Integrated Review Plan for the Primary National Ambient Air Quality Standard for Sulfur Dioxide

External Review Draft
Integrated Review Plan for the
Primary National Ambient Air Quality
Standard for Sulfur Dioxide

External Review Draft

U. S. Environmental Protection Agency

National Center for Environmental Assessment
Office of Research and Development
and
Office of Air Quality Planning and Standards
Office of Air and Radiation

Research Triangle Park, North Carolina

March 2014
DISCLAIMER

This draft integrated review plan serves as a public information document and as a management tool for the U.S. Environmental Protection Agency's National Center for Environmental Assessment and the Office of Air Quality Planning and Standards in conducting the review of the national ambient air quality standard for sulfur oxides. The approach described in this draft plan may be modified for presentation in the final plan to reflect consultation with the Clean Air Scientific Advisory Committee and public comments. Subsequent modifications to the plan may result from information developed during this review, and in consideration of advice and comments received from the Clean Air Scientific Advisory Committee and the public during the course of the review. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.
TABLE OF CONTENTS

LIST OF FIGURES .. v
LIST OF TABLES ... vi
LIST OF ACRONYMS/ABBREVIATIONS .. vii

1. INTRODUCTION ... 1-1
 1.1 LEGISLATIVE REQUIREMENTS .. 1-1
 1.2 OVERVIEW OF THE NAAQS REVIEW PROCESS ... 1-3
 1.3 HISTORY OF THE REVIEW OF AIR QUALITY CRITERIA FOR SULFUR OXIDES AND THE NAAQS FOR SULFUR DIOXIDE .. 1-7
 1.4 SCOPE OF THE CURRENT REVIEW ... 1-10

2. STATUS AND SCHEDULE ... 2-1

3. KEY POLICY-RELEVANT ISSUES ... 3-1
 3.1 CONSIDERATIONS AND CONCLUSIONS IN LAST REVIEW .. 3-1
 3.1.1 Need for Revision ... 3-2
 3.1.2 Elements of a Revised Standard ... 3-5
 3.1.3 Areas of Uncertainty .. 3-10
 3.2 GENERAL APPROACH FOR THE CURRENT REVIEW .. 3-11

4. SCIENCE ASSESSMENT .. 4-1
 4.1 SCOPE OF THE ISA ... 4-1
 4.2 ORGANIZATION OF THE ISA ... 4-1
 4.3 ASSESSMENT APPROACH ... 4-2
 4.3.1 Introduction ... 4-2
 4.3.2 Literature Search and Selection of Relevant Studies ... 4-4
 4.3.3 Evaluation of Individual Study Quality ... 4-5
 4.3.4 Integration of Evidence and Determination of Causality 4-8
 4.3.5 Quality Management .. 4-9
 4.4 SPECIFIC ISSUES TO BE ADDRESSED IN THE ISA ... 4-10
 4.5 SCIENTIFIC AND PUBLIC REVIEW ... 4-17

5. QUANTITATIVE RISK AND EXPOSURE ASSESSMENTS .. 5-1
 5.1 OVERVIEW OF RISK AND EXPOSURE ASSESSMENT FROM PRIOR REVIEW 5-2
 5.1.1 Key Observations ... 5-4
 5.1.2 Key Uncertainties .. 5-6
 5.2 CONSIDERATION OF QUANTITATIVE ASSESSMENTS FOR THIS REVIEW 5-6
 5.2.1 Ambient Air Quality Characterization ... 5-7
 5.2.2 Exposure Assessment ... 5-8
 5.2.3 Risk Assessment ... 5-9
 5.2.4 Uncertainty and Variability .. 5-13
 5.3 PUBLIC AND SCIENTIFIC REVIEW ... 5-13

6. AMBIENT AIR MONITORING .. 6-1
 6.1 CONSIDERATION OF SAMPLING AND ANALYSIS METHODS 6-1
 6.2 CONSIDERATION OF AIR MONITORING NETWORK REQUIREMENTS 6-1

7. POLICY ASSESSMENT/RULEMAKING ... 7-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>POLICY ASSESSMENT</td>
<td>7-1</td>
</tr>
<tr>
<td>7.2</td>
<td>RULEMAKING</td>
<td>7-2</td>
</tr>
<tr>
<td>8.</td>
<td>REFERENCES</td>
<td>8-1</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td></td>
<td>A-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1-1 Overview of the NAAQS Review Process ... 1-4
Figure 3-1 Overview of General Approach for Review of Primary SO2 Standard3-13
Figure 4.1. General Process for Development of Integrated Science Assessments (ISAs).. 4-3
LIST OF TABLES

Table 1-1. History of the primary national ambient air quality standard(s) for sulfur
dioxide since 1971... 1-8
Table 2-1. Anticipated schedule for the SO₂ NAAQS Review ... 2-2
Table 5-1. The numbers of SO₂ monitors 2003 to 2012... 5-8
Table 5-2. Primary uncertainties associated with the exposure and risk assessments in the
previous review and the potential use of new information for reducing these
uncertainties ... 5-10
LIST OF ACRONYMS/ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMMS</td>
<td>Air Monitoring and Methods Subcommittee</td>
</tr>
<tr>
<td>AQCD</td>
<td>Air Quality Criteria Document</td>
</tr>
<tr>
<td>AQS</td>
<td>EPA’s Air Quality System</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CASAC</td>
<td>Clean Air Scientific Advisory Committee</td>
</tr>
<tr>
<td>CBSA</td>
<td>Consolidated Business Statistical Area</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>C-R</td>
<td>Concentration-response</td>
</tr>
<tr>
<td>ED</td>
<td>Emergency department</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>FEM</td>
<td>Federal Equivalent Method</td>
</tr>
<tr>
<td>FEV₁</td>
<td>Forced expiratory volume in one second, volume of air exhaled in first second of exhalation</td>
</tr>
<tr>
<td>FR</td>
<td>Federal Register</td>
</tr>
<tr>
<td>FRM</td>
<td>Federal Reference Method</td>
</tr>
<tr>
<td>HA</td>
<td>Hospital admissions</td>
</tr>
<tr>
<td>IRP</td>
<td>Integrated Review Plan</td>
</tr>
<tr>
<td>ISA</td>
<td>Integrated Science Assessment</td>
</tr>
<tr>
<td>Km</td>
<td>Kilometer</td>
</tr>
<tr>
<td>MSA</td>
<td>Metropolitan Statistical Area</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NCEA</td>
<td>National Center for Environmental Assessment</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>OAQPS</td>
<td>Office of Air Quality Planning and Standards</td>
</tr>
<tr>
<td>OAR</td>
<td>Office of Air and Radiation</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>ORD</td>
<td>Office of Research and Development</td>
</tr>
<tr>
<td>PA</td>
<td>Policy Assessment</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PRB</td>
<td>Policy-relevant background</td>
</tr>
<tr>
<td>REA</td>
<td>Risk and Exposure Assessment</td>
</tr>
<tr>
<td>SES</td>
<td>Socioeconomic status</td>
</tr>
<tr>
<td>SLAMS</td>
<td>State and local air monitoring stations</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

The U.S. Environmental Protection Agency (EPA) is conducting a review of the primary (health-based) national ambient air quality standard (NAAQS) for sulfur oxides (SOx). This draft Integrated Review Plan (IRP) presents the planned approach for the review. This review will provide an integrative assessment of relevant scientific information for SOx and will focus on the basic elements that define the NAAQS: the indicator,\(^1\) averaging time,\(^2\) form,\(^3\) and level.\(^4\) The EPA Administrator will consider these elements collectively in evaluating the protection to public health afforded by the primary standard(s).

This document is organized into eight chapters. Chapter 1 presents the legislative requirements for the review of the NAAQS, background information on the review process, scope of the current review, and an overview of past reviews of the primary SO\(_2\) NAAQS. Chapter 2 presents the status and schedule for the current review. Chapter 3 summarizes the approach in the last review and presents a set of policy-relevant questions that will serve to focus the current review on the critical scientific and policy issues. Chapters 4 through 7 discuss the planned scope and organization of key assessment documents, the planned approaches for preparing these documents, specific ambient air quality monitoring considerations, as well as plans for scientific and public review of these documents. Complete reference citations are provided in chapter 8.

1.1 LEGISLATIVE REQUIREMENTS

Two sections of the Clean Air Act (CAA) govern the establishment and revision of the NAAQS. Section 108 (42 U.S.C. 7408) directs the Administrator to identify and list “air pollutants” that “in his judgment, may reasonably be anticipated to endanger public health and welfare” and whose “presence . . . in the ambient air results from numerous or diverse mobile or stationary sources” and to issue air quality criteria for those that are listed. Air quality criteria are intended to “accurately reflect the latest scientific knowledge useful in indicating the kind and extent of identifiable effects on public health or welfare which may be expected from the presence of [a] pollutant in ambient air”

\(^1\) The “indicator” of a standard defines the chemical species or mixture that is measured in determining whether an area attains the standard.

\(^2\) The “averaging time” defines the time period over which ambient measurements are averaged (e.g., 1-hour, 8-hour, 24-hour, annual).

\(^3\) The “form” of a standard defines the air quality statistic that is compared to the level of the standard in determining whether an area attains the standard. For example, the form of the current 1-hour SO\(_2\) standard is the three-year average of the 99th percentile of the annual distribution of 1-hour daily maximum SO\(_2\) concentrations.

\(^4\) The “level” defines the allowable concentration of the criteria pollutant in the ambient air.
Section 109 (42 U.S.C. 7409) directs the Administrator to propose and promulgate "primary" and "secondary" NAAQS for pollutants for which air quality criteria are issued. A primary standard, as defined in section 109(b)(1), is one "the attainment and maintenance of which in the judgment of the Administrator, based on such criteria and allowing an adequate margin of safety, are requisite to protect the public health." A secondary standard, as defined in section 109(b)(2), must "specify a level of air quality the attainment and maintenance of which, in the judgment of the Administrator, based on such criteria, is required to protect the public welfare from any known or anticipated adverse effects associated with the presence of [the] pollutant in the ambient air."

The requirement that primary standards provide an adequate margin of safety was intended to address uncertainties associated with inconclusive scientific and technical information available at the time of standard setting. It was also intended to provide a reasonable degree of protection against hazards that research has not yet identified. See *Lead Industries Association v. EPA*, 647 F.2d 1130, 1154 (D.C. Cir 1980), cert. denied, 449 U.S. 1042 (1980); *American Petroleum Institute v. Costle*, 665 F.2d 1176, 1186 (D.C. Cir. 1981), cert. denied, 455 U.S. 1034 (1982). Both kinds of uncertainties are components of the risk associated with pollution at levels below those at which human health effects can be said to occur with reasonable scientific certainty. Thus, in selecting primary standards that include an adequate margin of safety, the Administrator is seeking not only to prevent pollution levels that have been demonstrated to be harmful but also to prevent lower pollutant levels that may pose an unacceptable risk of harm, even if the risk is not precisely identified as to nature or degree. The CAA does not require the Administrator to establish a primary NAAQS at a zero-risk level or at background concentration levels, see *Lead Industries v. EPA*, 647 F.2d at 1156 n.51, Mississippi v. EPA, 723 F. 3d 246, 255, 262-63 (D.C. Cir. 2013), but rather at a level that reduces risk sufficiently so as to protect public health with an adequate margin of safety.

In addressing the requirement for an adequate margin of safety, the EPA considers such factors as the nature and severity of the health effects involved, the size of the sensitive population(s), and the kind and degree of uncertainties. The selection of any particular approach to providing an adequate margin of safety is a policy choice left specifically to the

5 As discussed in section 1.4 below, this document describes the review of the primary SO2 standard. The secondary SO2 standard will be separately reviewed in conjunction with review of the secondary NO2 standard.

6 The legislative history of section 109 indicates that a primary standard is to be set at "the maximum permissible ambient air level . . . which will protect the health of any [sensitive] group of the population," and that for this purpose "reference should be made to a representative sample of persons comprising the sensitive group rather than to a single person in such a group" [S. Rep. No. 91-1196, 91st Cong., 2d Sess. 10 (1970)].

7 Welfare effects as defined in section 302(h) [42 U.S.C. 7602(h)] include, but are not limited to, "effects on soils, water, crops, vegetation, man-made materials, animals, wildlife, weather, visibility and climate, damage to and deterioration of property, and hazards to transportation, as well as effects on economic values and on personal comfort and well-being."
Administrator’s judgment. See Lead Industries Association v. EPA, supra, 647 F.2d at 1161-62; Mississippi v. EPA, 723 F. 3d at 265.

In setting standards that are “requisite” to protect public health and welfare, as provided in section 109(b), the EPA’s task is to establish standards that are neither more nor less stringent than necessary for these purposes. In so doing, the EPA may not consider the costs of implementing the standards. See generally, Whitman v. American Trucking Associations, 531 U.S. 457, 465-472, 475-76 (2001). Likewise, “[a]ttainability and technological feasibility are not relevant considerations in the promulgation of national ambient air quality standards.” American Petroleum Institute v. Costle, 665 F. 2d at 1185.

