bituminous
Canadys	SC	1	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Canadys	SC	2	None	Bituminous
Canadys	SC	3	None	Bituminous
Cape Fear	NC	5	None	Bituminous
Cape Fear	NC	6	None	Bituminous
Carbon	UT	1	None	Bituminous
Carbon	UT	2	None	Bituminous
Cardinal	ОН	1	None	Bituminous
Cardinal	ОН	2	None	Bituminous
Cardinal	ОН	3	None	Bituminous
Carlson	NY	5	None	Bituminous
Carlson	NY	6	None	Bituminous
Cayuga	IN	1	None	Bituminous
Cayuga	IN	2	None	Bituminous
Chalk Point	MD	1	None	Bituminous
Chalk Point	MD	2	None	Bituminous
Chamois	МО	2	None	Bituminous
Charles R Lowman	AL	1	None	Bituminous
Cherokee	СО	1	None	Bituminous
Chesapeake	VA	1	None	Bituminous
Chesapeake	VA	2	None	Bituminous
Chesapeake	VA	3	None	Bituminous
Chesapeake	VA	4	None	Bituminous
Chesterfield	VA	3	None	Bituminous
Chesterfield	VA	4	None	Bituminous
Chesterfield	VA	5	None	Bituminous
Chesterfield	VA	6	None	Bituminous
Cheswick	PA	1	None	Bituminous
Cliffside	NC	1	None	Bituminous
Cliffside	NC	2	None	Bituminous
Cliffside	NC	3	None	Bituminous
Cliffside	NC	4	None	Bituminous
Cliffside	NC	5	None	Bituminous
Clifty Creek	IN	1	None	Bituminous
Clifty Creek	IN	2	None	Bituminous
Clifty Creek	IN	3	None	Bituminous
Clifty Creek	IN	4	None	Bituminous
Clifty Creek	IN	5	None	Bituminous
Clifty Creek	IN	6	None	Bituminous
Clinch River	VA	1	None	Bituminous
Clinch River	VA	2	None	Bituminous
Plant	State	Unit no.	Scrubber type	Coal source
------------------	-------	----------	---------------	-------------
Clinch River	VA	3	None	Bituminous
Coffeen	IL	1	None	Bituminous
Coffeen	IL	2	None	Bituminous
Colbert	AL	1	None	Bituminous
Colbert	AL	2	None	Bituminous
Colbert	AL	3	None	Bituminous
Colbert	AL	4	None	Bituminous
Colbert	AL	5	None	Bituminous
Coleman	KY	1	None	Bituminous
Coleman	KY	2	None	Bituminous
Coleman	KY	3	None	Bituminous
Conesville	ОН	1	None	Bituminous
Conesville	ОН	2	None	Bituminous
Conesville	ОН	3	None	Bituminous
Conesville	ОН	4	None	Bituminous
CP Crane	MD	1	None	Bituminous
CP Crane	MD	2	None	Bituminous
CR Huntley	NY	63	None	Bituminous
CR Huntley	NY	64	None	Bituminous
CR Huntley	NY	65	None	Bituminous
CR Huntley	NY	66	None	Bituminous
CR Huntley	NY	67	None	Bituminous
CR Huntley	NY	68	None	Bituminous
Crist	FL	4	None	Bituminous
Crist	FL	5	None	Bituminous
Crist	FL	6	None	Bituminous
Crist	FL	7	None	Bituminous
Crystal River	FL	1	None	Bituminous
Crystal River	FL	2	None	Bituminous
Crystal River	FL	4	None	Bituminous
Crystal River	FL	5	None	Bituminous
Dale	KY	3	None	Bituminous
Dale	KY	4	None	Bituminous
Dallman	IL	1	None	Bituminous
Dallman	IL	2	None	Bituminous
Dan River	NC	1	None	Bituminous
Dan River	NC	2	None	Bituminous
Dan River	NC	3	None	Bituminous
Danskammer Point	NY	3	None	Bituminous
Danskammer Point	NY	4	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
DE Karn	MI	1	None	Bituminous
DE Karn	MI	2	None	Bituminous
Deepwater	NJ	6	None	Bituminous
Deerhaven	FL	2	None	Bituminous
Dickerson	MD	1	None	Bituminous
Dickerson	MD	2	None	Bituminous
Dickerson	MD	3	None	Bituminous
Dubuque	IA	3	None	Bituminous
Dubuque	IA	4	None	Bituminous
Dunkirk	NY	1	None	Bituminous
Dunkirk	NY	2	None	Bituminous
Dunkirk	NY	3	None	Bituminous
Dunkirk	NY	4	None	Bituminous
Earl F. Wisdom	IA	1	None	Bituminous
Eastlake	OH	1	None	Bituminous
Eastlake	OH	2	None	Bituminous
Eastlake	OH	3	None	Bituminous
Eastlake	OH	4	None	Bituminous
Eastlake	OH	5	None	Bituminous
Eckert	MI	1	None	Bituminous
Eckert	MI	2	None	Bituminous
Eckert	MI	3	None	Bituminous
Eckert	MI	4	None	Bituminous
Eckert	MI	5	None	Bituminous
Eckert	MI	6	None	Bituminous
ED Edwards	IL	1	None	Bituminous
ED Edwards	IL	2	None	Bituminous
ED Edwards	IL	3	None	Bituminous
Edge Moor	DE	3	None	Bituminous
Edge Moor	DE	4	None	Bituminous
Edgewater	OH	4	None	Bituminous
Edwardsport	IN	7	None	Bituminous
Edwardsport	IN	8	None	Bituminous
Elmer Smith	KY	2	None	Bituminous
Erickson	MI	1	None	Bituminous
EW Brown	KY	1	None	Bituminous
EW Brown	KY	2	None	Bituminous
EW Brown	KY	3	None	Bituminous
EW Stout	IN	5	None	Bituminous
EW Stout	IN	6	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
EW Stout	IN	7	None	Bituminous
FB Culley	IN	1	None	Bituminous
FE Fair	IA	2	None	Bituminous
Fort Martin	WV	1	None	Bituminous
Fort Martin	WV	2	None	Bituminous
Fox Lake	MN	3	None	Bituminous
Gadsby	UT	2	None	Bituminous
Gadsby	UT	3	None	Bituminous
Gadsden New	AL	1	None	Bituminous
Gadsden New	AL	2	None	Bituminous
Gallagher	IN	1	None	Bituminous
Gallagher	IN	2	None	Bituminous
Gallagher	IN	3	None	Bituminous
Gallagher	IN	4	None	Bituminous
Gallatin	TN	1	None	Bituminous
Gallatin	TN	2	None	Bituminous
Gallatin	TN	3	None	Bituminous
Gallatin	TN	4	None	Bituminous
Gannon	FL	1	None	Bituminous
Gannon	FL	2	None	Bituminous
Gannon	FL	3	None	Bituminous
Gannon	FL	4	None	Bituminous
Gannon	FL	5	None	Bituminous
Gannon	FL	6	None	Bituminous
Gaston	AL	1	None	Bituminous
Gaston	AL	2	None	Bituminous
Gaston	AL	3	None	Bituminous
Gaston	AL	4	None	Bituminous
Gaston	AL	5	None	Bituminous
Genoa	WI	3	None	Bituminous
Ghent	KY	2	None	Bituminous
Ghent	KY	3	None	Bituminous
Ghent	KY	4	None	Bituminous
Gibson	IN	1	None	Bituminous
Gibson	IN	2	None	Bituminous
Gibson	IN	3	None	Bituminous
Glen Lyn	VA	5	None	Bituminous
Glen Lyn	VA	6	None	Bituminous
Gorgas Two	AL	6	None	Bituminous
Gorgas Two	AL	7	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Gorgas Two	AL	8	None	Bituminous
Gorgas Two	AL	9	None	Bituminous
Gorgas Two	AL	10	None	Bituminous
Goudey	NY	7	None	Bituminous
Goudey	NY	8	None	Bituminous
Grainger	SC	1	None	Bituminous
Grainger	SC	2	None	Bituminous
Grand Tower	IL	3	None	Bituminous
Grand Tower	IL	4	None	Bituminous
Green River	KY	3	None	Bituminous
Green River	KY	4	None	Bituminous
Greene County	AL	1	None	Bituminous
Greene County	AL	2	None	Bituminous
Greenidge	NY	3	None	Bituminous
Greenidge	NY	4	None	Bituminous
HA Wagner	MD	2	None	Bituminous
HA Wagner	MD	3	None	Bituminous
Hammond	GA	1	None	Bituminous
Hammond	GA	2	None	Bituminous
Hammond	GA	3	None	Bituminous
Hammond	GA	4	None	Bituminous
Harbor Beach	MI	1	None	Bituminous
Harllee Branch	GA	1	None	Bituminous
Harllee Branch	GA	2	None	Bituminous
Harllee Branch	GA	3	None	Bituminous
Harllee Branch	GA	4	None	Bituminous
Hatfields Ferry	PA	1	None	Bituminous
Hatfields Ferry	PA	2	None	Bituminous
Hatfields Ferry	PA	3	None	Bituminous
Havana	IL	6	None	Bituminous
Hayden	СО	1	None	Bituminous
Hayden	СО	2	None	Bituminous
Henderson One	KY	6	None	Bituminous
Henderson Two	KY	1	None	Bituminous
Henderson Two	KY	2	None	Bituminous
Hennepin	IL	1	None	Bituminous
Hennepin	IL	2	None	Bituminous
Hickling	NY	1	None	Bituminous
Hickling	NY	2	None	Bituminous
High Bridge	MN	4	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
HL Spurlock	KY	1	None	Bituminous
Holtwood	PA	17	None	Bituminous
Hower City	PA	3	None	Bituminous
Hower City	PA	2	None	Bituminous
Hower City	PA	1	None	Bituminous
HT Pritchard	IN	3	None	Bituminous
HT Pritchard	IN	4	None	Bituminous
HT Pritchard	IN	5	None	Bituminous
HT Pritchard	IN	6	None	Bituminous
Hudson	NJ	2	None	Bituminous
JR Whiting	MI	1	None	Bituminous
JR Whiting	MI	2	None	Bituminous
JR Whiting	MI	3	None	Bituminous
JS Cooper	KY	1	None	Bituminous
JS Cooper	KY	2	None	Bituminous
Hunlock	PA	3	None	Bituminous
Huntington	UT	2	None	Bituminous
Hutchings	ОН	1	None	Bituminous
Hutchings	ОН	2	None	Bituminous
Hutchings	ОН	3	None	Bituminous
Hutchings	ОН	4	None	Bituminous
Hutchings	ОН	5	None	Bituminous
Hutchings	ОН	6	None	Bituminous
Hutsonville	IL	3	None	Bituminous
Hutsonville	IL	4	None	Bituminous
Indian River	DE	1	None	Bituminous
Indian River	DE	2	None	Bituminous
Indian River	DE	3	None	Bituminous
Indian River	DE	4	None	Bituminous
Jack Watson	MS	4	None	Bituminous
Jack Watson	MS	5	None	Bituminous
James DeYoung	MI	5	None	Bituminous
James River	МО	3	None	Bituminous
James River	МО	4	None	Bituminous
James River	МО	5	None	Bituminous
JC Weadock	MI	7	None	Bituminous
JC Weadock	MI	8	None	Bituminous
Kammer	WV	1	None	Bituminous
Kammer	WV	2	None	Bituminous
Kammer	WV	3	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Kanawha River	WV	1	None	Bituminous
Kanawha River	WV	2	None	Bituminous
Jefferies	SC	3	None	Bituminous
Jefferies	SC	4	None	Bituminous
Jennison	NY	1	None	Bituminous
Jennison	NY	2	None	Bituminous
JH Campbell	MI	1	None	Bituminous
JH Campbell	MI	2	None	Bituminous
JH Campbell	MI	3	None	Bituminous
JM Stuart	OH	1	None	Bituminous
JM Stuart	OH	2	None	Bituminous
JM Stuart	OH	3	None	Bituminous
JM Stuart	ОН	4	None	Bituminous
John Sevier	TN	1	None	Bituminous
John Sevier	TN	2	None	Bituminous
John Sevier	TN	3	None	Bituminous
John Sevier	TN	4	None	Bituminous
Johnsonville	TN	1	None	Bituminous
Johnsonville	TN	2	None	Bituminous
Johnsonville	TN	3	None	Bituminous
Johnsonville	TN	4	None	Bituminous
Johnsonville	TN	5	None	Bituminous
