Model Change Bulletin (MCB) 13 – AERMOD version 18081 changes by

change type.

Listed with each change are the affected pollutants and source types:

Item	Modification	Pollutants	Source
			Types
–	In the subroutine SZSFCLPR in prime f. the calculation of the surface	All	POINT
	layer dispersion term is different for stable and unstable conditions.		
	For unstable conditions, in 15181 the term was calculated if the		
	receptor height was less than 1/10 of the mixing height. Otherwise,		
	the surface layer dispersion term was set to 0.0 in unstable		
	conditions.		
	In 16216r, the conditional statement was modified to calculate the		
	term if the release was considered a surface release, regardless of		
	the receptor height. Thus, the surface layer dispersion term is		
	applied in 16216r under unstable conditions to all receptors if		
	defined as a surface release which is determined differently under		
	different conditions.		
	Code was reverted back to 15181.		
2	Urban SO2 Half-life for Non-Default Applications	SO2	All
_	AERMOD includes a decay coefficient for URBAN SO2 sources. This		
	decay will automatically apply if the DFAULT option is specified, but		
	was not applied for Non-DFAULT applications of AERMOD (i.e., when		
	DFAULT option keyword was omitted). The 4-hour half-life is now		
	applied to SO2 urban sources regardless of whether the DFAULT		
	option is specified or not and a user-defined value is not		
	specified. The default decay coefficient is 4-hours if a user-defined		
	value is not specified. Subroutines BL_CALC in calc1.f and DECAY in		
	calc2.f were updated to apply the default (or user-defined) decay		
	coefficient to urban SO2 sources for non-default applications.		
3	Annual POSTFILEs	All	All
	For multi-year runs, when outputting ANNUAL POSTFILES, AERMOD		
	would output each year's annual concentration at each receptor		
	with year numbers 1,2, etc. Following all of the individual years'		
	concentrations, AERMOD would output the multi-year average at		
	each receptor and labeled the row with the final year		
	number. Reporting individual year's concentrations was introduced		
	in 15181. Prior to 15181, the POSTFILE would output the multi-year		
	average, not individual years. In this release, the POSTFILE will have		
	the individual years, but not the multi-year average. The multi-year		

Bug Fixes

	average can still be obtained from a PLOTFILE. In aermod.f, the		
	condition of call to subroutine PSTANN was modified to avoid		
	writing period average to annual POSTFILE.		
4	Buoyant Line Source Parameters Summary	All	BUOYLINE
	Summary table of buoyant line source parameters was not included		
	in the AERMOD.OUT file along with the summaries for other source		
	types. Summary table was added.		
5	AERMOD Seasonal Assignment	All	All
	AERMOD was using the wrong seasonal assignment for calculation of		
	cuticle resistance for ozone (Rcox) for winter and snow precipitation		
	in subroutine VDP in calc1.f. Conditional statement was corrected to		
	reference seasonal code 4 (winter with snow) rather than 5.		
6	ARM2 Error/Warning Messages for Range Checks	NO2	All
	Corrections were made to the range checks for user-defined ARM2		
	limits and Error and Warning messages were updated accordingly.		
7	Background Sectors Output	All	All
	AERMOD was printing the SECT1 values for both SECT1 and SECT2		
	for: SEASON, MONTH, HROFDY, HRDOW, HRDOW7, SHRDOW,		
	SHRDOW7, MHRDOW, MHRDOW7 (functioning correctly for		
	SEASHR). SECT2 values were correctly used in the model, but were		
	printed incorrectly in the output list file Also, AERMOD was not		
	writing any values for WSPEED. Reporting errors were corrected in		
	this release.		
8	Apply Minimum Wind Speed	All	All
	The minimum wind speed was applied to vector winds in calc1.f and		
	iblval.f by taking the max of the calculated effective wind speed and		
	minimum wind set as a lower limit (either a default value or user-		
	defined value that is entered with the ALPHA and LOW_WIND		
	keywords).		
9	Meteorological Surface File Check	All	All
	If the surface meteorological file existed, but was empty, AERMOD		
	would enter an infinite error loop. This cause AERMOD to write to		
	the error file until the local disk was full. meset.f was modified to		
	check to see if the file was empty on first read and issue the correct		
	warning if so.		

Enhancements

Item	Modification	Pollutants	Source
			Types
1	ARM2 Enabled with Buoyant Line Source	NO2	BUOYLINE
	ARM2 was extended for application to buoyant line sources and		
	source groups that include buoyant line sources.		

2	Addition of ALPHA Option Flag	All	All
	Similar to the BETA option flag, an ALPHA option flag was added to		
	distinguish options that are considered research/experimental		
	options (ALPHA) from those that have been vetted within the		
	scientific community that are under consideration for promulgation		
	as regulatory options (BETA).		
3	Command-line Arguments	All	All
	Capability added for user to specify control filename (.inp) and		
	standard output filename (.out) on the command-line when		
	AERMOD is executed. User can include 0, 1, or 2 arguments. If no		
	arguments are included, AERMOD will assume the default names		
	(aermod.inp and aermod.out). When included, the first argument		
	must be the control filename, and the second argument must be the		
	output filename. If only the control filename is provided, AERMOD		
	will use the path and base of the control filename (excluding		
	extension) as the path and base filename for the output file and		
	append ".out" to the end of the filename. Filenames can include the		
	absolute path or relative path from the working directory.		
4	Removal of LOWWIND1, LOWWIND2, LOWWIND3	All	All
	Individual BETA options LOWWIND1, LOWWIND2, LOWWIND3 were		
	removed and replaced with LOW_WIND ALPHA option that enables		
	user to specify different values for minimum wind speed, sigma-v,		
	and maximum meander factor (see LOW-WIND Alpha Option in the		
	Enhancements section).		
5	LOW_WIND ALPHA Option	All	All
	A new ALPHA option LOW_WIND which enables the user to enter		
	user-defined values for minimum wind speed, sigma-v, and		
	maximum meander factor in lieu of LOWWIND1, LOWWIND2, and		
	LOWWIND3.		
6	ARM Removed	NO2	All
	The original Ambient Ratio Method (ARM), which was replaced with		
	ARM2, was still functional in AERMOD 16216r and could be specified		
	when the DFAULT keyword was also specified. ARM has been		
	removed from AERMOD. Equivalent functionality can be obtained by		
	setting the maximum and minimum ambient ratio to the desired		
	value using the ARM2 options.		
/	Rename Functions ERF and ERFC	All	All
	Absoft and gfortran compilers issued warnings that the user-defined		
	functions ERF and ERFC in prime f were named the same as two		
	Intrinsic functions. User-defined functions were renamed FNERF and		
	FNERFC to avoid a potential name conflict. Call statements were		
	updated to reference new function names.	A 11	A 11
8	Uninitialized Variables	All	All
	Initialized variables identified by gfortran compiler as uninitialized.		
	Exceptions are the allocated arrays. All variables that were		
	initialized are set = 0.000 (all are double precision). All variables		
	identified were found to be set somewhere in the code either as the		

value of another variable or by formula, so initialization has no	
effect. Allocatable arrays were already initialized in code at some	
point after allocation.	

Formulation updates

None