Section 109(d)(1) requires that “not later than December 31, 1980, and at 5-year intervals thereafter, the Administrator shall complete a thorough review of the criteria published under section 108 and the national ambient air quality standards . . . and shall make such revisions in such criteria and standards and promulgate such new standards as may be appropriate” Section 109(d)(2) requires that an independent scientific review committee “shall complete a review of the criteria . . . and the national primary and secondary ambient air quality standards . . . and shall recommend to the Administrator any new . . . standards and revisions of existing criteria and standards as may be appropriate” Since the early 1980s, this independent review function has been performed by the Clean Air Scientific Advisory Committee (CASAC) of EPA’s Science Advisory Board. 8

1.2 OVERVIEW OF THE NAAQS REVIEW PROCESS

The current process for reviewing the NAAQS includes four major phases: (1) planning, (2) science assessment, (3) risk/exposure assessment, and (4) policy assessment and rulemaking. Figure 1-1 provides an overview of this process, and each phase is described in more detail below. 9

9 The EPA maintains a website on which key documents developed for NAAQS reviews are made available (http://www.epa.gov/tn/naaqs/). The EPA’s NAAQS review process has evolved over time. Information on the current process is available at: http://www.epa.gov/tn/naaqs/review.html. As discussed in section 1.3 below, this process was generally followed in the primary SO2 NAAQS review completed in 2010 with the exception that there was not a separate Policy Assessment document issued; rather the Risk and Exposure Assessment (U.S. EPA 2009,) included a policy assessment chapter (i.e., Chapter 10).
Figure 1-1 Overview of the NAAQS Review Process
The planning phase of the NAAQS review process begins with a science policy workshop, which is intended to identify issues and questions to frame the review. Drawing from the workshop discussions, a draft IRP is prepared jointly by EPA’s National Center for Environmental Assessment (NCEA), within the Office of Research and Development (ORD), and EPA’s Office of Air Quality Planning and Standards (OAQPS), within the Office of Air and Radiation (OAR). The draft IRP is made available for CASAC review and for public comment. The final IRP is prepared in consideration of CASAC and public comments. This document presents the current plan and specifies the schedule for the entire review, the process for conducting the review, and the key policy-relevant science issues that will guide the review.

The second phase of the review, the science assessment, involves the preparation of an Integrated Science Assessment (ISA) and supplementary materials. The ISA, prepared by NCEA, provides a concise review, synthesis, and evaluation of the most policy-relevant science, including key science judgments that are important to the design and scope of exposure and risk assessments, as well as other aspects of the NAAQS review. The ISA and its supplementary materials provide a comprehensive assessment of the current scientific literature pertaining to known and anticipated effects on public health and welfare associated with the presence of the pollutant in the ambient air, emphasizing information that has become available since the last air quality criteria review in order to reflect the current state of knowledge. As such, the ISA forms the scientific foundation for each NAAQS review and is intended to provide information useful in forming judgments about air quality indicator(s), form(s), averaging time(s) and level(s) for the NAAQS. The current review process generally includes production of a first and second draft ISA, both of which undergo CASAC and public review prior to completion of the final ISA. Chapter 4 below provides a more detailed description of the planned scope, organization and assessment approach for the ISA and its supporting materials.

In the third phase, the risk/exposure assessment phase, OAQPS staff considers information and conclusions presented in the ISA, with regard to support provided for the development of quantitative assessments of the risks and/or exposures for health and/or welfare effects. As an initial step, staff prepare a planning document (REA Planning Document) that considers the extent to which newly available scientific evidence and tools/methodologies warrant the conduct of quantitative risk and exposure assessments. As discussed in Chapter 5 below, the REA Planning Document focuses on the degree to which important uncertainties in the last review may be addressed by new information available in this review. Specifically, the document considers the extent to which newly available data, methods, and tools might be expected to appreciably affect the assessment results, or address important gaps in our understanding of the exposures and risks associated with SO2. To the extent warranted, this document outlines a general plan, including scope and methods, for conducting assessments. The
REA Planning Document is generally prepared in conjunction with the first draft ISA and is presented for consultation with CASAC and for public comment. When an assessment is performed, one or more drafts of each risk and exposure assessment document (REA) undergoes CASAC and public review, with the initial draft REA generally being reviewed in conjunction with review of the second draft ISA, prior to completion of the final REA. The REA provides concise presentations of methods, key results, observations, and related uncertainties. Chapter 5 below discusses consideration of potential quantitative human health-related assessments for this review.

The review process ends with the policy assessment and rulemaking phase. The Policy Assessment (PA) is a document, prepared prior to issuance of proposed and final rules, that provides a transparent presentation of OAQPS staff analysis and presents staff conclusions regarding the adequacy of the current standards and, if revision is considered, what revisions may be appropriate. The PA integrates and interprets the information from the ISA and REA to frame policy options for consideration by the Administrator. Such an evaluation of policy implications is intended to help “bridge the gap” between the Agency’s scientific assessments, presented in the ISA and REA, and the judgments required of the EPA Administrator in determining whether it is appropriate to retain or revise the NAAQS. In so doing, the PA is also intended to facilitate CASAC’s advice to the Agency and recommendations to the Administrator on the adequacy of the existing standards or revisions that may be appropriate to consider, as provided for in the CAA. In evaluating the adequacy of the current standards and, as appropriate, a range of alternative standards, the PA considers the available scientific evidence and, as available, quantitative risk-based analyses, together with related limitations and uncertainties. The PA focuses on the information that is most pertinent to evaluating the basic elements of national ambient air quality standards: indicator, averaging time, form, and level. One or more drafts of a PA are released for CASAC review and public comment prior to completion of the final PA.

Following issuance of the final PA and consideration of conclusions presented therein, the Agency develops and publishes a notice of proposed rulemaking that communicates the Administrator’s proposed decisions regarding the standards review. A draft notice undergoes interagency review involving other federal agencies prior to publication.\(^{10}\) Materials upon which this decision is based, including the documents described above, are made available to the

\(^{10}\) Where implementation of the proposed decision would have an annual effect on the economy of $100 million or more, e.g., by necessitating the implementation of emissions controls, the EPA develops and releases a draft regulatory impact analysis (RIA) concurrent with the notice of proposed rulemaking. This activity is conducted under Executive Order 12866. The RIA is conducted completely independent of and, by statute, is not considered in decisions regarding the review of the NAAQS.
public in the regulatory docket for the review.11 A public comment period, during which public hearings are generally held, follows publication of the notice of proposed rulemaking. Taking into account comments received on the proposed rule,12 the Agency develops a final rule which undergoes interagency review prior to publication to complete the rulemaking process. Chapter 7 discusses the development of the PA and the rulemaking steps for this review.

1.3 HISTORY OF THE REVIEW OF AIR QUALITY CRITERIA FOR SULFUR OXIDES AND THE NAAQS FOR SULFUR DIOXIDE

The EPA completed the initial review of the air quality criteria for sulfur oxides in 1969 (34 FR 1988). Based on this review, the EPA in initially promulgating NAAQS for sulfur oxides in 1971, established the indicator as SO₂. The 1971 primary standards were set at 0.14 parts per million (ppm) averaged over a 24-hour period, not to be exceeded more than once per year, and 0.030 ppm annual arithmetic mean.13 Since then, the Agency has completed multiple reviews of the air quality criteria and standards, as summarized in Table 1-1.

11 All documents in the docket are listed in the www.regulations.gov index. Publicly available docket materials are available either electronically at www.regulations.gov or in hard copy at the Air and Radiation Docket and Information Center. The docket ID number for this review is EPA-HQ-OAR-2013-0566.
12 When issuing the final rulemaking, the Agency responds to all significant comments on the proposed rule.
13 Note that 0.14 ppm is equivalent to 140 parts per billion (ppb) and 0.030 ppm is equivalent to 30 ppb.
Table 1-1. History of the primary national ambient air quality standard(s) for sulfur dioxides since 1971

<table>
<thead>
<tr>
<th>Final Rule/Decision</th>
<th>Indicator</th>
<th>Averaging Time</th>
<th>Level</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>SO₂</td>
<td>24-hour and Annual Avg</td>
<td>24-hour: 140 ppb Annual Avg: 30 ppb</td>
<td>24-hour std: one allowable exceedance Annual std: Annual arithmetic average</td>
</tr>
<tr>
<td>36 FR at 8186 Apr 30, 1971</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>SO₂</td>
<td>Both the 24-hour and annual average standards retained without revision</td>
<td>75 ppb</td>
<td>99th percentile, averaged over 3 years</td>
</tr>
<tr>
<td>61 FR at 25566 May 22, 1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>SO₂</td>
<td>1-hour</td>
<td>75 ppb</td>
<td>24-hour and annual SO₂ standards revoked.</td>
</tr>
<tr>
<td>75 FR at 35520 June 22, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In 1982, the EPA published the *Air Quality Criteria for Particulate Matter and Sulfur Oxides* (U.S. EPA 1982) along with an addendum of newly published controlled human exposure studies, which updated the scientific criteria upon which the initial standards were based (U.S. EPA 1982). In 1986, a second addendum was published presenting newly available evidence from epidemiologic and controlled human exposure studies (U.S. EPA 1986). In 1988, the EPA published a proposed decision not to revise the existing standards (53 FR 14926). However, the EPA specifically requested public comment on the alternative of revising the current standards and adding a new 1-hour primary standard of 0.4 ppm to protect against short-term peak exposures.

As a result of public comments on the 1988 proposal and other post-proposal developments, the EPA published a second proposal on November 15, 1994 (59 FR 58958). The 1994 re-proposal was based in part on a supplement to the second addendum of the criteria document, which evaluated new findings on short-term SO₂ exposures in asthmatics (U.S. EPA 1994). As in the 1988 proposal, the EPA proposed to retain the existing 24-hour and annual standards. The EPA also solicited comment on three regulatory alternatives to further reduce the health risk posed by exposure to high 5-minute peaks of SO₂ if additional protection were judged necessary.

14 In 1971 (36 FR 8186), a 3-hour secondary standard was set at 500 ppb to provide protection against adverse welfare effects.
15 The initial level of the 24-hr SO₂ standard was 0.140 ppm which is equal to 140 ppb. The initial level of the annual SO₂ standard was 0.03 ppm which is equal to 30 ppb.
16 The form of the 1-hour standard is the 3-year average of the 99th percentile of the yearly distribution of 1-hour daily maximum SO₂ concentrations.
to be necessary. The three alternatives were: 1) Revising the existing primary SO$_2$ NAAQS by
adding a new 5-minute standard of 0.60 ppm SO$_2$; 2) establishing a new regulatory program
under section 303 of the Act to supplement protection provided by the existing NAAQS, with a
trigger level of 0.60 ppm SO$_2$, one expected exceedance; and 3) augmenting implementation of
existing standards by focusing on those sources or source types likely to produce high 5-minute
peak concentrations of SO$_2$.

In assessing the regulatory options mentioned above, the Administrator concluded that
the likely frequency of 5-minute concentrations of concern should also be a consideration in
assessing the overall public health risks. Based upon an exposure analysis conducted by the
EPA, the Administrator concluded that exposure of asthmatics to SO$_2$ at levels that can reliably
elicit adverse health effects was likely to be a rare event when viewed in the context of the entire
population of asthmatics. As a result, the Administrator judged that 5-minute peak SO$_2$ levels
did not pose a broad public health problem when viewed from a national perspective, and a 5-
minute standard was not promulgated. In addition, no other regulatory alternative was finalized
and the 24-hour and annual average primary SO$_2$ standards were retained in 1996 (61 FR 25566).

The American Lung Association and the Environmental Defense Fund challenged EPA’s
decision not to establish a 5-minute standard. On January 30, 1998, the Court of Appeals for the
District of Columbia found that the EPA had failed to adequately explain its determination that
no revision to the SO$_2$ NAAQS was appropriate and remanded the decision back to EPA for
further explanation. Specifically, the court required the EPA to provide additional rationale to
support the Agency judgment that 5-minute peaks of SO$_2$ do not pose a public health problem
from a national perspective even though these peaks will likely cause adverse health impacts in a
subset of asthmatics. In response, the EPA collected and analyzed additional air quality data
focused on 5-minute concentrations of SO$_2$ and used this information to inform the last review of
the SO$_2$ NAAQS.