Johnsonville	TN	6	None	Bituminous
Johnsonville	TN	7	None	Bituminous
Johnsonville	TN	8	None	Bituminous
Johnsonville	TN	9	None	Bituminous
Johnsonville	TN	10	None	Bituminous
Keystone	PA	1	None	Bituminous
Keystone	PA	2	None	Bituminous
Killen	ОН	2	None	Bituminous
Kincaid	IL	1	None	Bituminous
Kincaid	IL	2	None	Bituminous
Kingston	TN	1	None	Bituminous
Kingston	TN	2	None	Bituminous
Kingston	TN	3	None	Bituminous
Kingston	TN	4	None	Bituminous
Kingston	TN	5	None	Bituminous
Kingston	TN	6	None	Bituminous
Kingston	TN	7	None	Bituminous
Kingston	TN	8	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Kingston	TN	9	None	Bituminous
Kraft	GA	1	None	Bituminous
Kraft	GA	2	None	Bituminous
Kraft	GA	3	None	Bituminous
Kyger Creek	ОН	1	None	Bituminous
Kyger Creek	ОН	2	None	Bituminous
Kyger Creek	ОН	3	None	Bituminous
Kyger Creek	ОН	4	None	Bituminous
Kyger Creek	ОН	5	None	Bituminous
Lake Road	МО	4	None	Bituminous
Lake Shore	ОН	18	None	Bituminous
Lakeside	IL	6	None	Bituminous
Lakeside	IL	7	None	Bituminous
Lansing Smith	FL	1	None	Bituminous
Lansing Smith	FL	2	None	Bituminous
Lee	NC	1	None	Bituminous
Lee	NC	2	None	Bituminous
Lee	NC	3	None	Bituminous
Lee	SC	1	None	Bituminous
Lee	SC	2	None	Bituminous
Lee	SC	3	None	Bituminous
Lovett	NY	4	None	Bituminous
Lovett	NY	5	None	Bituminous
Manitowoc	WI	6	None	Bituminous
Marion	IL	1	None	Bituminous
Marion	IL	2	None	Bituminous
Marion	IL	3	None	Bituminous
Marshall	NC	1	None	Bituminous
Marshall	NC	2	None	Bituminous
Marshall	NC	3	None	Bituminous
Marshall	NC	4	None	Bituminous
Martins Creek	PA	1	None	Bituminous
Martins Creek	PA	2	None	Bituminous
Marysville	MI	6	None	Bituminous
Marysville	MI	7	None	Bituminous
Marysville	MI	8	None	Bituminous
Mayo	NC	1	None	Bituminous
McDonough	GA	1	None	Bituminous
McDonough	GA	2	None	Bituminous
McIntosh	GA	1	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
McMeekin	SC	1	None	Bituminous
McMeekin	SC	2	None	Bituminous
Meramec	МО	1	None	Bituminous
Meramec	МО	2	None	Bituminous
Meramec	МО	3	None	Bituminous
Meramec	МО	4	None	Bituminous
Mercer	NJ	1	None	Bituminous
Mercer	NJ	2	None	Bituminous
Meredosia	IL	1	None	Bituminous
Meredosia	IL	2	None	Bituminous
Meredosia	IL	3	None	Bituminous
Merrimack	NH	1	None	Bituminous
Merrimack	NH	2	None	Bituminous
Miami Fort	ОН	5	None	Bituminous
Miami Fort	ОН	6	None	Bituminous
Miami Fort	ОН	7	None	Bituminous
Miami Fort	ОН	8	None	Bituminous
Miller	AL	1	None	Bituminous
Miller	AL	2	None	Bituminous
Miller	AL	3	None	Bituminous
Miller	AL	4	None	Bituminous
Minnesota Valley	MN	3	None	Bituminous
Mitchell	GA	3	None	Bituminous
Mitchell	WV	1	None	Bituminous
Mitchell	WV	2	None	Bituminous
ML Kapp	IA	2	None	Bituminous
Montour	PA	1	None	Bituminous
Montour	PA	2	None	Bituminous
Morgantown	MD	1	None	Bituminous
Morgantown	MD	2	None	Bituminous
Mount Storm	WV	1	None	Bituminous
Mount Storm	WV	2	None	Bituminous
Mount Tom	MA	1	None	Bituminous
Mountaineer	WV	1	None	Bituminous
Muskingum River	ОН	1	None	Bituminous
Muskingum River	OH	2	None	Bituminous
Muskingum River	OH	3	None	Bituminous
Muskingum River	OH	4	None	Bituminous
Muskingum River	OH	5	None	Bituminous
New Castle	PA	3	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
New Castle	PA	4	None	Bituminous
New Castle	PA	5	None	Bituminous
Newton	IL	2	None	Bituminous
Niles	OH	2	None	Bituminous
Noblesville	IN	1	None	Bituminous
Noblesville	IN	2	None	Bituminous
Northeast	MN	1	None	Bituminous
Oak Creek	WI	5	None	Bituminous
Oak Creek	WI	6	None	Bituminous
Oak Creek	WI	7	None	Bituminous
Oak Creek	WI	8	None	Bituminous
Paradise	KY	3	None	Bituminous
Philip Sporn	WV	1	None	Bituminous
Philip Sporn	WV	2	None	Bituminous
Philip Sporn	WV	3	None	Bituminous
Philip Sporn	WV	4	None	Bituminous
Philip Sporn	WV	5	None	Bituminous
Picway	OH	5	None	Bituminous
Pineville	KY	3	None	Bituminous
Port Washington	WI	2	None	Bituminous
Port Washington	WI	3	None	Bituminous
Portland	PA	1	None	Bituminous
Portland	PA	2	None	Bituminous
Possum Point	VA	3	None	Bituminous
Possum Point	VA	4	None	Bituminous
Potomac River	VA	1	None	Bituminous
Potomac River	VA	2	None	Bituminous
Potomac River	VA	3	None	Bituminous
Potomac River	VA	4	None	Bituminous
Potomac River	VA	5	None	Bituminous
Quindaro Three	KS	1	None	Bituminous
Quindaro Three	KS	2	None	Bituminous
Ratts	IN	1	None	Bituminous
Ratts	IN	2	None	Bituminous
RD Nixon	CO	1	None	Bituminous
RE Burger	OH	1	None	Bituminous
RE Burger	OH	2	None	Bituminous
RE Burger	OH	3	None	Bituminous
RE Burger	OH	4	None	Bituminous
RE Burger	OH	5	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Reid	KY	1	None	Bituminous
RH Gorsuch	ОН	1	None	Bituminous
RH Gorsuch	OH	2	None	Bituminous
River Rouge	MI	2	None	Bituminous
River Rouge	MI	3	None	Bituminous
Riverbend	NC	4	None	Bituminous
Riverbend	NC	5	None	Bituminous
Riverbend	NC	6	None	Bituminous
Riverbend	NC	7	None	Bituminous
Riverside	IA	5	None	Bituminous
Rivesville	WV	5	None	Bituminous
Rivesville	WV	6	None	Bituminous
RM Schahfer	IN	14	None	Bituminous
RM Schahfer	IN	15	None	Bituminous
Robinson	SC	1	None	Bituminous
Rock River	WI	1	None	Bituminous
Rock River	WI	2	None	Bituminous
Roxboro	NC	1	None	Bituminous
Roxboro	NC	2	None	Bituminous
Roxboro	NC	3	None	Bituminous
Roxboro	NC	4	None	Bituminous
RP Smith	MD	3	None	Bituminous
RP Smith	MD	4	None	Bituminous
Russell	NY	1	None	Bituminous
Russell	NY	2	None	Bituminous
Russell	NY	3	None	Bituminous
Russell	NY	4	None	Bituminous
Salem Harbor	MA	1	None	Bituminous
Salem Harbor	MA	2	None	Bituminous
Salem Harbor	MA	3	None	Bituminous
Schiller	NH	4	None	Bituminous
Schiller	NH	5	None	Bituminous
Schiller	NH	6	None	Bituminous
Scholz	FL	1	None	Bituminous
Scholz	FL	2	None	Bituminous
Seward	PA	4	None	Bituminous
Shawnee	KY	1	None	Bituminous
Shawnee	KY	2	None	Bituminous
Shawnee	KY	3	None	Bituminous
Shawnee	KY	4	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Shawnee	KY	5	None	Bituminous
Shawnee	KY	6	None	Bituminous
Shawnee	KY	7	None	Bituminous
Shawnee	KY	8	None	Bituminous
Shawnee	KY	10	None	Bituminous
Shawville	PA	1	None	Bituminous
Shawville	PA	2	None	Bituminous
Shawville	PA	3	None	Bituminous
Shawville	PA	4	None	Bituminous
Silver Lake	MN	4	None	Bituminous
Sixth Street	IA	8	None	Bituminous
Somerset	MA	6	None	Bituminous
St. Clair	MI	7	None	Bituminous
Streeter	IA	7	None	Bituminous
Sunbury	PA	4	None	Bituminous
Sutherland	IA	1	None	Bituminous
Sutherland	IA	2	None	Bituminous
Sutherland	IA	3	None	Bituminous
Sutton	NC	1	None	Bituminous
Sutton	NC	2	None	Bituminous
Sutton	NC	3	None	Bituminous
Tanners Creek	IN	1	None	Bituminous
Tanners Creek	IN	2	None	Bituminous
Tanners Creek	IN	3	None	Bituminous
Tanners Creek	IN	4	None	Bituminous
TH Allen	TN	1	None	Bituminous
TH Allen	TN	2	None	Bituminous
TH Allen	TN	3	None	Bituminous
Titus	PA	1	None	Bituminous
Titus	PA	2	None	Bituminous
Titus	PA	3	None	Bituminous
Trenton Channel	MI	9	None	Bituminous
Tyrone	KY	3	None	Bituminous
Urquhart	SC	1	None	Bituminous
Urquhart	SC	2	None	Bituminous
Urquhart	SC	3	None	Bituminous
Valley	WI	1	None	Bituminous
Valley	WI	2	None	Bituminous
Vermilion	IL	1	None	Bituminous
Vermilion	IL	2	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Wabash River	IN	2	None	Bituminous
Wabash River	IN	3	None	Bituminous
Wabash River	IN	4	None	Bituminous
Wabash River	IN	5	None	Bituminous
Wabash River	IN	6	None	Bituminous
Wansley	GA	1	None	Bituminous
Wansley	GA	2	None	Bituminous
Warren	PA	1	None	Bituminous
Warren	PA	2	None	Bituminous
Warrick	IN	4	None	Bituminous
Wateree	SC	1	None	Bituminous
Wateree	SC	2	None	Bituminous
WC Beckjord	ОН	1	None	Bituminous
WC Beckjord	ОН	2	None	Bituminous
WC Beckjord	ОН	3	None	Bituminous
WC Beckjord	ОН	4	None	Bituminous
WC Beckjord	ОН	5	None	Bituminous
WC Beckjord	ОН	6	None	Bituminous
Weatherspoon	NC	1	None	Bituminous
Weatherspoon	NC	2	None	Bituminous
Weatherspoon	NC	3	None	Bituminous
WH Sammis	ОН	1	None	Bituminous
WH Sammis	ОН	2	None	Bituminous
WH Sammis	ОН	3	None	Bituminous
WH Sammis	ОН	4	None	Bituminous
WH Sammis	ОН	5	None	Bituminous
WH Sammis	ОН	6	None	Bituminous
WH Sammis	ОН	7	None	Bituminous
Whitewater Valley	IN	1	None	Bituminous
Widows Creek	AL	1	None	Bituminous
Widows Creek	AL	2	None	Bituminous
Widows Creek	AL	3	None	Bituminous
Widows Creek	AL	4	None	Bituminous
Widows Creek	AL	5	None	Bituminous
Widows Creek	AL	6	None	Bituminous
Willow Island	WV	1	None	Bituminous
Willow Island	WV	2	None	Bituminous
Winyah	SC	1	None	Bituminous
Wood River	IL	4	None	Bituminous
Wood River	IL	5	None	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Yates	GA	2	None	Bituminous
Yates	GA	3	None	Bituminous
Yates	GA	4	None	Bituminous
Yates	GA	5	None	Bituminous
Yates	GA	6	None	Bituminous
Yates	GA	7	None	Bituminous
Yorktown	VA	1	None	Bituminous
Yorktown	VA	2	None	Bituminous