On June 22, 2010, the EPA revised the primary SO$_2$ NAAQS to provide requisite
protection of public health with an adequate margin of safety. Specifically, after concluding that
the then-existing 24-hour and annual standards were inadequate to protect public health with an
adequate margin of safety (see section 3.1.1), the EPA established a new 1-hour SO$_2$ standard at
a level of 75 ppb, based on the 3-year average of the annual 99th percentile of 1-hour daily
maximum concentrations (see section 3.1.2). This standard was promulgated to provide
substantial protection against SO$_2$-related health effects associated with short-term exposures
ranging from 5-minutes to 24-hours. More specifically, EPA concluded that a 1-hour SO$_2$
standard at 75 ppb would provide substantial protection against the adverse respiratory effects
(e.g., decrements in lung function and/or respiratory symptoms) reported in exercising asthmatics
following 5-10 minute exposures in controlled human exposure studies, as well as the more
serious health associations reported in epidemiologic studies of mostly 1- and 24-hours (e.g., respiratory-related emergency department visits and hospitalizations). In the last review, the EPA also revoked the then-existing 24-hour and annual primary standards because neither of these standards would likely provide additional public health protection given a 1-hour standard at 75 ppb (see section 3.1.2). The decision to set a 1-hour standard at 75 ppb to in part, provide substantial protection against 5-minute concentrations of SO$_2$ resulting in adverse respiratory effects in exercising asthmatics, also satisfied the DC Circuit Court remand of 1996.

As mentioned above, in the last review substantial weight was placed on preventing health effects associated with 5-minute peak SO$_2$ concentrations. Thus, as part of the final rulemaking, the EPA for the first time required state reporting of either the highest 5-minute concentration for each hour of the day, or all twelve 5-minute concentrations for each hour of the day (see chapter 6). The rationale for this requirement was that this additional monitored data could then be used in future reviews to evaluate the extent to which the 1-hour SO$_2$ NAAQS at 75 ppb provides protection against 5-minute peaks of concern.

After publication of the final rule, a number of industry groups and states filed petitions for review maintaining that the 1-hour SO$_2$ NAAQS at 75 ppb was overly stringent or otherwise arbitrary. The D.C. Circuit rejected these challenges, upholding the standard in its entirety. National Environmental Development Association’s Clean Air Project v. EPA, 686 F. 3d 803 (D.C. Cir. 2012).

1.4 SCOPE OF THE CURRENT REVIEW

Sulfur oxides include all forms of oxidized sulfur compounds including the gases SO$_2$ and SO$_3$ as well as their gaseous and particulate reaction products (e.g., sulfates; see 34 FR 1988). As in previous reviews of the SO$_2$ NAAQS, this review will focus on effects associated with the gaseous species only. Effects associated with the particulate species (e.g., sulfate) are addressed in the review of the NAAQS for particulate matter (PM) (78 FR 30866, January 15, 2013; U.S. EPA 2009).

Consistent with the review completed in 2010, this review is focused on the primary SO$_2$ standard and as such, will only consider relevant scientific information related to potential health effects associated with exposure to sulfur oxides. The EPA is separately reviewing the secondary SO$_2$ standard in conjunction with a review of the secondary NO$_2$ standard (78 FR 53452, August 29, 2013).17

17 Additional information on the ongoing review of the secondary NO$_2$ and SO$_2$ standards is available at: http://www.epa.gov/ttn/naaqs/standards/no2so2sec/index.html.
2. STATUS AND SCHEDULE

In May of 2013, the EPA announced the initiation of the current periodic review of the air quality criteria for SOx and the primary SO\textsubscript{2} NAAQS, and also issued a call for information in the Federal Register (78 FR 27387). Also, as an initial step in the NAAQS review process described in Section 1.1 above, EPA invited a wide range of external and internal EPA experts, representing a variety of areas of expertise (e.g., epidemiology, human and animal toxicology, statistics, risk/exposure analysis, atmospheric science), to participate in a workshop to discuss the policy-relevant science to inform development of this plan. This workshop was held June 12-13, 2013, in Research Triangle Park, NC (78 FR 27387). This workshop provided an opportunity for the participants to broadly discuss the key policy-relevant issues around which EPA would structure the SO\textsubscript{2} NAAQS review and to discuss the most meaningful new science that would be available to inform our understanding of these issues. Based in part on the workshop discussions, the EPA developed this draft IRP outlining the schedule, the process, and the policy-relevant science issues identified as key to guiding the evaluation of the air quality criteria for sulfur oxides and the review of the primary SO\textsubscript{2} NAAQS.

Table 2-1 outlines the schedule under which the Agency is currently conducting this review. The scope of the review and the key documents to be prepared during the review are discussed throughout the rest of this document.
Table 2-1. Anticipated schedule for the SO2 NAAQS Review

<table>
<thead>
<tr>
<th>Stage of Review</th>
<th>Major Milestone</th>
<th>Draft Target Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Plan (IRP)</td>
<td>Literature Search</td>
<td>Ongoing</td>
</tr>
<tr>
<td>Call for Information</td>
<td></td>
<td>May 10, 2013</td>
</tr>
<tr>
<td>Workshop on science/policy issues</td>
<td></td>
<td>June 12-13 2013</td>
</tr>
<tr>
<td>Draft IRP</td>
<td></td>
<td>March 2014</td>
</tr>
<tr>
<td>CASAC/public review on draft IRP</td>
<td></td>
<td>April 22, 2014</td>
</tr>
<tr>
<td>Final IRP</td>
<td></td>
<td>July 2014</td>
</tr>
<tr>
<td>Integrated Science Assessment (ISA)</td>
<td>First draft ISA</td>
<td>October 2014</td>
</tr>
<tr>
<td>CASAC/public review first draft ISA</td>
<td></td>
<td>January 2015</td>
</tr>
<tr>
<td>Second draft ISA</td>
<td></td>
<td>July 2015</td>
</tr>
<tr>
<td>CASAC/public review second draft ISA</td>
<td></td>
<td>October 2015</td>
</tr>
<tr>
<td>Final ISA</td>
<td></td>
<td>January 2016</td>
</tr>
<tr>
<td>Risk/Exposure Assessment (REA)</td>
<td>REA Planning Document</td>
<td>February 2015</td>
</tr>
<tr>
<td>CASAC consultation/public review REA Planning Document</td>
<td></td>
<td>March 2015</td>
</tr>
<tr>
<td>If warranted:</td>
<td>First draft REA</td>
<td>September 2015</td>
</tr>
<tr>
<td></td>
<td>CASAC/public review of first draft REA</td>
<td>October 2015</td>
</tr>
<tr>
<td></td>
<td>Second draft REA</td>
<td>June 2016</td>
</tr>
<tr>
<td></td>
<td>CASAC/public review of second draft REA</td>
<td>July 2016</td>
</tr>
<tr>
<td></td>
<td>Final REA</td>
<td>December 2016</td>
</tr>
<tr>
<td>Policy Assessment (PA)/Rulemaking</td>
<td>First Draft PA</td>
<td>September 2015</td>
</tr>
<tr>
<td>CASAC review/public review first draft PA</td>
<td></td>
<td>October 2015</td>
</tr>
<tr>
<td>Second Draft PA (if warranted)</td>
<td></td>
<td>June 2016</td>
</tr>
<tr>
<td>CASAC/public review second draft PA</td>
<td></td>
<td>July 2016</td>
</tr>
<tr>
<td>Final PA</td>
<td></td>
<td>December 2016</td>
</tr>
<tr>
<td>Notice of proposed rulemaking</td>
<td></td>
<td>May 2017</td>
</tr>
<tr>
<td>Notice of final rulemaking</td>
<td></td>
<td>February 2018</td>
</tr>
</tbody>
</table>

18 An updated REA may not be warranted for the reviews of the SO2 primary NAAQS
19 The anticipated schedule presented in Table 2-1 includes preparation of two draft PAs for CASAC and public review. In NAAQS reviews in which the newly available information calls into question the adequacy of the current standard(s), a second draft PA is typically prepared to include staff consideration of potential alternative standards. However, in NAAQS reviews where a new REA is not developed and where staff preliminarily conclude in a first draft PA that it is appropriate to consider retaining the current standards without revision, the EPA may decide that there is no new substantive information that we would intend to add that would provide a basis for preparing a second draft PA. If the Agency determines that a second draft PA is not warranted, CASAC and public comments on the first draft PA will be considered in preparing the final PA and the schedule for the review will be revised accordingly.
3. KEY POLICY-RELEVANT ISSUES

The overarching question in each NAAQS review is:

- Does the currently available scientific evidence and exposure/risk-based information support or call into question the adequacy of the protection afforded by the current standard(s)?

As appropriate, a review also addresses a second overarching question:

- What alternative standard(s), if any, are supported by the currently available scientific evidence and exposure/risk-based information and are appropriate for consideration?

To inform our consideration of these overarching questions in the current review, we have identified key policy-relevant issues to be considered. These key issues reflect aspects of the health effects evidence, air quality information, and exposure/risk information that, in our judgment, are likely to be particularly important to informing the Administrator’s decisions. They build upon the key issues that were important in previous reviews.

Section 3.1 below describes the key considerations and conclusions from the last review with regard to the adequacy of the then-current primary SO\textsubscript{2} standards (section 3.1.1), and with regard to the elements for a revised standard judged in that review to provide requisite public health protection (section 3.1.2). Section 3.2 summarizes our general approach for reviewing the primary SO\textsubscript{2} standard in the current review and outlines the key policy-relevant issues. These issues are presented as a series of questions that will frame our approach to considering the extent to which the available evidence and information support retaining or revising the current primary standard for SO\textsubscript{2}.

3.1 CONSIDERATIONS AND CONCLUSIONS IN LAST REVIEW

The last review of the primary NAAQS for SO\textsubscript{2} was completed in 2010 (75 FR at 35520, June 22, 2010). In that review, the EPA considered key controlled human exposure studies from previous reviews as well as the significantly expanded body of health effects evidence that had emerged since the last review was completed in 1996.20 In addition, EPA also considered exposure and risk estimates regarding potential respiratory effects in exercising asthmatics following 5-10 minute exposures to SO\textsubscript{2}, as well as CASAC advice and public comments.

Taking all this information together, the EPA established a new short-term standard to provide

20 Documents related to the SO\textsubscript{2} NAAQS reviews completed in 2010 and 1996 are available at: http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_index.html
increased protection for asthmatics and other at-risk populations21 against an array of adverse respiratory effects that have been linked to short-term SO\textsubscript{2} exposures in both controlled human exposure and epidemiologic studies (75 FR at 35525 to 35527 and U.S. EPA 2008, section 5.5). Specifically, the EPA established a short-term standard defined by the 3-year average of the 99th percentile of the yearly distribution of 1-hour daily maximum SO\textsubscript{2} concentrations, with a level of 75 ppb. In addition to setting a new short-term standard, the then-existing 24-hour and annual standards were revoked based largely on the recognition that a 1-hour standard set at 75 ppb would have the effect of generally maintaining 24-hour and annual SO\textsubscript{2} concentrations well below the levels of those standards (75 FR at 35550).

Key policy-relevant aspects of the Administrator’s decisions with regard to the need to revise the primary SO\textsubscript{2} NAAQS, and with regard to the elements of the revised standard, are described below in sections 3.1.1 and 3.1.2, respectively. Areas of uncertainty identified in the last review are noted in section 3.1.3.

3.1.1 Need for Revision

The Administrator concluded in the last review that the then-existing 24-hour and annual SO\textsubscript{2} standards were not adequate to protect public health, including the health of at-risk populations, from the effects associated with short-term exposures to SO\textsubscript{2} (75 FR at 35520, June 22, 2010). As described below, this conclusion was based on the extensive body of health evidence assessed in the 2008 ISA (U.S. EPA 2008), including the assessment of the policy-relevant aspects of that evidence,22 quantitative exposure and risk analyses presented in the 2009 REA (U.S. EPA 2009), public comments, and the advice and recommendations of CASAC (Samet, 2009).

As an initial consideration in reaching this conclusion, the Administrator noted the ISA judgement that the findings of controlled human exposure, epidemiologic, and animal toxicological studies collectively provided evidence “sufficient to infer a causal relationship” between short-term SO\textsubscript{2} exposures ranging from 5-minutes to 24-hours and respiratory morbidity (75 FR at 35535). The ISA described the “definitive evidence” for this conclusion as being the results of 5–10 minute controlled human exposure studies demonstrating decrements in lung

21 As used here and similarly throughout this document, the term population refers to persons having a quality or characteristic in common, such as a specific pre-existing illness or a specific age or lifestage. A lifestage refers to a distinguishable time frame in an individual’s life characterized by unique and relatively stable behavioral and/or physiological characteristics that are associated with development and growth. Identifying at-risk populations includes consideration of intrinsic (e.g., genetic or developmental aspects) or acquired (e.g., disease or smoking status) factors that increase the risk of health effects occurring with exposure to sulfur oxides as well as extrinsic, nonbiological factors such as those related to socioeconomic status, reduced access to health care, or exposure.

22 As noted in section 1.3 above, due to changes in the NAAQS process, the last review of the SO\textsubscript{2} NAAQS did not include a separate Policy Assessment. Rather, the REA for that review included a Policy Assessment chapter.
function and/or respiratory symptoms in exercising asthmatics (U.S. EPA 2008, section 5.2). In brief, the ISA examined numerous controlled human exposure studies and found that moderate or greater decrements in lung function (i.e., $\geq 15\%$ decline in Forced Expiratory Volume (FEV_1) and/or $\geq 100\%$ increase in specific airway resistance ($sRaw$)) occurred in some exercising asthmatics exposed to SO$_2$ concentrations as low as 200–300 ppb for 5–10 minutes. The ISA also found that among asthmatics, both the percentage of individuals affected, and the severity of the response increased with increasing SO$_2$ concentrations. That is, at 5–10 minute concentrations ranging from 200–300 ppb, the lowest levels tested in free breathing chamber studies, approximately 5–30\% percent of exercising asthmatics experienced moderate or greater decrements in lung function (U.S. EPA 2008, Table 3–1). At concentrations of 400–600 ppb, moderate or greater decrements in lung function occurred in approximately 20–60\% of exercising asthmatics, and compared to exposures at 200–300 ppb, a larger percentage of asthmatics experienced severe decrements in lung function (i.e., $\geq 20\%$ decrease in FEV_1 and/or $\geq 200\%$ increase in $sRaw$; U.S. EPA 2008, Table 3–1). Moreover, at SO$_2$ concentrations ≥ 400 ppb, moderate or greater decrements in lung function were often statistically significant at the group mean level and were frequently accompanied by respiratory symptoms (U.S. EPA 2008, Table 3–1).

In considering the controlled human exposure studies with respect to adequacy of the then-current standards, the Administrator first judged that 5–10 minute SO$_2$ exposures ≥ 400 ppb and ≥ 200 ppb can result in adverse health effects in exercising asthmatics (75 FR at 35536). This judgment was based on ATS guidelines, explicit CASAC consensus written advice, as well as recommendations and judgments made by EPA in previous NAAQS reviews (see 75 FR at 35526 and 75 FR at 35536). The Administrator therefore particularly noted analyses in the REA that utilized benchmark concentrations derived from the controlled human exposure evidence. In the REA, 5-minute benchmark concentrations ranged from 100 ppb to 400 ppb (see below, section 5.1), with 5-minute benchmark concentrations of 200 ppb and 400 ppb noted by the Administrator as being particularly important. These benchmark levels were highlighted because in free-breathing controlled human exposure studies: (1) 400 ppb represented the lowest concentration at which moderate or greater lung function decrements occurred which were often statistically significant at the group mean level and were frequently accompanied by respiratory symptoms; and (2) 200 ppb was the lowest level at which moderate or greater decrements in lung function were found in some individuals.\(^{23}\)

Given the emphasis on the 200 ppb and 400 ppb benchmarks, the Administrator particularly noted the modeled exposure analysis results for the St. Louis case study presented in

\(^{23}\) 200 ppb was also the lowest level tested in free-breathing controlled human exposure studies.
the REA (see below, section 5.1). This analysis estimated that given air quality simulated to just meet the then-existing SO$_2$ NAAQS, substantial percentages of asthmatic children at moderate or greater exertion would be exposed, at least once annually, to air quality exceeding the 200 ppb and 400 ppb 5-minute benchmarks (75 FR at 35536). The Administrator judged these 5-minute exposures to be significant from a public health perspective due to their estimated frequency: approximately 24% of asthmatic children at moderate or greater exertion in St. Louis were estimated to be exposed at least once per year to air quality exceeding the 5-minute 400 ppb benchmark. Additionally, approximately 73% of asthmatic children in St. Louis at moderate or greater exertion were estimated to be exposed at least once per year to air quality exceeding the 5-minute 200 ppb benchmark (75 FR at 35536).

With respect to the epidemiologic evidence, the ISA characterized epidemiologic studies of respiratory symptoms, emergency department visits and hospital admissions as providing “supporting evidence” for the causal relationship between short-term exposure to SO$_2$ and respiratory morbidity. The ISA found that numerous epidemiologic studies reported positive associations between ambient SO$_2$ concentrations and respiratory symptoms in children, as well as emergency department visits and hospitalizations for all respiratory causes and asthma across multiple age groups. The ISA concluded that these epidemiologic studies were consistent and coherent. This evidence was consistent in that associations were reported in studies conducted in numerous locations and with a variety of methodological approaches (U.S. EPA 2008, section 5.2). It was coherent in that respiratory symptom results from epidemiologic studies of short-term (predominantly 1-hour daily maximum or 24-hour average) SO$_2$ concentrations were generally in agreement with respiratory symptom results from controlled human exposure studies of 5–10 minutes. Moreover, while recognizing the uncertainties associated with separating the effects of SO$_2$ from those of co-occurring pollutants, the ISA concluded that “the limited available evidence indicates that the effect of SO$_2$ on respiratory health outcomes appears to be generally robust and independent of the effects of gaseous co-pollutants, including NO$_2$ and O$_3$, as well as particulate copollutants, particularly PM$_{2.5}$” (U.S. EPA 2008, section 5.3).

In considering the epidemiologic evidence, the Administrator acknowledged uncertainties with these studies (e.g., potential confounding by co-pollutants), but agreed with judgments in the ISA that the epidemiologic evidence, supported by the controlled human exposure evidence, generally indicated that the effects seen in these studies were attributable to exposure to SO$_2$, rather than co-pollutants. With respect to the adequacy of the SO$_2$ NAAQS, the Administrator noted that many of these epidemiologic studies reported associations between short-term (mostly 1-hour daily maximum and 24-hour average) SO$_2$ concentrations and respiratory symptoms, emergency department visits, and hospital admissions in locations meeting the then-existing 24-
hour and annual standards (75 FR at 35535), thereby further indicating that the these standards were not adequately protecting public health.

The Administrator also agreed with specific CASAC advice when reaching the decision that the then-existing standards were not adequate to protect public health with an adequate margin of safety. Specifically, CASAC advised that: “the current 24-hour and annual standards are not adequate to protect public health, especially in relation to short-term exposures to SO2 (5–10 minutes) by exercising asthmatics” (Samet, 2009, p. 15).

Based on the considerations summarized above, the Administrator concluded that the then-existing 24-hour and annual primary SO2 NAAQS were not adequate to protect public health with an adequate margin of safety and that these standards should be revised in order to provide increased public health protection against respiratory effects associated with short-term exposures, particularly for susceptible populations such as asthmatics and children. Upon consideration of approaches to revising these standards, the Administrator concluded that it was appropriate to set a new short-term standard, as described below.

3.1.2 Elements of a Revised Standard

When considering alternative standards to provide requisite public health protection, the Administrator concluded it was appropriate to set a new 1-hour SO2 standard at a level of 75 ppb, based on the 3-year average of the 99th percentile of the yearly distribution of 1-hour daily maximum concentrations. The rationale and approach for setting the 1-hour standard is presented below in terms of the individual elements of a NAAQS: indicator, averaging time, form, and level. Notably, given a new 1-hour standard at 75 ppb, the previous 24-hour and annual standards were revoked because neither of these standards was likely to provide additional public health protection (74 FR at 35550).

Indicator

In previous reviews, the EPA focused on SO2 as the most appropriate indicator for sulfur oxides because the available scientific information regarding health effects was overwhelmingly indexed by SO2. In the most recent review, this continued to be the case. Controlled human exposure studies and animal toxicological studies provided specific evidence for health effects following exposures to SO2. In addition, epidemiologic studies typically reported effects associated with SO2 concentrations. Thus, based on the information available in the last review and consistent with the views of CASAC that: “for indicator, SO2 is clearly the preferred choice” (Samet 2009, p. 14), the Administrator concluded it was appropriate to continue to use SO2 as the indicator for a standard that was intended to address effects associated with exposure to SO2, alone or in combination with other gaseous sulfur oxides (75 FR at 35536). In so doing, the EPA recognized that measures leading to reductions in population exposures to SO2 will also likely reduce exposures to other sulfur oxides (75 FR at 35536).
Averaging Time

When considering the level of support available for specific averaging times, the Administrator first considered the strength of evidence from controlled human exposure and epidemiologic studies. As noted above (see section 3.1.1), controlled human exposure studies exposed exercising asthmatics to \textit{SO\textsubscript{2}} for 5 -10 minutes and consistently found decrements in lung function and/or respiratory symptoms. Importantly, the ISA described the controlled human exposure studies as being the “definitive evidence” for its conclusion that there existed a causal relationship between short-term (5-minutes to 24-hours) \textit{SO\textsubscript{2}} exposure and respiratory morbidity (U.S. EPA 2008, section 5.2). Supporting the controlled human exposure evidence were epidemiologic studies describing positive associations between short-term (e.g., 1-hour daily maximum and 24-hour average) \textit{SO\textsubscript{2}} levels and respiratory symptoms as well as hospital admissions and emergency department visits for all respiratory causes and asthma (U.S. EPA 2008, Tables 5.4 and 5.5). Taken together, it was judged that controlled human exposure studies provided support for an averaging time that protected against 5-10 minute peak exposures, while epidemiologic evidence provided support for an averaging time that protected against both 1-hour and 24-hour exposures (U.S. EPA 2009, section 10.5.2.1).\(^{24}\)

In further considering an appropriate averaging time, the Administrator took into account air quality analyses from the REA examining the potential for 24-hour and 1-hour averaging times to protect against 5-minute peak concentrations. Results of these analyses suggested that a standard based on 24-hour average \textit{SO\textsubscript{2}} concentrations would not likely be an effective or efficient approach for addressing 5-minute peak \textit{SO\textsubscript{2}} concentrations. That is, using a 24-hour average standard to address 5-minute peaks would likely result in over-controlling in some areas, while under-controlling in others (U.S. EPA 2009, section 10.5.2.2). In contrast, these analyses suggested that a standard with a 1-hour averaging time would be more efficient and effective at limiting 5-minute peaks of \textit{SO\textsubscript{2}} (U.S. EPA 2009, section 10.5.2.2). In additional air quality analyses, the REA suggested that a 1-hour standard (given an appropriate form and level) could likely provide protection against 99th percentile 1-hour daily maximum and 99th percentile 24-hour average \textit{SO\textsubscript{2}} concentrations found in locations where emergency department visit and hospital admission studies using multi-pollutant models with PM reported statistically significant associations with ambient \textit{SO\textsubscript{2}} (75 FR at 35539 and U.S. EPA 2009, section 10.5.2.2).\(^{25}\)

Considering this information, the Administrator concluded that a 1-hour standard (given an

\(^{24}\) The ISA did note that effects observed in epidemiologic studies also may have been due, at least in part, and especially in 24-hour epidemiologic studies, to shorter-term peaks of \textit{SO\textsubscript{2}} (see U.S. EPA 2008, section 5.2). More specifically, the ISA noted “that it is possible that these associations are determined in large part by peak exposures within a 24-hour period” (U.S. EPA 2008, section 5.2).

\(^{25}\) Since \textit{SO\textsubscript{2}} is a pre-cursor to PM (e.g., sulfates), there was special consideration given to epidemiologic studies that used multipollutant models to separate the estimated \textit{SO\textsubscript{2}} associations from that of PM.
appropriate form and level) was an appropriate means of controlling short-term exposures to SO$_2$
ranking from 5-minutes to 24-hours (74 FR at 35539).

The Administrator further noted that establishing a 1-hour averaging time was in
agreement with CASAC recommendations (74 FR at 35539). That is, CASAC stated that they
were “in agreement with having a short-term standard and finds that the REA supports a one-
hour standard as protective of public health” (Samet 2009, p. 1). CASAC also stated that a
“one-hour standard is the preferred averaging time” (Samet 2009, p.15).

Based solely on the controlled human exposure evidence, the Administrator also
considered a 5-minute averaging time in the last review. However, such an approach was not
favored. With respect to a 5-minute standard, there were concerns about standard stability.
Specific concerns related to the number of monitors needed and the placement of such monitors
given the temporal and spatial heterogeneity of 5-minute SO$_2$ concentrations (74 FR at 35539).
However, as noted above, the Administrator judged that a 1-hour averaging time, given an
appropriate form and level, could adequately limit 5-minute SO$_2$ exposures and provide a more
stable regulatory target than setting a 5-minute standard. Consequently, the Administrator judged
that a 5-minute averaging time was not the preferred approach to provide adequate public health
protection (74 FR at 35539).