TABLE 9e.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
NO SCRUBBER USING LIGNITE COAL

Plant	State	Unit no.	Scrubber type	Coal source
Big Brown	TX	1	None	Lignite
Big Brown	TX	2	None	Lignite
Big Stone	SD	1	None	Lignite
Leland Olds	ND	1	None	Lignite
Leland Olds	ND	2	None	Lignite
Lewis & Clark	MT	1	None	Lignite
Milton R Young	ND	1	None	Lignite
Monticello	TX	1	None	Lignite
Stanton	ND	1	None	Lignite

TABLE 9f.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
NO SCRUBBER USING SUBBITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Allen S. King	MN	1	None	Subbituminous
Alma	WI	4	None	Subbituminous
Alma	WI	5	None	Subbituminous
Ames Two	IA	7	None	Subbituminous
Ames Two	IA	8	None	Subbituminous
Asbury	МО	1	None	Subbituminous
BC Cobb	MI	4	None	Subbituminous
BC Cobb	MI	5	None	Subbituminous
Belle River	MI	1	None	Subbituminous
Belle River	MI	2	None	Subbituminous
Big Cajun Two	LA	1	None	Subbituminous
Big Cajun Two	LA	2	None	Subbituminous
Big Cajun Two	LA	3	None	Subbituminous
Black Dog	MN	1	None	Subbituminous
Black Dog	MN	3	None	Subbituminous
Black Dog	MN	4	None	Subbituminous
Boardman	OR	1	None	Subbituminous
Burlington	IA	1	None	Subbituminous
Centralia	WA	1	None	Subbituminous
Centralia	WA	2	None	Subbituminous
Cherokee	СО	2	None	Subbituminous
Cherokee	СО	3	None	Subbituminous
Clay Boswell	MN	1	None	Subbituminous
Clay Boswell	MN	2	None	Subbituminous
Clay Boswell	MN	3	None	Subbituminous
Coleto Creek	TX	1	None	Subbituminous
Columbia	WI	1	None	Subbituminous
Columbia	WI	2	None	Subbituminous
Comanche	СО	1	None	Subbituminous
Comanche	СО	2	None	Subbituminous
Council Bluffs	IA	1	None	Subbituminous
Council Bluffs	IA	2	None	Subbituminous
Council Bluffs	IA	3	None	Subbituminous
Crawford	IL	7	None	Subbituminous
Crawford	IL	8	None	Subbituminous
Dave Johnston	WY	1	None	Subbituminous
Dave Johnston	WY	2	None	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
Dave Johnston	WY	3	None	Subbituminous
DH Mitchell	IN	4	None	Subbituminous
DH Mitchell	IN	5	None	Subbituminous
DH Mitchell	IN	6	None	Subbituminous
DH Mitchell	IN	11	None	Subbituminous
Drake	СО	5	None	Subbituminous
Drake	СО	6	None	Subbituminous
Drake	СО	7	None	Subbituminous
Edgewater	WI	3	None	Subbituminous
Edgewater	WI	4	None	Subbituminous
Edgewater	WI	5	None	Subbituminous
Fayette	TX	1	None	Subbituminous
Fayette	TX	2	None	Subbituminous
Fisk Street	IL	19	None	Subbituminous
Flint Creek	AR	1	None	Subbituminous
George Neal North	IA	1	None	Subbituminous
George Neal North	IA	2	None	Subbituminous
George Neal North	IA	3	None	Subbituminous
George Neal South	IA	4	None	Subbituminous
Gerald Gentleman	NE	1	None	Subbituminous
Gerald Gentleman	NE	2	None	Subbituminous
GRDA	OK	1	None	Subbituminous
Harrington	TX	1	None	Subbituminous
Harrington	TX	2	None	Subbituminous
Harrington	TX	3	None	Subbituminous
Hastings	NE	1	None	Subbituminous
Hawthorn	МО	5	None	Subbituminous
High Bridge	MN	5	None	Subbituminous
High Bridge	MN	6	None	Subbituminous
Hoot Lake	MN	3	None	Subbituminous
Hoot Lake	MN	2	None	Subbituminous
Hugo	OK	1	None	Subbituminous
Iatan	МО	1	None	Subbituminous
Independence	AR	1	None	Subbituminous
Independence	AR	2	None	Subbituminous
Irvington	AZ	4	None	Subbituminous
JE Corette	MT	1	None	Subbituminous
Joliet	IL	6	None	Subbituminous
Joliet	IL	7	None	Subbituminous
Joliet	IL	8	None	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
Joppa	IL	1	None	Subbituminous
Joppa	IL	2	None	Subbituminous
Joppa	IL	3	None	Subbituminous
Joppa	IL	4	None	Subbituminous
Joppa	IL	5	None	Subbituminous
Joppa	IL	6	None	Subbituminous
JP Pulliam	WI	3	None	Subbituminous
JP Pulliam	WI	4	None	Subbituminous
JP Pulliam	WI	5	None	Subbituminous
JP Pulliam	WI	6	None	Subbituminous
JP Pulliam	WI	7	None	Subbituminous
JP Pulliam	WI	8	None	Subbituminous
JT Deely	TX	1	None	Subbituminous
JT Deely	TX	2	None	Subbituminous
Kaw	KS	1	None	Subbituminous
Kaw	KS	3	None	Subbituminous
La Cygne	KS	2	None	Subbituminous
Labadie	МО	1	None	Subbituminous
Labadie	МО	2	None	Subbituminous
Labadie	МО	3	None	Subbituminous
Labadie	МО	4	None	Subbituminous
Lansing	IA	3	None	Subbituminous
Lansing	IA	4	None	Subbituminous
Lawrence	KS	3	None	Subbituminous
LD Wright	NE	8	None	Subbituminous
Louisa	IA	1	None	Subbituminous
Madgett	WI	1	None	Subbituminous
Michigan City	IN	12	None	Subbituminous
Mohave	NV	1	None	Subbituminous
Mohave	NV	2	None	Subbituminous
Monroe	MI	1	None	Subbituminous
Monroe	MI	2	None	Subbituminous
Monroe	MI	3	None	Subbituminous
Monroe	MI	4	None	Subbituminous
Montrose	MO	1	None	Subbituminous
Montrose	MO	2	None	Subbituminous
Montrose	МО	3	None	Subbituminous
Muscatine	IA	8	None	Subbituminous
Muskogee	OK	4	None	Subbituminous
Muskogee	OK	5	None	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
Muskogee	OK	6	None	Subbituminous
Naughton	WY	1	None	Subbituminous
Naughton	WY	2	None	Subbituminous
Navajo	AZ	1	None	Subbituminous
Navajo	AZ	2	None	Subbituminous
Navajo	AZ	3	None	Subbituminous
Nearman Creek	KS	1	None	Subbituminous
Nebraska City	NE	1	None	Subbituminous
Nelson Dewey	WI	1	None	Subbituminous
Nelson Dewey	WI	2	None	Subbituminous
New Madrid	МО	1	None	Subbituminous
New Madrid	МО	2	None	Subbituminous
North Omaha	NE	1	None	Subbituminous
North Omaha	NE	2	None	Subbituminous
North Omaha	NE	3	None	Subbituminous
North Omaha	NE	4	None	Subbituminous
North Omaha	NE	5	None	Subbituminous
North Valmy	NV	1	None	Subbituminous
Northeastern	ОК	3	None	Subbituminous
Northeastern	ОК	4	None	Subbituminous
Ottumwa	IA	1	None	Subbituminous
Pawnee	СО	1	None	Subbituminous
Platte	NE	1	None	Subbituminous
Pleasant Prairie	WI	1	None	Subbituminous
Pleasant Prairie	WI	2	None	Subbituminous
Powerton	IL	5	None	Subbituminous
Powerton	IL	6	None	Subbituminous
Prairie Creek	IA	3	None	Subbituminous
Prairie Creek	IA	4	None	Subbituminous
Presque Isle	MI	2	None	Subbituminous
Presque Isle	MI	3	None	Subbituminous
Presque Isle	MI	4	None	Subbituminous
Presque Isle	MI	5	None	Subbituminous
Presque Isle	MI	6	None	Subbituminous
Presque Isle	MI	7	None	Subbituminous
Presque Isle	MI	8	None	Subbituminous
Presque Isle	MI	9	None	Subbituminous
Riverside	MN	8	None	Subbituminous
Riverton	KS	7	None	Subbituminous
Riverton	KS	8	None	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
Rockport	IN	1	None	Subbituminous
Rockport	IN	2	None	Subbituminous
Rodemacher	LA	2	None	Subbituminous
RS Nelson	LA	6	None	Subbituminous
Rush Island	МО	1	None	Subbituminous
Rush Island	МО	2	None	Subbituminous
Scherer	GA	1	None	Subbituminous
Scherer	GA	2	None	Subbituminous
Scherer	GA	3	None	Subbituminous
Scherer	GA	4	None	Subbituminous
Sheldon	NE	1	None	Subbituminous
Sheldon	NE	2	None	Subbituminous
Sibley	MO	1	None	Subbituminous
Sibley	МО	2	None	Subbituminous
Sibley	МО	3	None	Subbituminous
Sioux	МО	1	None	Subbituminous
Sioux	МО	2	None	Subbituminous
Sooner	ОК	1	None	Subbituminous
Sooner	ОК	2	None	Subbituminous
St. Clair	MI	1	None	Subbituminous
St. Clair	MI	2	None	Subbituminous
St. Clair	MI	3	None	Subbituminous
St. Clair	MI	4	None	Subbituminous
St. Clair	MI	6	None	Subbituminous
State Line	IN	3	None	Subbituminous
State Line	IN	4	None	Subbituminous
Tecumseh	KS	9	None	Subbituminous
Tecumseh	KS	10	None	Subbituminous
Thomas Hill	МО	1	None	Subbituminous
Thomas Hill	МО	2	None	Subbituminous
Thomas Hill	МО	3	None	Subbituminous
Tolk	TX	1	None	Subbituminous
Tolk	TX	2	None	Subbituminous
Valmont	СО	5	None	Subbituminous
VJ Daniel	MS	1	None	Subbituminous
VJ Daniel	MS	2	None	Subbituminous
WA Parish	TX	5	None	Subbituminous
WA Parish	TX	6	None	Subbituminous
WA Parish	TX	7	None	Subbituminous
Waukegan	IL	6	None	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
Waukegan	IL	7	None	Subbituminous
Waukegan	IL	8	None	Subbituminous
Welsh	TX	1	None	Subbituminous
Welsh	TX	2	None	Subbituminous
Welsh	TX	3	None	Subbituminous
Weston	WI	1	None	Subbituminous
Weston	WI	2	None	Subbituminous
Weston	WI	3	None	Subbituminous
White Bluff	AR	1	None	Subbituminous
White Bluff	AR	2	None	Subbituminous
Will County	IL	1	None	Subbituminous
Will County	IL	2	None	Subbituminous
Will County	IL	3	None	Subbituminous
Will County	IL	4	None	Subbituminous