Form

The “form” of a standard defines the air quality statistic that is to be compared to the
level of the standard in determining whether an area attains the NAAQS. In the last review,
controlled human exposure evidence presented in the ISA indicated that the percentage of
asthmatics affected and the severity of the response increased with increasing SO$_2$
concentrations. Thus, a concentration-based form averaged over three years was judged by the
Administrator to be most appropriate (74 FR at 35541). This was because compared to an
exceedance-based form, a concentration-based form averaged over three years would give more
weight to years when 1-hour SO$_2$ concentrations are well above the level of the standard, than to
years when 1-hour SO$_2$ concentrations are just above the level of the standard. The
Administrator also noted that a concentration-based form averaged over 3 years would likely be
appreciably more stable than a no exceedance-based form (75 FR at 35541). Establishing a
concentration-based form was also in agreement with specific CASAC advice stating that “there
is adequate information to justify the use of a concentration-based form averaged over 3 years”
(Samet 2009, p. 16)

In selecting a specific concentration-based form, the Administrator considered health
evidence from the ISA as well as air quality and exposure information from the REA. In the ISA,
it was noted that a few epidemiologic studies reported an increase in SO$_2$-related respiratory
health effects at the upper end of the distribution of ambient SO$_2$ concentrations (i.e., above 90th
percentile SO₂ concentrations; see U.S. EPA 2008, section 5.3). In the REA, air quality and
exposure analyses suggested that a 99th percentile form was likely to be appreciably more
effective at limiting 5-minute peak exposures of concern than a 98th percentile form (at a given
Taken together, the Administrator concluded that a 99th percentile form (at an appropriate level)
would limit both the upper end of the distribution of ambient SO₂ concentrations reported in
some epidemiologic studies to be associated with increased risk of SO₂-related respiratory
morbidity effects (e.g., emergency department visits), as well as 5-minute peak SO₂
concentrations resulting in decrements in lung function and/or respiratory symptoms in
controlled human exposure studies (75 FR at 35541).

Level

Controlled human exposure evidence was described in the ISA as providing the definitive
evidence for a causal association between short-term exposure to SO₂ and respiratory morbidity.
The Administrator therefore placed considerable emphasis on these studies when selecting the
level of a new 1-hour standard. In particular, the Administrator wanted the level of a 1-hour
standard to provide substantial protection against the 200 ppb and 400 ppb 5-minute benchmarks
identified from these studies. As noted above (see section 3.1.1), these benchmark levels were
highlighted because in free-breathing controlled human exposure studies of exercising
asthmatics: (1) 400 ppb represented the lowest concentration where moderate or greater lung
function decrements occurred which were often statistically significant at the group mean level
and were frequently accompanied by respiratory symptoms; and (2) 200 ppb was the lowest level
at which moderate or greater decrements in lung function were found in some asthmatics.²⁶

Analyses in the REA described the varying degrees of protection different 1-hour
standard levels could provide against 5-minute benchmark concentrations of 200 ppb and 400
ppb (see below section 5.1). Considering these analyses, the Administrator judged that a 1-hour
standard level of 100 ppb would appropriately limit the occurrence of 5-minute benchmark
concentrations ≥ 200 or 400 ppb (74 FR at 35547). That is, the St. Louis exposure simulation
estimated that a 1-hour standard at 100 ppb would likely protect > 99% of asthmatic children in
that city at moderate or greater exertion from experiencing at least one 5-minute exposure ≥ 400
ppb per year, and approximately 97% of those asthmatic children at moderate or greater exertion
from experiencing at least one exposure ≥ 200 ppb per year (74 FR at 35547). Moreover, the
40-county air quality analysis from the REA (see below section 5.1) estimated that a 100 ppb 1-
hour standard would allow at most 2 days per year on average in any county when estimated 5-
minute daily maximum SO₂ concentrations exceed the 400 ppb benchmark, and at most 13 days

²⁶ As noted in section 3.1.1, 200 ppb was also the lowest level tested in free-breathing controlled human exposure
studies.
per year on average when 5-minute daily maximum SO$_2$ concentrations exceed the 200 ppb benchmark27 (74 FR at 35546). Furthermore, given a simulated 1-hour 100 ppb standard level, most of the counties in that air quality analysis were estimated to experience 0 days per year on average when 5-minute daily maximum SO$_2$ concentrations exceed the 400 ppb benchmark and \leq 3 days per year on average when 5-minute daily maximum SO$_2$ concentrations were estimated to exceed the 200 ppb benchmark (74 FR at 35546).

In considering the epidemiologic evidence with respect to level, the Administrator noted that there were more than 50 peer-reviewed epidemiologic studies published worldwide evaluating SO$_2$ since the prior review (75 FR at 35547). The Administrator also noted that these studies generally reported positive, although not always statistically significant associations between more serious health outcomes (i.e. respiratory-related emergency department visits and hospitalizations) and ambient SO$_2$ concentrations (75 FR at 35547). She further agreed with the ISA finding that the controlled human exposure evidence lends biological plausibility to the effects reported in epidemiologic studies (75 FR at 35547), and that when evaluated as a whole, the results of epidemiologic studies were generally independent of the effects of gaseous and particulate co-pollutants (74 FR at 35544 and 75 FR 35547). Taken together, the Administrator judged it appropriate to place emphasis on the epidemiologic evidence when further considering the appropriate level of a new 1-hour standard.

In considering the epidemiologic evidence with respect to level, the Administrator placed primary emphasis on ten U.S. epidemiologic studies (some conducted in multiple locations) reporting mostly positive and sometimes statistically significant associations between ambient SO$_2$ concentrations and emergency department visit and hospital admissions in locations where 99th percentile 1-hour daily maximum SO$_2$ levels ranged from approximately 50–460 ppb (74 FR at 35547). The Administrator further noted that within this broader range of SO$_2$ concentrations there was a cluster of three epidemiologic studies between 78–150 ppb (for the 99th percentile of the 1-hour daily maximum SO$_2$ concentrations) where the SO$_2$ effect estimate remained positive and statistically significant in multipollutant models with PM (NYDOH (2006), Ito et al., (2007), and Schwartz et al., (1995)). The Administrator judged these three studies were of particular relevance because they supported both the conclusion that SO$_2$ effects were generally independent of PM and that these associations occurred in cities with 1-hour daily maximum, 99th percentile concentrations in the range of 78–150 ppb (74 FR at 35547).

Weighing all of the evidence presented above, the Administrator concluded that the epidemiologic studies provided strong support for setting a standard that limited the 99th

27The REA considered 5-minute air quality data reported from the existing network of ambient monitors. However, since the number and geographic scope of monitors reporting 5-minute SO$_2$ concentrations was very limited, the REA used statistically estimated 5-minute concentrations derived from measured 1-hour SO$_2$ concentrations in the 40 county air quality analysis (see below, section 5.1).
percentile of the distribution of 1-hour daily maximum SO₂ concentrations to 75 ppb. This judgment took into account the strong determinations in the ISA, based on a much broader body of evidence, that there is a causal relationship between exposure to SO₂ and the types of respiratory morbidity effects reported in these studies (74 FR at 35548). This judgement also considered that a standard level of 75 ppb was consistent with the range of levels recommended by CASAC (75 FR at 35548). Finally, the Administrator acknowledged that there were some epidemiologic studies suggesting effects due to SO₂ at concentrations as low as 50 ppb, but did not find that evidence strong enough to warrant a standard at that level or below (74 FR at 35548).

Revoking the Then-Existing 24-hour and Annual Standards

In addition to setting a new 1-hour standard at 75 ppb, the then-current 24-hour and annual standards were revoked in the last review based largely on the recognition that a 1-hour standard set at 75 ppb would have the effect of generally maintaining 24-hour and annual SO₂ concentrations well below the levels of those standards (75 FR at 35550). In addition, the annual standard was also revoked because of the lack of evidence supporting a relationship between long-term SO₂ exposures and adverse health effects. That is, the ISA judged the health evidence linking long-term SO₂ exposure to adverse health effects to be “inadequate” to infer the presence or absence of a causal relationship (75 FR at 35550 and U.S EPA 2008, section 5.5).

3.1.3 Areas of Uncertainty

While the available scientific information informing the review completed in 2010 was stronger and more consistent than in previous reviews and provided a strong basis for decisions made in that review, the Agency recognized that important uncertainties and limitations remain in our understanding of several policy-relevant issues. These uncertainties were generally related to: (1) statistical relationships between 5-minute concentrations and longer averaging times (e.g., 1-hour, 3-hour, 24-hour), including the extent to which these longer averaging times can limit 5-minute concentrations of concern (i.e., 5-minute benchmarks) identified from controlled human exposure studies; (2) understanding the role of SO₂ within the complex ambient mixture of co-occurring pollutants (e.g., PM₂.₅, ozone, NO₂); (3) understanding the range of ambient concentrations in which we have confidence that the health effects observed in epidemiologic studies are attributable to SO₂; (4) the extent to which monitored ambient SO₂ concentrations used in epidemiologic studies reflect exposures in study populations and; (5) characterization of SO₂ exposures and risk including alternative approaches for estimating risks associated with air quality simulated to just meet current or alternative standards.
3.2 GENERAL APPROACH FOR THE CURRENT REVIEW

The approach for this review builds on the substantial body of work done during the course of the last review, and will take into account the more recent scientific information and air quality data now available to inform our understanding of the key policy-relevant issues. The approach described below is most fundamentally based on using the EPA’s assessment of the current scientific evidence and associated quantitative analyses to inform the Administrator’s judgments regarding primary standards for sulfur oxides that are requisite to protect public health with an adequate margin of safety. This approach will involve translating scientific and technical information into the basis for addressing a series of key policy-relevant questions using both evidence- and exposure/risk-based considerations.28

Figure 3-1 summarizes the general approach, including consideration of the policy-relevant questions which will frame the current review. The ISA, REA (if warranted), and PA developed in this new review will provide the basis for addressing the key policy-relevant questions and will inform the Administrator’s judgment as to the adequacy of the current primary SO2 standard and decisions as to whether to retain or revise this standard. This approach recognizes that the available health effects evidence generally reflects a continuum, consisting of ambient concentrations at which scientists generally agree that health effects are likely to occur, through lower concentrations at which the likelihood and magnitude of the response become increasingly uncertain. Furthermore, this approach is consistent with the requirements of the NAAQS provisions of the CAA and with how the EPA and the courts have historically interpreted the CAA. As discussed in section 1.1 above, these provisions require the Administrator to establish primary standards that, in the Administrator’s judgment, are requisite to protect public health with an adequate margin of safety. In so doing, the Administrator seeks to establish standards that are neither more nor less stringent than necessary for this purpose. The CAA does not require that primary standards be set at a zero-risk level, but rather at a level that avoids unacceptable risks to public health. The four basic elements of the NAAQS (i.e., indicator, averaging time, form, and level) will be considered collectively in evaluating the health protection afforded by the current standard or any alternative standards considered.

We note that the final decision on the adequacy of the current standard and, if appropriate, potential alternative standards, is largely a public health policy judgment to be made by the Administrator. The Administrator’s final decision must draw upon scientific information and analyses about health effects, population exposure and risks, as well as judgments about how to consider the range and magnitude of uncertainties that are inherent in the scientific evidence.

28 Evidence-based considerations include those related to the health effects evidence assessed and characterized in the ISA. Exposure/risk-based considerations draw from the results of the quantitative analyses.
and analyses. As in the previous review as well as other recent NAAQS reviews, the EPA will consider the implications of placing more or less weight or emphasis on different aspects of the scientific evidence and exposure/risk-based information to inform the public health policy judgments that the Administrator will make in reaching final decisions on whether to retain or revise the current standard in this review.
Figure 3-1 Overview of General Approach for Review of Primary SO₂ Standard

- **Evidence-based Considerations**
 - Does currently available evidence and related uncertainties strengthen or call into question prior conclusions?
 - Evidence of health effects not previously identified?
 - Evidence of effects at lower concentrations than previously observed or in areas that would have likely met current standard?
 - Expanded understanding of at-risk populations and lifestages?
 - Does newly available information call into question any of the basic elements of the standard?

- **Risk/Exposure-based Considerations**
 - Nature, magnitude, and uncertainties of estimated exposures and risks remaining upon just meeting the current 1-hour standard?
 - Relationship between 1-hour standard and 5-minute peaks/24-hour average concentrations?
 - Importance of remaining risks from public health perspective?
 - Uncertainties in the exposure and risk estimates?

- Consideration of Potential Alternative Standard(s)
 - Elements of Potential Alternative Standard(s)
 - Indicator
 - Averaging times
 - Forms
 - Levels

- Potential alternative standard(s) for consideration

1
2
3
4
The initial overarching question in reviewing the adequacy of the current primary SO\textsubscript{2} NAAQS is whether the available body of scientific evidence, assessed in the ISA and used as a basis for developing or interpreting risk/exposure analyses, supports or calls into question the scientific conclusions reached in the last review regarding health effects related to exposures to sulfur oxides. The evaluation of the available scientific evidence and risk/exposure information with regard to adequacy of the current standard will focus on key policy-relevant issues by addressing a series of questions including the following:

- To what extent has new information altered the scientific support for the occurrence of health effects as a result of short- and/or long-term exposure to sulfur oxides in the ambient air?

 - What evidence is available from recent studies focused on specific chemical components within the broader group of sulfur oxides (e.g., SO\textsubscript{2}, SO\textsubscript{3}) to inform our understanding of the nature of exposures that are linked to various health outcomes?

 - To what extent is key scientific evidence becoming available to improve our understanding of the health effects associated with various time periods of exposures, including short-term (e.g., 5-minute, 1-hour, 24-hour) and chronic exposures (e.g., months to years)?