TABLE 9g.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
WET SCRUBBERS USING BITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
AB Brown	IN	1	Wet	Bituminous
AB Brown	IN	2	Wet	Bituminous
Baily	IN	7	Wet	Bituminous
Baily	IN	8	Wet	Bituminous
Big Bend	FL	4	Wet	Bituminous
BL England	NJ	2	Wet	Bituminous
Bonanza	UT	1	Wet	Bituminous
Bruce Mansfield	PA	1	Wet	Bituminous
Bruce Mansfield	PA	2	Wet	Bituminous
Bruce Mansfield	PA	3	Wet	Bituminous
Cane Run	KY	4	Wet	Bituminous
Cane Run	KY	5	Wet	Bituminous
Cane Run	KY	6	Wet	Bituminous
CD McIntosh, Jr.	FL	3	Wet	Bituminous
CH Stanton	FL	1	Wet	Bituminous
CH Stanton	FL	2	Wet	Bituminous
Cholla	AZ	1	Wet	Bituminous
Clover	VA	1	Wet	Bituminous
Conemaugh	PA	1	Wet	Bituminous
Conemaugh	PA	2	Wet	Bituminous
Conesville	ОН	4	Wet	Bituminous
Conesville	OH	5	Wet	Bituminous
Conesville	OH	6	Wet	Bituminous
Cope	SC	1	Wet	Bituminous
Coronado	AZ	2	Wet	Bituminous
Charles R. Lowman	AL	2	Wet	Bituminous
Charles R. Lowman	AL	3	Wet	Bituminous
Craig	СО	2	Wet	Bituminous
Cromby	PA	1	Wet	Bituminous
Cross	SC	2	Wet	Bituminous
Cross	SC	1	Wet	Bituminous
Cumberland	TN	1	Wet	Bituminous
Cumberland	TN	2	Wet	Bituminous
Dallman	IL	3	Wet	Bituminous
DB Wilson	KY	1	Wet	Bituminous
Duck Creek	IL	1	Wet	Bituminous
East Bend	KY	2	Wet	Bituminous
Eddystone	PA	1	Wet	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Eddystone	PA	2	Wet	Bituminous
Elmer Smith	KY	1	Wet	Bituminous
Elrama	PA	1	Wet	Bituminous
Elrama	PA	2	Wet	Bituminous
Elrama	PA	3	Wet	Bituminous
Elrama	PA	4	Wet	Bituminous
FB Culley	IN	2	Wet	Bituminous
FB Culley	IN	3	Wet	Bituminous
Gen. JM Gavin	OH	1	Wet	Bituminous
Gen. JM Gavin	OH	2	Wet	Bituminous
Ghent	KY	1	Wet	Bituminous
Gibson	IN	4	Wet	Bituminous
Gibson	IN	5	Wet	Bituminous
Hamilton	OH	9	Wet	Bituminous
Harrison	WV	1	Wet	Bituminous
Harrison	WV	2	Wet	Bituminous
Harrison	WV	3	Wet	Bituminous
Hunter	UT	1	Wet	Bituminous
Hunter	UT	2	Wet	Bituminous
Hunter	UT	3	Wet	Bituminous
Intermountain	UT	1	Wet	Bituminous
Intermountain	UT	2	Wet	Bituminous
JB Sims	MI	3	Wet	Bituminous
JR Endicott	MI	1	Wet	Bituminous
Jim Bridger	WY	2	Wet	Bituminous
Kintigh	NY	1	Wet	Bituminous
La Cygne	KS	1	Wet	Bituminous
Lawrence	KS	5	Wet	Bituminous
Marion	IL	4	Wet	Bituminous
Merom	IN	1	Wet	Bituminous
Merom	IN	2	Wet	Bituminous
Mill Creek	KY	1	Wet	Bituminous
Mill Creek	KY	2	Wet	Bituminous
Mill Creek	KY	3	Wet	Bituminous
Mill Creek	KY	4	Wet	Bituminous
Milliken	NY	1	Wet	Bituminous
Milliken	NY	2	Wet	Bituminous
Mitchell	PA	3	Wet	Bituminous
Mount Storm	WV	3	Wet	Bituminous
Muscatine	IA	9	Wet	Bituminous
Naughton	WY	3	Wet	Bituminous

Plant	State	Unit no.	Scrubber type	Coal source
Newton	IL	1	Wet	Bituminous
Niles	OH	1	Wet	Bituminous
Paradise	KY	1	Wet	Bituminous
Paradise	KY	2	Wet	Bituminous
Pearl Station	П	1	Wet	Bituminous
Petersburg	IN	1	Wet	Bituminous
Petersburg	IN	2	Wet	Bituminous
Petersburg	IN	3	Wet	Bituminous
Petersburg	IN	4	Wet	Bituminous
Pleasants	WV	1	Wet	Bituminous
Pleasants	WV	2	Wet	Bituminous
Port Washington	WI	1	Wet	Bituminous
Port Washington	WI	4	Wet	Bituminous
RD Green	KY	1	Wet	Bituminous
RD Green	KY	2	Wet	Bituminous
RD Morrow	MS	1	Wet	Bituminous
RD Morrow	MS	2	Wet	Bituminous
Reid Gardner	NV	1	Wet	Bituminous
Reid Gardner	NV	2	Wet	Bituminous
Reid Gardner	NV	3	Wet	Bituminous
Reid Gardner	NV	4	Wet	Bituminous
RM Schahfer	IN	17	Wet	Bituminous
RM Schahfer	IN	18	Wet	Bituminous
San Juan	NM	3	Wet	Bituminous
Seminole	FL	1	Wet	Bituminous
Seminole	FL	2	Wet	Bituminous
Sikeston	МО	1	Wet	Bituminous
Southwest	МО	1	Wet	Bituminous
St. Johns River	FL	1	Wet	Bituminous
St. Johns River	FL	2	Wet	Bituminous
Trimble County	KY	1	Wet	Bituminous
WA Parish	TX	8	Wet	Bituminous
WH Bimmer	OH	1	Wet	Bituminous
Widows Creek	AL	7	Wet	Bituminous
Widows Creek	AL	8	Wet	Bituminous
Winyah	SC	2	Wet	Bituminous
Winyah	SC	3	Wet	Bituminous
Winyah	SC	4	Wet	Bituminous
Yates	GA	1	Wet	Bituminous
Zimmer	ОН	1	Wet	Bituminous

TABLE 9h.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
WET SCRUBBERS USING LIGNITE COAL

Plant	State	Unit no.	Scrubber type	Coal source
Antelope Valley	ND	1	Wet	Lignite
Antelope Valley	ND	2	Wet	Lignite
Coal Creek	ND	1	Wet	Lignite
Coal Creek	ND	2	Wet	Lignite
Dolet Hills	LA	1	Wet	Lignite
Gibbons Creek	TX	1	Wet	Lignite
Limestone	TX	1	Wet	Lignite
Martin Lake	TX	1	Wet	Lignite
Martin Lake	TX	2	Wet	Lignite
Martin Lake	TX	3	Wet	Lignite
Milton R. Young	ND	2	Wet	Lignite
Monticello	TX	2	Wet	Lignite
San Miguel	TX	1	Wet	Lignite
Sandow	TX	4	Wet	Lignite

TABLE 9i.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
WET SCRUBBERS USING SUBBITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Apache Station	AZ	2	Wet	Subbituminous
Apache Station	AZ	3	Wet	Subbituminous
Cholla	AZ	2	Wet	Subbituminous
Cholla	AZ	3	Wet	Subbituminous
Cholla	AZ	4	Wet	Subbituminous
Clay Boswell	MN	4	Wet	Subbituminous
Colstrip	MT	1	Wet	Subbituminous
Colstrip	MT	2	Wet	Subbituminous
Colstrip	MT	3	Wet	Subbituminous
Colstrip	MT	4	Wet	Subbituminous
Coronado	AZ	1	Wet	Subbituminous
Craig	СО	1	Wet	Subbituminous
Dave Johnston	WY	4	Wet	Subbituminous
Elk River	MN	1	Wet	Subbituminous
Escalante	NM	1	Wet	Subbituminous
Fayette	TX	3	Wet	Subbituminous
Four Corners	NM	1	Wet	Subbituminous
Four Corners	NM	2	Wet	Subbituminous
Four Corners	NM	3	Wet	Subbituminous
Four Corners	NM	4	Wet	Subbituminous
Four Corners	NM	5	Wet	Subbituminous
Huntington	UT	1	Wet	Subbituminous
Jeffrey	KS	1	Wet	Subbituminous
Jeffrey	KS	2	Wet	Subbituminous
Jeffrey	KS	3	Wet	Subbituminous
Jim Bridger	WY	1	Wet	Subbituminous
Jim Bridger	WY	3	Wet	Subbituminous
Jim Bridger	WY	4	Wet	Subbituminous
JK Spruce	TX	1	Wet	Subbituminous
Laramie River	WY	1	Wet	Subbituminous
Laramie River	WY	2	Wet	Subbituminous
Laramie River	WY	3	Wet	Subbituminous
Lawrence	KS	4	Wet	Subbituminous
Limestone	TX	2	Wet	Subbituminous
Oklaunion	TX	1	Wet	Subbituminous
Pirkey	TX	1	Wet	Subbituminous
Plains	NM	1	Wet	Subbituminous
Sam Seymour	TX	3	Wet	Subbituminous

Plant	State	Unit no.	Scrubber type	Coal source
San Juan	NM	1	Wet	Subbituminous
San Juan	NM	2	Wet	Subbituminous
San Juan	NM	4	Wet	Subbituminous
Sherburne County	MN	1	Wet	Subbituminous
Sherburne County	MN	2	Wet	Subbituminous
SYL Laskin	MN	1	Wet	Subbituminous
SYL Laskin	MN	2	Wet	Subbituminous
Thomas Hill	MO	3	Wet	Subbituminous

TABLE 9j.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
FLUIDIZED BED COMBUSTION USING BITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Nucla	СО	4	FBC	Bituminous
Shawnee	KY	9	FBC	Bituminous
Tidd	OH	UNK	FBC	Bituminous

TABLE 9k.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
FLUIDIZED BED COMBUSTION USING LIGNITE COAL

Plant	State	Unit no.	Scrubber type	Coal source
Heskett	ND	1	FBC	Lignite
Heskett	ND	2	FBC	Lignite
TNP One	TX	1	FBC	Lignite
TNP One	TX	2	FBC	Lignite

TABLE 91.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
FLUIDIZED BED COMBUSTION USING SUBBITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Black Dog	MN	2	FBC	Subbituminous

TABLE 9m.COAL-FIRED ELECTRIC UTILITY STEAM GENERATING UNITS WITH
COAL GASIFICATION USING BITUMINOUS COAL

Plant	State	Unit no.	Scrubber type	Coal source
Polk Power Station	FL	1	Coal Gas	Bituminous
Tracy	NV	UNK	Coal Gas	Bituminous
Wabash River	IN	1	Coal Gas	Bituminous

TABLE 10. NONUTILITY GENERATORS

Plant	State
#1 Power Plant - Richmond, CA	СА
2 AC Station	IN
3 AC Station	IN
4 AC Station	IN
5 AC Station	IN
251 Project	СА
33 East 85-B	СА
76 Products Company	СА
A.W. Hoch	СА
Abbott Power Plant - Univ of IL/Urbana-Champaign	IL
ACE Cogeneration Plant	СА
Ada Cogeneration Limited Partnership	MI
AES Barbers Point, Incorporated	HI
AES BV Partners Beaver Valley	PA
AES Deepwater, Incorporated	TX
AES Placerita Incorporated	СА
AES Shady Point, Incorporated	ОК
AES Thames, Incorporated	СТ
AES Warrior Run Cogeneration Facility	MD
AG - Energy L/P	NY
Agnews Cogeneration Project	СА
Alabama Pine Pulp Company, Incorporated	AL
Alabama River Pulp Company	AL
Albany Paper Mill	OR
Alliance Refinery	LA
Alloy Steam Station	WV
Alta, Iowa Project	IA
Altech III	СА
American Atlas #1 Cogeneration Plant	СО
Androscoggin Mill	ME
Anheuser-Busch, Incorporated - St. Louis Brewery	МО
Anschutz Ranch East	WY
Arbor Hills Generating Facility	MI
Arcadian Fertilizer, L/P	LA
Arcadian Fertilizer, L/P	TN
Arcadian Renewable Power Corporation	СА
Archbald Cogeneration Plant	РА
Arco Placerita Cogen	СА
ARCO Wilmington Calciner	CA

Plant	State
Argus Cogen Plant	СА
Arkansas Operations	AR
Ashdown	AR
Auburndale Power Partners, Limited Partnership	FL
Auger Falls	ID
Badger Creek Cogen	СА
Bailey Utility Plant	NC
Basis - Texas City Refinery	TX
Basis - Houston Refinery	TX
Baton Rouge Turbine Generator	LA
Bayonne Cogen Plant	NJ
Bayou Cogeneration Plant	TX
Baytown Turbine Generator Project	TX
Bear Canyon	СА
Bear Mountain Cogen	СА
Beaumont Refinery	TX
Beaver - Ashland	ME
Beaver - Livermore Falls	ME
Beaver - Cadillac	MI
Beechwood Energy Resources	РА
Bellingham Cogeneration Facility	MA
Berlin - Gorham	NH
Berry Cogen	CA
Bethlehem Facility	РА
Binghamton Cogeneration Plant	NY
Biomass One L/P	OR
Biron Division	WI
BIT Power Generation Plant	TN
Blandin Paper Company	MN
Blue Mountain Power, L/P	TX
Boise Cascade/International Falls	MN
Borden Chemicals and Plastics	LA
Borger Plant	TX
Bowater Newsprint Calhoun Operations	TN
BP Chemicals - Green Lake Plant	TX
Brady Power Project	NV
Bridgeport Resco	СТ
Brooklyn Navy Yard Cogeneration Partners, L.P.	NY
Brunswick Pulp and Paper Company	GA
Brush Cogen Project Phase 1 (CPP)	СО

Plant	State
Brush Power Project Phase 2 (BCP)	СО
Bryant Sugar House	FL
Buckeye Florida L/P	FL
Bucksport, Maine	ME
Burney Forest Products	СА
Burns Harbor Plant	IN
C.R. Wing Cogeneration Plant	TX
CA II (Chlor Alkali II)	LA
Calderwood	TN
Calpine Gilroy Cogen, LP	СА
Cambria CoGen	PA
Camden Cogen L.P.	NJ
Camden Mill	AR
Cannon Energy Corporation	СА
Canton Cogeneration Facility	NY
Canton, North Carolina	NC
Capital District Energy Center Cogen Assoc.	СТ
Cardinal Cogen	СА
Cargill Fertilizer, Inc.	FL
Cargill Fertilizer, Inc. (Bartow)	FL
Carney's Point	NJ
Carson Cogeneration Company	СА
Cedar Bay Generating Company L/P	FL
Cedar Rapids	IA
Cedar Springs	GA
Celanese Engineering Resin, Incorporated	TX
Celco Plant	VA
Central Power and Lime, Incorporated	FL
Central Production Facility #1	AK
Central Production Facility #2	AK
Central Production Facility #3	AK
Central Wayne Air Quality/Energy Recovery Proj	MI
CFI Plant City Phosphate Complex	FL
Chalk Cliff Cogen	СА
Chambers Cogeneration Limited Partnership	NJ
Charleston	SC
Cheoah	NC
Chesapeake Paper Products Co.	VA
Chester Operations	РА
Chilhowee	TN

Plant	State
Chino Mines Company	NM
Chocolate Bayou Plant	TX
CII Carbon LLC	LA
CITGO Refinery Powerhouse	LA
Civic Center	СА
Clairton Works	РА
Clear Lake Cogeneration Limited	TX
Clinton	IL
Coalinga Cogeneration Company	СА
Cogen Energy Technology L/P - Fort Orange Facility	NY
CoGen Lyondell, Incorporated	TX
Cogenron, Incorporated	TX
Cogentrix Elizabethtown	NC
Cogentrix Hopewell	VA
Cogentrix Kenansville	NC
Cogentrix Lumberton	NC
Cogentrix of Richmond, Incorporated	VA
Cogentrix Portsmouth	VA
Cogentrix Roxboro	NC
Cogentrix Southport	NC
Collieville	СА
Colonie Cogeneration Plant	NY
Colstrip Energy Limited Partnership	МТ
Columbus, MS	MS
Colver Power Project	РА
Commonwealth Atlantic Limited Partnership	VA
Continental Energy Associates	РА
Copper Range Company	MI
Corn Products - Illinois	IL
Corn Wet Milling Plant	TN
Corona Cogen	СА
Corpus Christi Plant	TX
Corpus Christi Refinery	TX
Coso Energy Developers	СА
Coso Finance Partners	CA
Coso Power Developers	СА
Cottage Grove Cogeneration Facility	MN
Courtland Mill	AL
Covington Facility	VA
Craven County Wood Energy L/P	NC

Plant	State
Crossett Paper	AR
Dartmouth Power Associates	МА
Decatur	IL
Decatur Plant Cogen	IL
Deer Island Treatment Plant	МА
Deer Park Plant	TX
Delano Energy Company Incorporated	СА
Delaware City Plant	DE
DeRidder Mill	LA
Dexter Cogeneration Facility	СТ
Dexzel	СА
Dillard Complex	OR
Donnells Power Plant	СА
Doswell Combined Cycle Facility	VA
Double 'C'	СА
Dow Chemical Company Pittsburg Site	СА
Dow Corning Midland Plant	MI
Dutch Flats #2	СА
Dwayne Collier Battle Cogeneration Facility	NC
E.F. Oxnard, Oxnard Energy Facility	СА
Eagle Point Cogeneration	NJ
East Syracuse Cogeneration Facility	NY
East Third Street Power Plant	СА
Eastover Facility	SC
Ebensburg Power Company	PA
Eielson Air Force Base Central Heat	AK
El Segundo Refinery	СА
Encogen Four Partners, L.P.	NY
Encogen NW	WA
Encogen One	TX
Energy Development Corporation	FL
Enterprise Products Co.	TX
Erie Mill	PA
Exeter Energy Project	СТ
Exxon Company USA - Baytown PP3/PP4	TX
Fairfield Works	AL
Fairless Works	PA
Falls	NC
Federal Cogeneration Plant	СА
Finch, Pruyn and Company, Incorporated	NY

Plant	State
Flint River Operations	GA
Florida Coast Paper Co, LLC	FL
Formosa Plastics Corp	LA
Formosa Utility Venture, Limited	TX
Fort Drum Cogeneration Facility	NY
Foster Wheeler Martinez, Incorporated	СА
Foster Wheeler Mt. Carmel, Incorporated	РА
Foster Wheeler Penn Resources Inc.	РА
FPB Cogen Facility	CA
Franklin Fine Paper Division	VA
Freehold Cogeneration Facility	NJ
Fresno Cogeneration Partners, L.P.	CA
Fulton Cogeneration Associates	NY
G.F. Weaton Power Station	РА
Gary Works	IN
Gaylord Container Corp Bogalusa	LA
Gaylord Container Corporation - Antioch	CA
GE Company Aircraft Engines	МА
Geismar	LA
Geismar Plant	LA
General Chemical	WY
General Electric - Erie, PA Power Station	РА
Genesee Power Station - Limited Partnership	MI
Geneva Steel	UT
Georgetown Mill	SC
Gilberton Power	PA
Gilman Paper Company	GA
Glenwood Springs Salt Project	СО
GM WFG Pontiac Site Power Plant	MI
Goaline, L.P.	СА
Goodyear Power Plant	ОН
Gordonsville Energy L.P.	VA
Grant Town Facility	WV
Grayling Generating Station	MI
Grays Ferry Cogeneration Partnership	РА
Great Northern Paper	ME
Green Bay Mill	WI
Greenleaf Unit One	CA
Greenleaf Unit Two	СА
Growers Cogeneration Plant	CA