 - At what pollutant concentrations do these health effects occur? Is there evidence of effects at exposure concentrations lower than have been previously observed or in areas that would likely meet the current SO\textsubscript{2} primary standard?

 - To what extent are health effects associated with exposures to sulfur oxides, including SO\textsubscript{2}, as opposed to one or more co-occurring pollutants (e.g., PM\textsubscript{2.5}, ozone, NO\textsubscript{2})?

 - What are the important uncertainties and limitations associated with the scientific evidence?

- Has new information altered our understanding of human lifestages and populations that are particularly at increased risk for experiencing health effects associated with exposure to sulfur oxides?

 - Is there new information to shed light on the nature of the exposure-response relationship in different at-risk lifestages and/or populations?

 - Is there new or emerging evidence on health effects beyond respiratory effects in asthmatics, children, and the elderly that suggest additional at-risk populations and lifestages should be given increased focus in this review?

- What are the air quality relationships between short-term and longer-term exposures to SO\textsubscript{2}?

 - As noted in section 1.3, as part of the final rulemaking the EPA for the first time required state reporting of either the highest 5-minute concentration for each hour of the day, or all twelve 5-minute concentrations for each hour of the day. To
what extent can this 5-minute monitoring data collected since the last review be used to further characterize the relationship between 5-minute peaks and longer term (e.g., 1-hour, 3-hour, 24-hour) average concentrations?

- What are the important uncertainties associated with using a 1-hour NAAQS to protect against 5-minute peak concentrations of concern?

- To what extent does risk or exposure information suggest that exposures of concern (i.e., exposures above benchmark levels) are likely to occur with recent ambient SO$_2$ concentrations or with concentrations that just meet the current SO$_2$ standard?

 - Are the estimated risks/exposures considered in this review of sufficient magnitude such that the health effects might reasonably be judged to be important from a public health perspective?

- What are the important uncertainties associated with any risk/exposure estimates?

- To what extent have important uncertainties identified in the last review been reduced and/or have new uncertainties emerged?

- To what extent does newly available information reinforce or call into question any of the basic elements of the current primary SO$_2$ standard?

 If the evidence suggests that revision of the current standard might be appropriate, the EPA will evaluate how the standard might be revised. Specifically, we will evaluate how the scientific information and assessments inform decisions regarding the basic elements of the primary SO$_2$ NAAQS: indicator, averaging time, form and level. These elements will be considered collectively in evaluating the health protection afforded by the current or any alternative standard(s) considered. Specific policy-relevant questions related to these standard elements include:

- To what extent does any new information provide support for the continued use of SO$_2$ as the *indicator* for sulfur oxides? Is there evidence to support using an *indicator* in addition to, or in place of SO$_2$?

- To what extent does the health effects evidence evaluated in the ISA continue to provide support for the existing 1-hour *averaging time*? Does the currently available information provide support for considering any different *averaging times*?

- To what extent do air quality analyses conducted since the last review suggest a standard with an *averaging time* of 1-hour or longer can protect against 5-minute and/or 24-hour concentrations of concern? Do these air quality analyses provide support for considering any different *averaging times*?

- To what extent do the ISA, air quality analyses, and other information provide support for consideration of alternative standard *forms*?
• What range of alternative standard *levels* should be considered based on the scientific
evidence evaluated in the ISA, air quality analyses and, if available, in the REA29?

• What are the important uncertainties and limitations in the available evidence and
assessments and how might those uncertainties and limitations be taken into
consideration in identifying alternative standard *indicators, averaging times, forms,*
and/or *levels*?

29As outlined in Table 2-1 and discussed in Chapter 5 below, the REA Planning Document will consider the extent
to which newly available scientific evidence and tools/methodologies warrant the conduct of new quantitative risk
and exposure assessments. To the extent completely new assessments are not developed for this review, assessments
from the last review may be interpreted in light of the newly available information in addressing the key policy
questions for the review.
4. SCIENCE ASSESSMENT

The ISA comprises the science assessment phase of the SO₂ NAAQS review. As described in section 1.4 above, this assessment focuses on updating the air quality criteria associated with health evidence to inform the review of the primary SO₂ standard only.

4.1 SCOPE OF THE ISA

The ISA will critically evaluate and integrate the scientific information on exposure and health effects associated with SOx in ambient air in the discipline areas of atmospheric science, human exposure, dosimetry, epidemiology, controlled human exposure, and toxicology. The purpose of the discussions within the ISA is not to provide a detailed literature review but to draw upon the existing body of evidence to synthesize the current state of knowledge on the most relevant issues pertinent to the review of the NAAQS for SO₂, to identify changes in the scientific evidence base since the previous review, and to describe remaining or newly identified uncertainties. The ISA discussions will be designed to focus on the key policy-relevant questions described in Section 3.4.

The current ISA will focus on literature published since the 2008 SOx ISA and integrate this newer evidence with evidence considered in the last review. Key findings, conclusions, and uncertainties from the 2008 ISA for SOx will be briefly summarized at the beginning of the ISA and individual sections. The results of recent studies will be integrated with previous findings. In evaluation of controlled human exposure and animal toxicological studies, emphasis will be placed on studies that examine health effects relevant to humans and on SOx concentrations that represent the range of human exposures across various ambient microenvironments. However, in recognition of the fact that controlled human exposure and animal toxicological studies do not necessarily reflect effects in the most sensitive populations, studies at higher exposure concentrations will be included when they provide information relevant to previously unreported effects, evidence of the potential biological mechanism for an observed effect, or information on exposure-response relationships.

4.2 ORGANIZATION OF THE ISA

The organization of the ISA for health criteria of SOx will be consistent with that used in the recent assessments for other criteria pollutants, e.g., the ISA for Ozone and Related

30Note that evidence related to environmental effects of SOx will be considered separately in the science assessment conducted as part of the review of the secondary NAAQS for NO₂ and SO₂.
Photochemical Oxidants (U.S. EPA, 2013b). The ISA will begin with a discussion of major legal and historical aspects of prior review documents as well as procedures for the assessment of scientific information. An integrative synthesis chapter will summarize the key information for each topic area, the causal determinations for relationships between exposure to SOx and health effects, information describing the extent to which health effects can be attributable specifically to SOx, and other uncertainties related to the interpretation of scientific information. The integrative synthesis chapter also will present a discussion of policy-relevant issues such as the exposure averaging times and lags associated with health effects, the concentration-response relationships including whether or not the evidence supports identification of a discernible threshold below which effects are not likely to occur, and the public health significance of health effects associated with exposure to SOx. Subsequent chapters are organized by subject area (see draft outline of the ISA in Appendix A) and contain the detailed evaluation of results of recent studies integrated with previous findings (see section 4.4 for specific issues to be addressed). Sections for each major health effect category (e.g., respiratory effects) conclude with a causal determination about the relationship with relevant exposures to SOx. The ISA will conclude with a chapter that examines exposure and health outcome data to draw conclusions about potential at-risk lifestages and populations.

The ISA may be supplemented with additional materials if required to support information contained within the ISA. These supplementary materials may include more detailed and comprehensive coverage of relevant publications and may accompany the ISA or be available in electronic form as output from the Health and Environmental Research Online (HERO) database developed by EPA (http://hero.epa.gov/). Supplementary information available in the HERO database will be presented as electronic links in the ISA.

4.3 ASSESSMENT APPROACH

4.3.1 Introduction

The NCEA-RTP is responsible for preparing the ISA for SOx health criteria. In each NAAQS review, development of the science assessment begins with a “Call for Information” published in the Federal Register. This notice announces EPA’s initiation of activities in the preparation of the ISA for the specific NAAQS review and invites the public to assist through the submission of research studies in the identified subject areas. This and subsequent key components of the process currently followed for the development of an ISA (i.e., the development process) are presented in Figure 3.1 and are described in greater detail in the Preamble to the ISA for Lead (U.S. EPA, 2013a). How the ISA fits into the larger NAAQS review process is briefly described in Section 1.2, the Overview of the Review Process.
Important aspects of the development of the ISA are described in the sections below, including the approach for searching the literature, identifying relevant publications, evaluating

Figure 4.1. General Process for Development of Integrated Science Assessments (ISAs)

(Modified from Figure III of the Preamble to the ISA for Lead, U.S. EPA, 2013a)
individual study quality, synthesizing and integrating the evidence, and developing scientific conclusions and causality determinations. These responsibilities are undertaken by expert authors of the ISA chapters which include EPA staff with extensive knowledge in their respective fields and extramural scientists solicited by EPA for their expertise in specific fields. This section of the IRP also presents specific policy-relevant questions developed from input received at the SOX kickoff workshop. These questions are intended to guide the development of the ISA. The process for scientific and public review of drafts of the ISA is described in Section 4.3.

4.3.2 Literature Search and Selection of Relevant Studies

The NCEA-RTP uses a structured approach to identify relevant studies for consideration and inclusion in the ISA. A Federal Register notice is published to announce the initiation of a review and to request information, including relevant literature, from the public. The EPA maintains an ongoing, multi-tiered literature search process that includes extensive manual and computer-aided citation mining of databases on specific topics in a variety of disciplines using as keywords terms such as SOx, SO2, sulfur oxide(s), or sulfur dioxide. The search strategies are designed a priori and iteratively modified to optimize identification of pertinent publications. In addition, papers are identified for inclusion in several other ways: specialized searches on specific topics; relational searches that identify recent publications that have cited references from previous assessments; identification of relevant literature by external scientific experts; recommendations from the public and CASAC during the call for information and external review process; and review of citations in previous assessments. The studies identified will include research published or accepted for publication from January 2008, which slightly precedes the publication end date for studies reviewed in the 2008 SOx ISA, through approximately two months before the release of the second external review draft of the ISA (target of June 2015, see Table 2-1).

References identified through this multipronged search strategy are reviewed for relevance. Some publications are excluded based on screening of the title. Publications considered for inclusion in the ISA after reading the title are listed in the Health and Environmental Research Online (HERO) database (http://hero.epa.gov). Studies and reports that have undergone scientific peer review and have been published or accepted for publication are considered for inclusion in the ISA.

From the group of considered references, references are selected for inclusion in the ISA based on review of the abstract and full text. The references cited in the ISA include a hyperlink to the HERO database. The selection process is based on the extent to which the study is potentially informative and policy-relevant. Potentially policy-relevant and informative studies include those that provide a basis for or describe the relationship between the criteria pollutant
and effects, in particular, those studies that offer innovation in method or design and studies that reduce uncertainty on critical issues. Uncertainty can be addressed, for example, by analyses of potential confounding or effect modification by copollutants or other factors, analyses of concentration-response or dose-response relationships, or analyses related to time between exposure and response. The ISA will generally emphasize studies published since the 2008 SOx ISA; however, evidence from previous studies will be included to integrate with results from recent studies and, in some cases, characterize the key policy-relevant information in a particular subject area. Analyses conducted by the EPA using publicly available data, for example, air quality and emissions data, also are considered for inclusion in the ISA. The combination of approaches described above is intended to produce the comprehensive collection of pertinent studies needed to address the key scientific issues that form the basis of the ISA.

4.3.3 Evaluation of Individual Study Quality

After selecting studies for inclusion, individual study quality is evaluated by considering the design, methods, conduct, and documentation of each study, but not whether the results are positive, negative, or null. This uniform approach aims to consider the strengths, limitations, and possible roles of chance, confounding, and other biases that may affect the interpretation of the results from individual studies. In assessing the scientific quality of studies, the following parameters are considered:

- How clearly were the study design, study groups, methods, data, and results presented to allow for study evaluation?
- To what extent are the air quality data, exposure, or dose metrics of adequate quality to serve as credible exposure indicators?
- Were the study populations, subjects, or animal models adequately selected, and are they sufficiently well defined to allow for meaningful comparisons between study or exposure groups?
- Are the statistical analyses appropriate, properly performed, and properly interpreted?
- Are likely covariates (i.e., potential confounding factors, modifying factors) adequately controlled for or taken into account in the study design or statistical analyses?
- Are the health endpoint measurements meaningful, valid, and reliable?

Additional considerations specific to particular scientific disciplines are discussed below.

Atmospheric Science and Exposure Assessment

Atmospheric science and exposure assessment studies focus on measurement of, behavior of, and exposure to ambient air pollution using quality-assured field, experimental, and/or modeling techniques. The most informative measurement-based studies will include detailed descriptive statistics for high-quality measurements taken at varying spatial and temporal scales. These studies will also include a clear and comprehensive description of measurement.
techniques and quality control procedures used. Quality control metrics (e.g., method detection limits) and quantitative relationships between and within pollutant measurements (e.g., regression model coefficients, intercepts, and fit statistics) should be provided when appropriate. Measurements including contrasting conditions for various time periods (e.g., weekday/weekend, season), populations, regions, and categories (e.g., urban/rural, proximity to various source sectors) are particularly useful. The most informative modeling-based studies will incorporate appropriate chemistry, transport, dispersion, and/or exposure modeling techniques with a clear and comprehensive description of model science, evaluation procedures, and metrics.