Plant	State
Gulf States Paper Corp.	AL
H-Power	НІ
Halfmoon Cogeneration Project	NY
Hamilton, Ohio	ОН
Hanford	СА
Harbor Cogeneration Company	СА
Hardee Power Station	FL
Harrisburg Facility	PA
Hartwell Energy Limited Partnership	GA
Hawaiian Coml. and Sugar Company	НІ
Hennepin Energy Resource Co., L.P.	MN
Hermiston Generating Plant	OR
Hidalgo Smelter	NM
High Rock	NC
High Sierra	СА
HL Power Plant	СА
Hodge, Louisiana	LA
Hopewell Cogeneration	VA
Houston Chemical Complex Battleground Site	TX
Hudson River Mill	NY
Humboldt Pulp Mill	СА
IBM San Jose Standby Generator	СА
IMC-Agrico Company - New Wales Operations	FL
IMC-Agrico Company - South Pierce Operations	FL
IMC-Agrico Company, Uncle Sam Plant	LA
Indeck - Turners Falls Energy Center	МА
Indeck - Olean Energy Center	NY
Indeck - Oswego Energy Center	NY
Indeck - Pepperell Power Facility	МА
Indeck - Corinth Energy Center	NY
Indeck - Ilion Energy Center	NY
Indeck - Jonesboro Energy Center	ME
Indeck - Silver Springs Energy Center	NY
Indeck - West Enfield Energy Center	ME
Indeck - Yerkes Energy Center	NY
Indiana Army Ammunition Plant	IN
Indiana University of Pennsylvania	PA
Indiantown Cogeneration Facility	FL
Inland Paperboard and Packaging	TX
Inland Paperboard Packaging Rome Linerboard Mill	GA

Plant	State
International Paper - Augusta Mill	GA
International Paper, Riegelwood Mill	NC
Inter-Power/Ahlcon Partners	PA
Iowa State University	IA
IPC - Pine Bluff Mill	AR
Island End Cogeneration Project	МА
Ivorydale	ОН
J.J. Elmore	СА
J.M. Leathers	СА
JCO-Oxides and Olefins Plant	TX
Jefferson Smurfit Corporation	FL
Jefferson Smurfit Corporation	СА
Jefferson Smurfit Corporation	СА
Jefferson Smurfit Corporation	AL
Jefferson Smurfit Corporation - Jacksonville	FL
John B. Rich Memorial Power Station	РА
Johnsonburg Mill	PA
Joliet Refinery	
Kaiser Aluminum	LA
Kalaeola Cogeneration Plant	HI
Kamine/Besicorp Allegany L.P.	NY
Kamine/Besicorp Beaver Falls L.P.	NY
Kamine/Besicorp Natural Dam L.P.	NY
Kamine/Besicorp South Glens Falls L.P.	NY
Kamine/Besicorp Carthage L.P.	NY
Kamine/Besicorp Syracuse L.P.	NY
Kannapolis Energy Partners	NC
Kannapolis Energy Partners LLC	NC
Kenai Ammonia Facility	AK
Kenilworth Energy Facility	NJ
Kennedy International Airport Cogen Facility	NY
Kern Front	CA
Kern River Cogeneration Company	СА
Kern River Eastridge	CA
Ketchikan Pulp Company	AK
Kimberly-Clark Coosa Pines	AL
King City Power Plant	СА
Kingsburg Cogeneration	СА
Kline Township Cogen. Facil.	РА
Koch Refining Company	TX

Plant	State
Kodak Park Site	NY
Kraft Division	WI
KW Livermore, LP	СА
L'Energia Limited Partnership	МА
Lackawanna Facility	NY
LaFarge Corporation - Alpena	MI
Lake Cogen, Limited	FL
Lakewood Cogeneration, L/P	NJ
Las Vegas Cogeneration Limited Partnership	NV
Leaf River	MS
Lederle Laboratories	NY
LG&E-Westmoreland Altavista	VA
LG&E-Westmoreland Hopewell	VA
LG&E-Westmoreland Rensselaer	NY
LG&E-Westmoreland Southampton	VA
Lihue Plantation Co., Ltd.	НІ
Linde Wilmington	СА
Linden Cogen Plant	NJ
Lisburne Production Center	AK
Live Oak Cogen	СА
Lock Haven Mill	PA
Lockport Energy Assoc L/P Lockport Cogen Facility	NY
Logan Generating Plant	NJ
Lone Star Steel Company	TX
Longview Fibre Company	WA
Longview, WA	WA
Los Angeles Refinery, Wilmington Plant	CA
Louisiana Mill	LA
Loveridge Road Power Plant	CA
Lowell Cogeneration Plant	МА
Lowland	TN
LTV Steel - Cleveland Works	ОН
LTV Steel - Indiana Harbor Works	IN
LTV Steel - Pittsburgh Works	РА
LTV Steel Mining Company - Schroeder	MN
Lucky Peak Power Plant Project	ID
Lufkin, Texas	ТХ
Luke Mill	MD
Lynchburg Cogen	ТХ
Lyonsdale Energy L/P	NY

Plant	State
M Street Jet	MA
MacMillan Bloedel Packaging, Inc.	AL
Madera Power Plant	СА
Maine Energy Recovery Company	ME
Mallard Lake Generating Facility	IL
Mansfield Mill	LA
March Point Cogeneration Company	WA
Marcus Hook Refinery Cogen	PA
Mass Institute of Technology - Central Utilities Plant	MA
Massena Energy Facility	NY
Masspower	MA
May Plant	SC
McKay Bay Facility	FL
McKittrick Cogen	CA
Mead Coated Board, Incorporated	AL
Mead Paper	MI
Mead - Fine Paper Division	OH
Mecca Plant	CA
Mecklenburg Cogeneration Facility	VA
Medical Area Total Energy Plant	MA
Mehoopany	PA
Mendota Biomass Power, Limited	CA
Michigan Power Limited Partnership	MI
Mid-Connecticut Facility	CT
Mid-Continent Power Company, Incorporated	ОК
Mid-Set Cogeneration Company	CA
Midland Cogeneration Venture	MI
Midsun	CA
Midway Sunset Cogeneration Company	СА
Milagro Cogeneration Plant	NM
Milford Power Limited Partnership	NJ
Milford Power Limited Partnership	MA
Millbury Facility	MA
Minersville	PA
Mississippi Chemical Corporation	MS
Mobile Energy Services Company, L.L.C.	AL
Mobile Mill	AL
Mojave 3	СА
Mojave 4	CA
Mojave 5	CA

Plant	State
Mojave 16	CA
Mojave 17	СА
Mojave 18	СА
Mojave Cogeneration Company	СА
Mon Valley Energy Limited Partnership	РА
Mon Valley Works	PA
Montenay Montgomery L/P	РА
Monticello Paper	MS
Montrose Partners	СО
Morgantown Energy Facility	WV
Mosinee Paper Corporation, Pulp and Paper Division	WI
Moss Point Mill	MS
Mt. Poso Cogeneration	CA
Mulberry Cogeneration Facility	FL
Mulberry Phosphates, Inc.	FL
Multitrade of Pittsylvania County, L/P Plant	VA
Muskogee Mill	ОК
Naheola Mill	AL
Narrows	NC
Natchez Mill	MS
Natrium Plant	WV
Naval Station Energy Facility	CA
Naval Submarine Base - Kings Bay, GA	GA
Nekoosa Mill	WI
Nelson Industrial Steam Company	LA
Nevada Cogen Assoc #2 (Black Mtn. Co-Gen. Plant)	NV
Nevada Cogeneration Associates #1	NV
Nevada Sun-Peak Project	NV
New Bern, NC	NC
New Cornelia Branch Power Plant	AZ
New Orleans	LA
Newark Bay Cogeneration Project	NJ
Newgulf Cogen Plant	TX
Niagara Division	WI
Nichols Road Power Plant	СА
Nisa Cogeneration Facility	NY
Norcon Facility	PA
Nordic Power of South Point I	AZ
North American Fibers Corporation	TN
North Island Energy Facility	CA
Plant	State
--	-------
Northeastern Power Corporation	PA
Northhampton Generating Company, L.P.	PA
NTC/MCRD Energy Facility	СА
Nutra Sweet Kelco Company-San Diego	СА
O'Brien (Newark) Cogeneration, Inc.	NJ
O'Brien (Parlin) Cogeneration, Inc.	NJ
O'Brien California Cogen Limited	СА
Oak Creek Energy Systems Incorporated	СА
Oak Ridge Station #1	NH
Ocean State Power	RI
Ocean State Power II	RI
OHA - Lawrence Thermal Conversion Facility	MA
Oildale Cogen	СА
Okeelanta Power Limited Partnership	FL
Old Town Division	ME
OLS Energy - Berkeley	СА
OLS Energy - Camarillo	СА
OLS Energy - Chino	СА
Onondaga Cogeneration	NY
Ontario Mill	СА
Orange Cogeneration Facility	FL
Orlando CoGen Limited, L.P.	FL
Ormesa I	СА
Osceola Power Limited Partnership	FL
Oxbow Power of North Tonawanda, New York, Inc.	NY
Oxnard	CA
Oyster Creek Unit VIII	TX
P.H. Glatfelter Company	PA
Palatka Operations	FL
Panda Brandywine, L/P	MD
Panda Kathleen, L/P	FL
Panda-Rosemary Limited Partnership	NC
Panther Creek Energy Facility	PA
Pasco Cogen, Limited	FL
Paulsboro Refinery	NJ
Pawtucket Power Associates	RI
Pedricktown Cogeneration Plant	NJ
Penobscot Energy Recovery Company	ME
Pensacola Florida Plant	FL
Pensacola, Florida	FL

Plant	State
Peoria	IL
Pepeekeo Power Plant	HI
Pfizer, Incorporated	СТ
Phelps Dodge Tyrone, Inc.	NM
Philadelphia Refinery	PA
Pinetree Power Tamworth Inc.	NH
Pineville Mill	LA
Piney Creek Project	PA
Pitchess Cogeneration Station	СА
Pittsfield Generating Company L.P.	МА
Plant 31 (Paper Mill)	LA
Plymouth, NC	NC
Port Arthur Plant	TX
Port Arthur Refinery	TX
Port Arthur, Texas Refinery	TX
Port Hudson Pulp & Printing Paper	LA
Port of Stockton District Energy Facility	СА
Potlatch Corp Minnesota Pulp-Paper Div	MN
Potlatch Corp- Idaho Pulp and Paper Board	ID
Power and Utilities	LA
Power Station #3	TX
Power Station #4	TX
Powerhouse A	LA
PowerSmith Cogen Project	ОК
PPG - Riverside	LA
PPG - Powerhouse C	LA
Prime Energy Limited Partnership	NJ
Project Orange Associates, L/P	NY
Pt. Comfort Operations	TX
Pt. Neches Plant	TX
Purdue University	IN
Quinnesec, Michigan	MI
Radford Army Ammunition Plant	VA
Rayonier Incorporation - Jesup Mill	GA
Rayonier - Fernandina Mill	FL
Repap Wisconsin, Incorporated	WI
Reynolds Metals Company - Sherwin Plant	TX
Rhinelander Paper Company	WI
Richmond Cogeneration Project	СА
Richmond Power Enterprise L.P.	VA

Plant	State
Ridge Generating Station	FL
Rio Bravo Fresno	CA
Rio Bravo Jasmin	СА
Rio Bravo Poso	CA
Rio Bravo Rocklin	CA
Rio Grande Cogen	TX
Ripon Mill	CA
Riverdale Mill	AL
Riverside Cement Company - Power House	CA
Riverwood International USA, Incorporated	GA
Roanoke Rapids, North Carolina	NC
Rouge Powerhouse #1	MI
Rumford Cogeneration Company	ME
Rumford Falls Power Company	ME
Ryegate Power Station	VT
S & L Cogeneration	TX
S. D. Warren Company #1 Muskegon	MI
S. D. Warren Company #2	ME
Sabine River Works	TX
Sacramento	CA
Saguaro Power Company	NV
Salinas River Cogeneration Company	CA
Salt City Energy Venture, L/P	NY
Salton Sea Unit #3	CA
Salton Sea Unit #4	CA
San Gabriel Mill	CA
San Joaquin Cogen	CA
Sandow	TX
Santa Ynez Facility	CA
Santeetlah	NC
Saranac Facility	NY
Sargent Canyon Cogeneration Company	CA
Sartell Mill	MN
Saugus Resco	MA
Savannah River Mill	GA
Sayreville Cogeneration Facility	NJ
Schuylkill Energy Resources	РА
Schuylkill Station (Turbine Generator #3)	РА
Scott Paper	РА
Scrubgrass Generating Company L/P	PA

Plant	State
SCTI/ Power Pak	СА
Seadrift Plant Union Carbide Corporation	TX
Seaford, Delaware Plant	DE
SEI Birchwood Power Facility	VA
Selkirk Cogen Partners, L.P.	NY
Seminole Kraft Corporation	FL
Seneca Power Partners, L/P	NY
Sheldon, Texas	TX
Shell Deer Park	TX
Shell Martinez Refining Company	СА
Sherman Energy Facility	ME
Silver Bay Power Company	MN
Sithe/Independence Station	NY
Sky River Partnership	СА
Sloss Industries Corporation	AL
Somerset Plant	ME
South Belridge Cogen Facility	СА
South Florida Cogeneration Associates	FL
Southeast Kern River Cogen	СА
Southeast Paper Manufacturing Co., Inc.	GA
Southport	NC
Sparrows Point	MD
Springfield, Oregon	OR
St. Francisville Mill	LA
St. Nicholas Cogeneration Project	PA
Steamboat II	NV
Steamboat III	NV
Sterling Energy Facility	NY
Stillwater Facility	NV
Stockton CoGen Company	СА
Stone Container Corporation - Hopewell Mill	VA
Stone Container Corporation - Panama City Hall	FL
Stone Container Corporation - Florence Mill	SC
Stone Savannah River Pulp and Paper Corporation	GA
Stone Southwest Corporation - Snow Flake	AZ
Stony Brook Cogeneration Plant	NY
Stratton Energy Associates	ME
Sumas Cogeneration Company L.P.	WA
Sunnyside Cogeneration Associates	UT
Suwannee River Chem. Complex	FL

Plant	State
Sweeny Cogeneration Facility	TX
Swift Creek Chemical Complex	FL
Sycamore Cogeneration Company	СА
T.B. Simon Power Plant	MI
Taft Plant Union Carbide Corporation	LA
Taunton Energy Center	МА
TBG Cogen	NY
Temple-Inland Forest Prod Corp - Bleached Paperboard Op.	TX
Tenaska III Texas Partners	TX
Tenaska IV Texas Partners Ltd. (Cleburne Cogen)	TX
Tenaska Washington Partners, L/P	WA
Tenaska Washington Partners II, L/P	WA
Tenn Eastman Div., a Div. of Eastman Chemical Co.	TN
Tenneco Packaging Counce Mill	TN
TES Filer City Station	MI
Texaco Los Angeles Plant	СА
Texarkana Mill	TX
Texas City Plant	TX
Texas City Plant Union Carbide Corporation	TX
Texas Petrochemicals Corp	TX
Texasgulf IncPCS Phosphate - Aurora Division	NC
The Dow Chemical Company Texas Operations	TX
The Pacific Lumber Company	СА
Thermo Cogen Partnership L/P, a Delaware L/P	СО
Thermo Cogen Partnership L/P, a Delaware L/P	СО
Thermo Greeley, Incorporated	СО
Thermo Power and Electric, Incorporated	СО
Thilmany Pulp and Paper	WI
Ticonderoga Mill	NY
Tiger Bay Cogeneration Facility	FL
Tobaccoville Utility Plant	NC
Torrance Refinery	CA
Total Energy Facilities	CA
Tracy Biomass Plant	CA
Trigen-Colorado Energy Corp.	СО
Trigen-Nassau Energy Corporation	NY
Tropicana Products Incorporated/Bradenton Cogen	FL
Tuckertown	NC
US Agri-Chemicals Corp - Fort Meade Chemical Prod.	FL
U.S. Borax Incorporated	СА

Plant	State
UCLA South Campus Central Chiller Cogen Project	CA
UDG Niagara Falls Cogeneration Facility	NY
Ultrapower Chinese Station	СА
UNC-Chapel Hill Power Plant	NC
Union Camp Corporation - Prattville	AL
Union Camp Corporation - Savannah	GA
United Cogen Incorporated	СА
United Technologies	СТ
University of Colorado	СО
University of Iowa - Main Power Plant	IA
University of Michigan	MI
University of Missouri-Columbia Power Plant	МО
University of Texas at Austin	TX
Unocal - San Francisco Refinery	СА
Utility Plants Section	AK
Valero Refinery	TX
Valliant, OK	ОК
Ventron Cogenerational Project	МА
Vicksburg Mill	MS
Victoria, Texas Plant	TX
Victory Garden	СА
Victory Garden Phase IV Partnership	CA
Vineland Cogeneration Plant	NJ
Vitamins and Fine Chemicals	NJ
Vulcan	CA
Wadham Energy Limited Partnership	CA
Warbasse Cogen Facility	NY
Warrior	NY
Washington Power Company L.P.	РА
Wasson CO2 Removal Plant	TX
Watson Cogeneration Company	CA
Watsonville Cogeneration Project	CA
WCI Steel Incorporated	OH
Weirton Steel Corporation	WV
West Ford Flat Power Plant	CA
West Point Facility	PA
Westchester Resco	NY
Westmoreland - LG&E Partners - Roanoke Valley I	NC
Westmoreland - LG&E Partners - Roanoke Valley II	NC
Westwood Energy Properties	PA

Plant	State
Wheelabrator Falls Inc.	PA
Wheelabrator Frackville Energy Company, Inc.	PA
Wheelabrator Lassen Inc.	СА
Wheelabrator Martell Inc.	CA
Wheelabrator North Broward	FL
Wheelabrator Norwalk Energy Company Inc.	CA
Wheelabrator Shasta	CA
Wheelabrator South Broward	FL
Wheelabrator Spokane Incorporated	WA
Whitewater Cogeneration Facility	WI
Whiting Refinery	IN
Wichita Falls Energy Company, Limited	TX
Wichita Plant	KS
Wilbur East Power Plant	CA
Wilbur West Power Plant	CA
Winslow, Maine	ME
Wisconsin Rapids Division	WI
Woodland Biomass Power, Limited	CA
Woodland Pulp and Paper	ME
Worcester Energy Company, Incorporated	ME
Yellowstone Energy Ltd Partnership	MT
York Cogen Facility	PA
Yuba City Cogeneration Partners L/P	CA
Yuma Cogeneration Associates	AZ

Section 114 of the Clean Air Act, as Amended

<u>Federal Register</u> Notice Announcing Planned Information Collection and Request for Comment [Federal Register: April 9, 1998 (Volume 63, Number 68)] [Notices] [Page 17406-17409] From the Federal Register Online via GPO Access [wais.access.gpo.gov] [DOCID:fr09ap98-78]

ENVIRONMENTAL PROTECTION AGENCY

[AD-FRL-5993-7]

Agency Information Collection Activities: Proposed Collection; Comment Request; Electric Utility Steam Generating Unit Mercury Emissions Collection Effort

AGENCY: Environmental Protection Agency (EPA).

ACTION: Notice.

SUMMARY: In compliance with the Paperwork Reduction Act (44 U.S.C. 3501 et seq.), this document announces that EPA is planning to submit the following proposed Information Collection Request (ICR) to the Office of Management and Budget (OMB): Electric Utility Steam Generating Unit Mercury Emissions Information Collection Effort Information Collection Request; EPA ICR No. 1858.01. Before submitting the ICR to OMB for review and approval, EPA is soliciting comments on specific aspects of the proposed information collection as described below.

DATES: Comments must be submitted on of before June 8, 1998.

ADDRESSES:Comments. Comments should be submitted (in duplicate, if possible) to: U.S. Environmental Protection Agency, Air and Radiation Docket and Information Center (6102), Attention Docket No. A-92-55, Room M-1500, 401 M Street, S.W., Washington, D.C. 20460. The EPA requests that a separate copy also be sent to Mr. William Maxwell, Combustion Group (MD-13), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.

Copies of ICR

The draft ICR and other relevant materials, including the draft supporting statement, are available from the docket at the above address in Room M-1500, Waterside Mall (ground floor), phone number (202) 260-7548. A reasonable fee may be charged for copying. The docket is open for public inspection and copying between 8:00 a.m. and 4:00 p.m., Monday through Friday, except for Federal holidays. Copies of the draft ICR may also be obtained free of charge from the EPA's website listing Federal Register Notices at ``http://www.epa.gov/ttn/oarpg/ t3pfpr.html" or by contacting one of the people listed below.

Public Meeting

The EPA plans to hold a public meeting in Washington, D.C., at which time interested parties can provide comment on this ICR. A document will be published in the near future in the Federal Register announcing the date, time, and location of this meeting.

FOR FURTHER INFORMATION CONTACT: For information concerning specific aspects of this ICR, contact Mr. William Maxwell [telephone number (919) 541-5430; facsimile number (919) 541-5450; e-mail ``maxwell.bill@epa.gov"], Combustion Group, Emission Standards Division (MD-13); or Mr. William Grimley [telephone number (919) 541-1065; facsimile number (919) 541-1039; e-mail ``grimley.william@epa.gov"], Emission Measurement Center,

[[Page 17407]]

Emission Monitoring and Analysis Division (MD-19), U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.

SUPPLEMENTARY INFORMATION:

Affected entities: Entities potentially affected by this action are owners and operators of coal-fired electric utility steam generating units as defined by section 112(a)(8) of the Clean Air Act, as amended (the Act).

Title: Electric Utility Steam Generating Unit Mercury Emissions Information Collection Effort Information Collection Request; EPA ICR No. 1858.01.

Abstract: Section 112(n)(1)(A) of the Act requires EPA to perform a study of the hazards to public health reasonably anticipated to occur as a result of emissions by electric utility steam generating units of hazardous air pollutants (HAPs) after imposition of the requirements of the Act and to prepare a Report to Congress containing the results of the study. The Agency is to proceed with rulemaking activities under section 112 to control HAP emissions from utilities if EPA finds such

regulation is appropriate and necessary after considering the results of the study. The study has been completed and the Final Report to Congress was issued on February 24, 1998.

In the Final Report to Congress, the EPA stated that mercury is the HAP emission of greatest potential concern from coal-fired utilities and that additional research and monitoring are merited. The EPA also listed a number of research needs related to such mercury emissions. These include obtaining additional data on the mercury content of various types of coal as burned in electric utility steam generating units and additional data on mercury emissions to the atmosphere (e.g., how much is emitted from various types of units; how much is divalent vs. elemental mercury; and how do factors such as control device, fuel type, and plant configuration affect emissions and speciation).

As indicated above, section 112(n)(1)(A) of the Act requires the Administrator to regulate electric utility steam generating units under section 112 if the Administrator finds that such regulation is appropriate and necessary after ``considering the results of the study" noted above. The Administrator interprets the quoted language as indicating that the results of the study are to play a principle, but not exclusive, role in informing the Administrator's decision as to whether it is appropriate and necessary to regulate electric utility steam generating units under section 112. The Administrator believes that in addition to considering the results of the study, she may consider any other available information in making her decision. The Administrator also believes that she is authorized to collect and evaluate any additional information which may be necessary to make an informed decision.

After carefully considering the Final Report to Congress, the Administrator has concluded that obtaining additional information under the authority of section 114 of the Act prior to making the required determination is appropriate. In the Final Report to Congress, the EPA stated that at this time, the available information, on balance, indicates that utility mercury emissions are of sufficient potential concern for public health to merit further research and monitoring. The EPA acknowledged that there are substantial uncertainties that make it difficult to quantify the magnitude of the risks due to utility mercury emissions, and that further research and/or evaluation would be needed to reduce those uncertainties. The EPA believes that among those uncertainties are: (i) the actual cumulative amount of mercury being emitted by all electric utility steam generating units on an annual basis; (ii) the speciation of the mercury which is being emitted; and, (iii) the effectiveness of various control technologies in reducing the volume of each form of mercury which is emitted.

To address the question of the cumulative amount of mercury potentially being emitted by all electric utility steam generating units on an annual basis, the EPA believes that it is necessary to require the owners/operators of all such units to provide information on the mercury content of the coal burned in each unit as well as the volume of coal burned in each unit. Thus, the ICR includes a requirement for the owners/operators of all coal-fired electric utility steam generating units with a capacity greater than 25 megawatts electric (MWe) to periodically measure the mercury content of the coal which they burn on a weekly basis and report the results together with the corresponding volume of coal burned in each unit.

In preparing the Final Report to Congress, the Agency had available mercury emission data from a number of utility boilers. These data included measurements of the mercury emitted during various stages of the process (e.g., exiting the boiler, exiting the various control devices). Research conducted during the period between acquisition of these data and release of the report has highlighted the importance of the specific valence state of the emitted mercury on the ability of a particular control device to remove mercury from the exhaust gas stream. In addition, advances have been made in emission testing methodologies that more accurately differentiate among the various species of mercury that may be emitted from an electric utility steam generating unit. Thus, the ICR also includes provisions for acquiring additional speciated mercury data on both controlled and uncontrolled air emissions so that the relationship between mercury content and other characteristics of the coal, the species of mercury formed in the boiler, and the mercury removal performance of various control devices may be further evaluated.

Although the actual variables that affect mercury speciation are still being determined in ongoing research efforts, two variables that appear to have an effect are coal characteristics and scrubber type. For purposes of grouping the coal-fired units (boilers) into categories, these two variables were used so that a more representative sample of coal-fired units can be selected for testing. Coal characteristics are related to the coal type, which is defined as either bituminous (including anthracite for this ICR), subbituminous, or lignite. Scrubber type is defined as either a dry-scrubber (of any type/model), wet-scrubber (of any type/model), or no scrubber at all.

ICR Description: To address the issues related to coal characteristics, this ICR requires that the owner/operator of each facility at which one or more individual coal-fired unit(s) (boiler(s)) is (are) located (there are approximately 421 nationwide) provide periodic analyses of all coals fired. This would be accomplished by obtaining weekly as-fired coal analyses from each distinct coal storage pile, including silos, etc., in use at the facility, rather than from each boiler located at the facility. In this way, information will be provided from which the amount of mercury entering each of the

approximately 1,017 coal-fired boilers (nationwide) may be estimated at a minimum burden level for any given facility. It would also be necessary to measure and record the amount of coal burned in each week and identify the source of the coal (e.g., State, seam, etc.). Each coal sample would be analyzed using one of several standardized analytical methods for mercury, chlorine, and other specified items. These analyses would be obtained either by direct sampling and analysis by each owner/operator or by submission of suitable analyses

[[Page 17408]]

provided by the coal supplier. Analyses performed by the coal supplier would not be considered suitable if the coal would subsequently be cleaned at the facility where the electric utility steam generating unit(s) is (are) located. The Agency will ultimately apply appropriate correction factors to these data to derive a reasonable estimate of the total amount of mercury emitted by each coal-fired electric utility steam generating unit on an annual basis. To better evaluate whether mercury emissions from coal-fired electric utility steam generating units vary over time and to provide information to the public on mercury emissions over time, the Agency is considering requiring coal sampling and emissions reporting to be conducted for a number of years.

To address the issues related to scrubber type, this ICR also requires that quarterly, triplicate simultaneous before/after control device stack sampling be performed by a subset of boilers using a specified mercury speciation method. During the stack testing, a statistically appropriate number of coal samples would be required to be collected for analysis. When dealing with a large population (approximately 1,017 individual boilers) of this nature with consideration being made for the cost of the data collection effort (which involves sampling the fewest number of units possible without compromising the integrity of the data being collected), a statistically representative sample is considered to be 30. These samples can be selected in one of two ways: equally among the viable categories or proportional allocation of sample to stratified population (units within each category). The universe of boilers was divided into nine scrubber type/coal characteristic categories. One possible category had no members, leaving eight viable categories. A proportional allocation methodology was selected, with provisions being made for having at least two members selected from each category (assessing one sample would provide no basis for comparison).

A random selection process will be used to determine what units are required to participate in this testing program. If possible, once a unit from a particular site (facility) has been selected, no other unit(s) at that site will be chosen for that particular category (i.e., some facilities have units with different scrubber types or that burn coal from different sources). This will provide the Agency with more information from a larger number of facilities. Appropriate quality assurance/quality control (QA/QC) procedures would be required for each part of the ICR.

Burden Statement: Burden means the total time, effort, or financial resources expended by persons to generate, maintain, retain, or disclose or provide information to or for a Federal agency. This includes the time needed to review instructions; develop, acquire, install, and utilize technology and systems for the purposes of collecting, validating, and verifying information, processing and maintaining information, and disclosing and providing information; adjust the existing ways to comply with any previously applicable instructions and requirements; train personnel to be able to respond to a collection of information; and transmit or otherwise disclose the information.

The total annual reporting and recordkeeping burden for this ICR is estimated to be 40,516 hours and \$14,659,264. This is the estimated burden for 421 facilities to provide coal analyses (assuming no more than two coal storage piles per facility) and 30 units to provide speciated mercury emission data. The average annual base reporting and recordkeeping burden and cost for this information collection for facilities having units subject only to the first component of the mercury emissions data gathering effort is 37 hours and \$22,925. The average annual per electric utility steam generating unit base reporting and recordkeeping burden and cost for this information collection for units subject to the second component of the mercury emissions data gathering effort is 174 hours and \$166,928. This ICR does not include any requirements that would cause the respondents to incur either capital and start-up costs or operation and maintenance costs. The EPA has assumed that all respondents will contract (i.e., purchase services) for the weekly coal analyses and for the quarterly stack testing. These costs are \$8,804,800 for the coal analyses and \$4,800,000 for the stack testing.

Request for Comments

The EPA solicits comments on the following aspects of the ICR itself.

1. Will the information that the Agency proposes to collect have practical utility in informing the Administrator's decision on whether it is appropriate and necessary to regulate HAP emissions from electric utility steam generating units under section 112 of the Act?

2. Is the Agency's estimate of the burden of the proposed

collection of information, including the validity of the methodology and assumptions used, accurate?

3. Are there ways to enhance the quality, utility, and clarity of the information to be collected?

4. How can the Agency best minimize the burden of the collection of information on those who are to respond? Through the use of appropriate automated electronic, mechanical, or other technological collection techniques or other forms of information technology (e.g., permitting electronic submission of responses)?

The Agency also solicits comment on the following specific technical issues.

1. What is the exact amount, representativeness, and sufficiency of information on the mercury content of as-fired coal that already exists?

2. To what extent are analyses of mercury in as-fired coal currently being performed?

3. Do coal analyses performed on cleaned coal by coal suppliers accurately represent as-fired coal to the same degree as analyses of actual on-site samples?

4. What factors could increase or decrease the number of individual samples needed to identify with reasonable certainty an average annual mercury in coal value for a particular unit?

5. What is the minimum number of individual samples required for a particular unit to identify with reasonable certainty an average annual mercury in coal value?

6. Would a statistical sampling approach provide comprehensive data on the mercury content of the total volume of as-fired coal burned in electric utility steam generating units comparable in quality and reliability to that obtained by requiring the sampling of all such coals?

7. Could a particular facility be placed at a competitive disadvantage due to a disproportionate cost burden in either the coal or stack testing?

8. What is the specific amount, representativeness, and sufficiency of information on the speciation of mercury in stack gases that already exists or is currently being collected?

9. What difficulties in sampling at those sources selected for stack testing might occur due to unusual operating or physical characteristics?

10. Would requiring coal sampling and analyses for more than one year provide information that would be valuable to the public, as well as allow the Agency to better evaluate whether the characteristics of the as-fired coal burned in electric utility steam generating units vary over time and the impact of any such variation on mercury

[[Page 17409]]

emissions? The Agency seeks comment also on how best to design a mercury monitoring protocol beyond the first year.

Finally, the Agency requests comment on the following four general questions.

1. Are there other approaches to obtaining the desired information that the Agency could take which would provide data of comparable, or better, quality at a reduced burden?

2. Will the information which the Agency proposes to collect provide the Administrator with all of the information on the quantity and speciation of mercury emissions from electric utility steam generating units needed to determine whether it is appropriate and necessary to regulate HAP emissions from electric utility steam generating units under section 112 of the Act and to develop appropriate regulations if the Administrator determines that such regulation is appropriate and necessary?

3. Does the population of electric utility steam generating units from which the Agency proposes to obtain information (i.e., approximately 1,017 coal-fired boilers at approximately 421 facilities) adequately reflect the true population that meets the section 112(a)(8) definition (i.e., a population that may include publicly-owned utility companies, rural electric cooperatives, investor-owned utility generating companies, and non-utility generators)?

4. Is there any other information which the Agency should obtain to inform the Administrator's decision of whether it is appropriate and necessary to regulate HAP emissions from electric utility steam generating units under section 112 of the Act?

An agency may not conduct or sponsor, and a person is not required to respond to, a collection of information that is sent to ten or more persons unless it displays a currently valid OMB control number. The OMB control numbers for EPA's approved information collection requests are listed in 40 CFR part 9 and 48 CFR Chapter 15. This notice is the first step in obtaining approval for the ICR described above.

Dated: April 3, 1998. Richard D. Wilson, Acting Assistant Administrator, Office of Air and Radiation. [FR Doc. 98-9390 Filed 4-8-98; 8:45 am] BILLING CODE 6560-50-P

Summary of Comments Received in Response to Proposed Information Collection and Responses to those Comments

Revised Questionnaire