Exposure measurement error, which refers to the uncertainty associated with the exposure metrics used to represent exposure of an individual or population, can be an important contributor to uncertainty in air pollution epidemiologic study results. Exposure measurement error can influence observed epidemiologic associations between ambient pollutant concentrations and health outcomes by biasing effect estimates toward or away from the null and widening confidence intervals around those estimates (Zeger et al., 2000). Factors that could influence exposure estimates include, but are not limited to, nonambient sources of exposure, topography of the natural and built environment, meteorology, air quality measurement instrument or model uncertainties, time-activity patterns, and the infiltration into indoor environments. Additional information present in high-quality exposure studies includes location and activity information from diaries, questionnaires, global positioning system data, or other means, as well as information on commuting patterns. In general, atmospheric science and exposure studies focusing on the variety of locations pertinent to the range of exposures in the U.S. will have maximum value in informing review of the NAAQS.

Epidemiology

In evaluating quality of epidemiologic studies, EPA additionally considers whether a given study: (1) presents quantitative information on associations of health effects with short- or long-term exposures that represent ambient concentrations of SOx across various microenvironments; (2) examines health effects of SOx; (3) assesses SOx as a component of a complex mixture of air pollutants by considering concentrations of copollutants, correlations of SOx with these copollutants, potential copollutant interactions (e.g., synergistic effects of SOx with other pollutants), potential copollutant confounding (e.g., bias of associations observed between SOx and health endpoints by the effects of copollutants), and other methods to assess the independent effect of SOx; (4) evaluates health endpoints not previously extensively researched; (5) evaluates lifestages and populations that potentially are at increased risk of health effects related to SOx; (6) examines other potential confounding factors or effect modifiers (e.g., socioeconomic status); and (7) examines important methodological issues (e.g., lag or time period between exposure and effects, model specifications, thresholds, mortality displacement)
related to the health effects of exposure to SOx. Among epidemiologic studies characterized as high quality by these parameters, emphasis will be given to multicity studies that employ standard methodological analyses for evaluating effects of SOX across cities, provide overall estimates for effects by pooling information across cities, and examine consistency of results across cities. To address specific issues relevant to standard setting in the U.S., such as regional heterogeneity in effects, emphasis will be placed on studies that involve exposures that are relevant to current U.S. populations (e.g., studies conducted in the U.S. or Canada).

Controlled Human Exposure and Animal Toxicology

Controlled human exposure and animal toxicological studies experimentally evaluate the health effects of administered exposures in human volunteers and animal models under highly controlled laboratory conditions. Controlled human exposure studies are also referred to as human clinical studies and, as noted above, provided the definitive evidence for a causal relationship between short-term exposure to SO2 and respiratory morbidity in the previous review. These experiments allow investigators to expose subjects to known concentrations of SOx under carefully regulated environmental conditions and activity levels. In addition to the general quality considerations discussed previously, evaluation of controlled human exposure and animal toxicological studies includes assessing the design and methodology of each study with focus on (1) characterization of the intake dose, dosing regimen (e.g., duration, activity level), and exposure route; (2) characterization of the pollutant(s); (3) sample size and statistical power to detect differences; and (4) control of other variables that could influence the occurrence of effects. The evaluation of study design generally includes consideration of factors that minimize bias in results such as randomization, blinding and allocation concealment of study subjects, investigators, and research staff, and unexplained loss of animals or withdrawal/exclusion of subjects. Additionally, studies must include appropriate control groups and exposures to allow for accurate interpretation of results relative to exposure. Emphasis is placed on studies that address concentration-dependent responses or time-course of responses and studies that investigate potentially at-risk lifestages and populations (e.g., with pre-existing disease), recognizing that controlled human exposure studies typically examine effects in groups of relatively healthy individuals, often adults, who do not represent the full range of susceptibilities in the general population. In addition, consideration will be given to studies that investigate exposure to SOX separately and in combination with other pollutants such as ozone and particulate matter.

Controlled human exposure or animal toxicological studies that approximate expected human exposures in terms of concentration, duration, and route of exposure are of particular interest. Relevant pollutant exposures are considered to be those generally within two orders of magnitude of ambient concentrations measured across various microenvironments. Studies using
higher concentration exposures or doses will be considered to the extent that they provide information relevant to understanding mode of action or mechanisms, interspecies variation, or at-risk human lifestages and populations. In vitro studies may be included if they provide mechanistic insight or support results demonstrated in vivo.

4.3.4 Integration of Evidence and Determination of Causality

EPA has developed a consistent and transparent basis for integration of scientific evidence and evaluation of the causal nature of air pollution-related health or welfare effects for use in developing ISAs, as described in the online Preamble to the ISA for Lead (U.S. EPA, 2013a). Evidence from across scientific disciplines for related health effects is evaluated, synthesized, and integrated to develop conclusions and causality determinations. This includes consideration of strengths and weaknesses in the overall collection of studies across disciplines. Confidence in the body of evidence is based on evaluation of study design and quality. The relative importance of different types of evidence to the conclusions varies by pollutant or assessment, as does the availability of different types of evidence for causality determination. Consideration of human health effects is informed by controlled human exposure, epidemiologic, and toxicological studies. Other evidence including mechanistic evidence, toxicokinetics, and exposure assessment may be highlighted if it is relevant to the evaluation of health effects and if it is of sufficient importance to affect the overall evaluation. Scientists will also evaluate uncertainty in the scientific evidence, considering issues such as generalizing results from a small number of controlled human exposure subjects to the broader population, quantitative extrapolations of observed pollutant-induced pathophysiological alterations from laboratory animals to humans, confounding by co-exposure to other ambient pollutants or meteorological factors, the potential for effects due to exposure to air pollution mixtures, and the influence of exposure measurement error on epidemiologic study findings.

The ISA will evaluate the evidence for causal relationships between observed health outcomes and SO\textsubscript{X} exposures using a five-level hierarchy that classifies the weight of evidence for causation. Determination of causality involves the evaluation and integration of evidence across disciplines for major outcome categories (e.g., respiratory effects) or groups of related endpoints. Key considerations in drawing conclusions about causality include consistency of findings for an endpoint across studies, biological plausibility, and coherence of the evidence across disciplines and across related endpoints, including key events that inform modes of action (see Table I in Preamble to the ISA for Lead, U.S. EPA, 2013a). In discussing the causal determination, EPA characterizes the evidence on which the judgment is based, including
strength of evidence for individual endpoints within the outcome category or group of related
endpoints. The ISA will place emphasis on studies conducted with SO$_X$ exposure concentrations
representative of those across various ambient microenvironments. However, studies that provide
evidence for biological plausibility and modes of action, which are conducted at higher exposure
concentrations than those typically associated with health effects in humans, may be included in
the ISA. In addition, EPA evaluates evidence relevant to understand the quantitative
relationships between pollutant exposures and health effects. This includes evaluating the
concentration-response or dose-response relationships and, to the extent possible, drawing
conclusions on the levels at which effects are observed.

4.3.5 Quality Management

NCEA participates in the Agency-wide Quality Management System, which requires the
development of a Quality Management Plan (QMP). Implementation of the ORD-wide and
NCEA QMP ensures that all data generated or used by NCEA scientists “have a degree of
confidence in the quality of the data; and, are of the type and quality appropriate for their
intended use” and that all information disseminated by NCEA adheres to a high standard for
quality including objectivity, utility, and integrity. Quality assurance (QA) measures detailed in
the QMP are being employed for the current SO$_X$ review, including the development of the ISA
for health criteria of SO$_X$. The NCEA QA staff are responsible for the review and approval of
quality-related documentation. NCEA scientists are responsible for the evaluation (and
documentation) of all inputs to the ISA, including primary (new) and secondary (existing) data,
to ensure their quality is appropriate for their intended purpose. NCEA adheres to the use of
Data Quality Objectives, which clarify project objectives, define the appropriate type of data
used in the project, and specify tolerable levels of confidence in the data and tolerable levels of
potential decision errors that will be used as the basis for establishing the quality and quantity of
data needed to identify the most appropriate inputs to the science assessment. The approaches
utilized to search the literature and criteria for study selection and evaluation were detailed in the
two preceding subsections. Generally, NCEA scientists rely on scientific information found in
peer-reviewed journal articles, books, and government reports. Where information is integrated,
re-analyzed, modeled, or reduced from multiple sources to create new figures, tables, or
summation, the data generated are considered to be new and are documented and subjected to
rigorous quality assurance and quality control measures to ensure their accuracy, validity, and
reproducibility.
4.4 SPECIFIC ISSUES TO BE ADDRESSED IN THE ISA

The organization of the ISA for SO\textsubscript{x} health criteria will be consistent with that used in the recent assessments for other criteria pollutants (e.g., ISA for O\textsubscript{3}, U.S. EPA, 2013b). Development of the ISA will be guided by policy-relevant questions that frame the entire review of the primary SO\textsubscript{2} NAAQS. These policy-relevant questions are related to two overarching issues. The first issue is whether new evidence reinforces or calls into question the evidence presented and evaluated in the last NAAQS review with respect to factors such as the concentrations of SO\textsubscript{x} exposure associated with health effects and plausibility of health effects caused by SO\textsubscript{x} exposure. The second issue is whether uncertainties from the last review have been reduced and/or whether new uncertainties have emerged. Specific questions that will be addressed in the ISA are listed subsequently by topic area. In the ISA, these topic areas will be discussed in separate chapters or sections. The beginning of the ISA will include an integrative synthesis chapter that summarizes the key information for each topic area and the causal determinations. The integrative synthesis chapter also presents a discussion of policy-relevant issues such as the exposure metrics, averaging times, and lags associated with health effects, the concentration-response relationship including threshold for effects, and public health significance of health effects associated with exposure to SO\textsubscript{x} (see Appendix).

A. Air Quality and Atmospheric Chemistry: The ISA will present and evaluate data related to ambient concentrations of SO\textsubscript{x}; sources leading to the presence of SO\textsubscript{x} in the atmosphere; and chemical reactions that determine the formation, degradation, and lifetime of SO\textsubscript{x} in the atmosphere. The 2008 SO\textsubscript{x} ISA concluded that most SO\textsubscript{2} is emitted from elevated point sources such as the stacks of power plants and industrial facilities, many of which are located in the eastern U.S., leading to a strong east-west gradient in SO\textsubscript{2} concentrations. SO\textsubscript{2} is removed from the atmosphere both by deposition and by oxidation to sulfate, resulting in a typical atmospheric lifetime of <1 to 4 days, depending on local conditions. Mean U.S. daily 1-hour max SO\textsubscript{2} concentrations in 2003-05 were approximately 13 ppb, with a 99th percentile value of 95 ppb and a maximum value of approximately 700 ppb. The large differences between 99th percentile and maximum values suggest that the maxima are strongly limited spatially and temporally and are not a major determinant of the mean values. At the time of the 2008 SO\textsubscript{x} ISA, the
very limited 5-minute SO$_2$ data available showed that the median hourly maximum 5-
minute average ranged from 1-8 ppb, while the 99th percentile value ranged from 21-184
ppb, depending on location (U.S. EPA, 2008, section 5.1). In the current ISA, description
of the atmospheric chemistry of SO$_x$ will include both gaseous and particulate species in
order to provide a complete analysis, although the health effects of particulate SO$_x$ are
discussed in the review of the NAAQS for particulate matter (PM). SO$_2$ is the most
important of the gas-phase sulfur oxides for both atmospheric chemistry and health
effects and is expected to be the focus of the ISA. SO$_X$ is usually defined to include sulfur
trioxide (SO$_3$) and gas-phase sulfuric acid (H$_2$SO$_4$) as well, but neither species is present
in the atmosphere in concentrations significant for human exposures. In the current
review, specific policy-relevant questions related to air quality and atmospheric
chemistry that will be addressed include the following:

- What are the main and emerging sources of ambient gas-phase SO$_X$, and how have new
fuels, emission standards, and technologies changed the magnitude and composition of
SO$_X$ emissions?
- What progress has been made in improving measurements and reducing interference
problems in measuring SO$_X$, particularly for concentrations near the method detection
limit? What limitations still remain?
- Based on recent air quality and emissions data, what are current emissions and
concentrations of SO$_X$? How have emissions and concentrations of SO$_X$ changed since
the 2008 SO$_X$ ISA? To what extent can other techniques, such as satellite data and
dispersion modeling, be used to improve the characterization of SO$_X$ concentrations?
- What spatial and temporal patterns can be seen in SO$_X$ concentrations? In particular,
what patterns can be seen near point and other sources of SO$_X$? What do monitoring,
satellite data, and dispersion modeling results indicate regarding spatial patterns on
neighborhood, urban, regional, and national scales?
- What are the relationships among SO$_X$ concentrations measured with different averaging
times (e.g., 5-minute, 1-hour, 24-hour)? How well do 1-hour or longer averaging time
concentrations represent peak exposures to SO$_X$?
- What are the relationships among SO$_X$ concentrations and concentrations of other
pollutants, such as sulfate, other components of particulate matter, and gaseous
pollutants?
- What are the capabilities of air quality models for estimating SO$_X$ concentrations,
particularly at the upper end of the air quality distribution?
- Based on air quality and emissions data on SO$_X$ and atmospheric chemistry models, what
are likely background concentrations of SO$_X$ in the absence of anthropogenic emissions?
B. Human Exposure to Ambient SOX: The ISA will evaluate the factors that influence human exposure to ambient SOX and the uncertainties associated with extrapolation from ambient concentrations to personal exposures to SOX of ambient origin, particularly in the context of interpreting results from epidemiologic studies. As described in the 2008 SOX ISA, many exposure studies were unable to characterize the relationship between personal exposure and ambient SO2 due to indoor and outdoor concentrations that were below the detection limit of passive personal samplers. However, in studies with personal measurements above detection limits, a reasonably strong association was observed between personal SO2 exposure and ambient concentrations (U.S. EPA, 2008, section 5.3). At the time of the 2008 SOX ISA, no studies had evaluated the relationship between community average exposure and ambient concentrations, which is more directly relevant to many epidemiologic study designs, although the ISA concluded that intracommunity variations in the personal-ambient relationship would generally tend to widen the confidence interval rather than bias the effect estimate. Uncertainties differ according to the exposure period of interest as most short-term exposure studies (e.g., population-level studies using time-series analyses, field/panel studies) rely on temporal variation in exposure while long-term exposure studies (e.g., longitudinal cohort studies) rely on spatial variability of exposure. In the current review, specific policy-relevant questions related to exposure that will be addressed include the following:

- What are the relationships between SOX measured at stationary monitoring sites and personal exposure to SOX over different time scales? What evidence is available regarding these relationships in environments near point sources, ports, or other sources? What uncertainties remain regarding these exposures of interest?

- What new information is available regarding microenvironmental SOX concentrations and personal exposures to SOX? What are the capabilities of currently available exposure measurement techniques?

- What new information exists regarding characterization of error in SOX exposure assessment and how it influences personal-ambient exposure relationships?

- What information is available regarding differences in SOX exposure patterns and personal-ambient exposure relationships among various lifestages and populations, particularly at-risk groups?

- What new information exists regarding SOX measurements in a multipollutant context? What are the relationships between SOX exposures and exposures for other pollutants, such as sulfate, other components of particulate matter, and gaseous pollutants?
How does uncertainty in exposure estimates inform interpretation of epidemiologic, controlled human exposure, and toxicological studies?

C. Dosimetry and Modes of Action: The ISA will evaluate literature focusing on dosimetry and modes of action that may underlie the health outcomes associated with exposure to SOX. These topic areas will be evaluated using both human and animal data. The 2008 SOX ISA concluded that SO\textsubscript{2} is readily absorbed in the nasal passages due to its high water solubility; with increased ventilation rates during exercise, the pattern of SO\textsubscript{2} absorption shifts from the upper airways to the tracheobronchial airways in conjunction with a shift from nasal to oronasal breathing (U.S. EPA, 2008, section 5.2). The compound most directly responsible for the health effects may be the inhaled SO\textsubscript{2} and/or its chemical reaction products such as hydrogen ions, bisulfite anions and sulfite anions which are formed when SO\textsubscript{2} contacts the fluids lining the airway. One of the principal effects of inhaled SO\textsubscript{2} is bronchoconstriction, mediated by chemosensitive receptors that trigger nervous system reflexes. Preexisting inflammation may lead to enhanced sensitivity in asthmatics due to enhanced release of mediators, alterations in the autonomic nervous system, and/or sensitization of the chemosensitive receptors. In the current review, specific policy-relevant questions related to dosimetry and modes of action that will be addressed include the following:

- What SOX reaction products can be found in the respiratory tract cells, tissues, or fluids that may serve as markers of SOX exposure and effect?
- What information is available on the following dosimetric and mechanistic factors:
 - The regional pattern of SOX-induced injury/perturbation in the respiratory tract?
 - Inter-individual variability of responses that may enhance the risk of an adverse health effect?
 - Homology of responses between animals and humans?
- What are the potential biological mechanisms underlying responses to SOX at or near environmentally relevant exposures?
- What new information is available related to the modes of action for health effects associated with exposure to SOX?
- Do interactions between inhaled SOX and other inhaled pollutants influence the mechanisms underlying the toxic potential of SOX?
• What are the effects of host factors such as lifestage, sex, pre-existing disease, genetic background, and physical activity on SOX uptake, cellular and tissue responses, and their underlying mechanisms? Are there critical windows of exposure (e.g. prenatal) that result in different effects and/or effects at lower exposures?

• What information is available to discern the relative contributions to internal SOX compounds of SOX derived exogenously from ambient exposures and SOX derived from endogenous biological processes?

D. Health Effects: The 2008 SOX ISA concluded that there is a causal relationship between respiratory morbidity and short-term exposure to SO2, based on consistent and coherent evidence from controlled human exposure, epidemiologic, and animal toxicological studies. The definitive evidence for the causal relationship came from controlled human exposure studies that reported respiratory symptoms and decreased lung function in exercising asthmatics following 5-10 minute exposures to SO2; in addition, numerous epidemiologic studies reported associations between short-term SO2 exposures and respiratory symptoms and hospitalizations (U.S. EPA, 2008, section 5.2). The ISA also concluded that the evidence is suggestive of a causal relationship between short-term exposure to SO2 and mortality, and that the evidence is inadequate to infer a causal relationship between short-term exposure to SO2 and cardiovascular effects or between long-term exposure to SO2 and morbidity and mortality. The current ISA will evaluate the literature related to respiratory, cardiovascular, reproductive and developmental health effects, mortality, and cancer associated with SOX exposure. Other health effects may also be evaluated, such as those related to the central nervous system. Health effects that occur following both short- and long-term exposures will be evaluated as examined in epidemiologic, controlled human exposure, and animal toxicological studies, and causality determinations will be developed for each type of health effect. Efforts will be directed at identifying the lower concentrations at which effects are observed, including effects in populations and lifestages potentially at increased risk of SOX-induced health effects, and assessing the role of SOX within the broader mixture of ambient pollutants. The discussion of health effects also will be integrated with relevant information on dosimetry and modes of action. In the current review, specific policy-relevant questions related to health effects that will be addressed include the following:

• What do controlled human exposure, animal toxicological, and epidemiologic studies indicate regarding the relationship between short-term (i.e., minutes to one month)
exposures to SOx and health effects of concern, including the nature and time course, in
healthy individuals and in those with pre-existing disease states (e.g., people with asthma
or cardiovascular disease) or other factors (e.g., lifestage, genetic variants, nutritional
deficiencies) that potentially modify the risk of SOx-induced health effects? What
information is available that reduces uncertainties identified in the previous ISA, such as
exposure measurement error and the potential for copollutant confounding?

- How do results of recent studies expand current understanding of the relationships
 between long-term (i.e. more than one month to years) exposure to SOx and chronic
 respiratory effects manifested as permanent lung tissue damage, a reduction in baseline
 lung function, or a reduction in lung function growth? To what extent does long-term
 SOx exposure promote exacerbation and development of asthma or other chronic lung
diseases, cardiovascular diseases, and other conditions? Are there certain lifestages that
are especially vulnerable to the development of these chronic conditions? What is the
relationship between SOx exposure and all-cause mortality and cause-specific mortality?

- To what extent does the scientific evidence support the occurrence of health effects from
 long-term SOx exposure at ambient concentrations that are lower than those previously
 observed? If so, what uncertainties are related to these associations and are the health
effects in question important from a public health perspective?

- To what extent does short-term or long-term exposure to SOx contribute to health effects
 beyond the respiratory and cardiovascular systems (e.g., reproductive, developmental,
cancer)?

- What is the extent of coherence of findings for small changes in lung function, airway
 hyperresponsiveness, heart rate variability, and vasomotor function and changes in health
effects such as hospital admissions, emergency department visits, and mortality? What
other biomarkers of early effect may be used in the assessment of health effects?

- What evidence is available regarding the shape of concentration-response relationships
 between short-term and long-term SOx exposure and health effects?

- What evidence is available regarding the nature of health effects from the combination of
 SOx and other ambient air pollutants in comparison to health effects following exposure
to SOx alone?

- What do results from studies conducted in environments near SOx sources indicate about
 the health effects of long-term or repeated SOx exposures?

- To what extent does information across scientific disciplines on the pattern of SOx
 exposure (e.g., peak, repeated peak, average) provide understanding of the time course
for changes in health effects? What information is available on time-activity patterns of
study subjects such as time spent outdoors or activity levels that can aid in the
understanding of the nature of exposure or dosimetry of ambient SOx concentrations that
are associated with health effects?

- To what extent do data across scientific disciplines provide information on health effects
related to various short-term SOx exposure indices or averaging times relevant to the 1-
hour standard? What data exist comparing associations of health effects among various
short-term SOx exposure metrics (e.g., 1-hour versus 24-hour)?
What information is available regarding the effect of long-term, low-concentration exposure to SOx on an individual’s sensitivity to short-term but higher concentration exposures?

What evidence is available regarding health effects related to long-term exposure windows other than annual or lifetime average (e.g., preconception, pregnancy average)? What data are available comparing associations of health effects among various long-term SOx exposure metrics (e.g., annual, seasonal, pregnancy average)? Are there critical windows of human development that are associated with the development of chronic respiratory disease?

To what extent are the observed epidemiologic health effect associations attributable to ambient SOx, another ambient pollutant, or to the pollutant mixtures that SOx may be representing? To what extent do findings from experimental studies provide biological plausibility?

E. Populations and Lifestages Potentially at Increased Risk of SOx-Induced Health Effects:

The 2008 SOx ISA found substantial evidence from epidemiologic and controlled human exposure studies that asthmatic individuals are more susceptible to respiratory health effects from SO2 exposures than the general public (U.S. EPA, 2008, section 5.4). The ISA also presented limited evidence that children and older adults (≥ 65 years) are potentially at increased risk of SO2-induced respiratory effects. Since completion of the 2008 ISA, EPA has developed a framework to provide a consistent and transparent basis for classifying the weight of evidence about whether populations and/or lifestages are at increased risk according to one of four levels: adequate evidence, suggestive evidence, inadequate evidence, and evidence of no effect (see Table 5-1 of ISA for Lead, U.S. EPA, 2013a). In the framework, key considerations in drawing such conclusions include consistency of findings for a factor within a discipline and coherence of the evidence across disciplines. The current ISA will examine exposure and health outcome data to draw conclusions about specific populations or lifestages that are potentially at increased risk of SOx-induced health effects. Estimation of the sizes of potential populations and lifestages at increased risk and discussion of the public health significance of the health outcomes characterized to result from ambient SOx exposure may be included. Potential populations or lifestages at increased risk can be characterized by a variety of factors: intrinsic factors (biological factors such as age, genetic variants), extrinsic factors (nonbiological factors such as diet, lower socioeconomic status), and/or factors affecting dose or exposure (age, outdoor activity or work). It is important to note that some factors
(e.g., age) are interconnected and may influence risk through multiple avenues. In the current review, specific policy-relevant questions related to populations and lifestages potentially at increased risk of SOX-induced health effects that will be addressed include:

- Based on evidence integrated across studies and disciplines that examine factors which may increase exposure to SOx and/or risk of SOx-induced health effects, what conclusions can be drawn about the presence of at-risk lifestages (e.g., fetuses, children, older adults) and/or populations?

- Studies from which disciplines contribute information about particular at-risk lifestages and populations, and to what extent does limited or lack of information from specific disciplines produce uncertainty in conclusions about at-risk lifestages and populations?

- How does new information augment that evaluated in the 2008 SOx ISA regarding populations with pre-existing respiratory disease or genetic variants as well as lifestages potentially at increased risk of SOX-induced health effects?

- What information is available that provides insight as to whether an at-risk lifestage or population has higher exposure or dose of SOx and/or has a greater biological response to a given exposure?

- What is the extent of the coherence of evidence regarding potential at-risk lifestages or populations for both short- and long-term exposures to SOx?

- What quantitative information is available that characterizes the magnitude of greater biological response or risk of health effects in at-risk lifestages or populations?

4.5 SCIENTIFIC AND PUBLIC REVIEW

Drafts of the ISA will be made available for review by the CASAC SOx primary NAAQS review panel and public as indicated in Figure 4-1 above; availability of draft documents will be announced in the Federal Register. The CASAC panel will review the draft ISA documents and discuss their comments in public meetings that will be announced in the Federal Register. EPA will take into account comments, advice, and recommendations received from the CASAC panel and from the public in revising draft ISA documents. EPA has established a public docket for the development of the ISA. After appropriate revision based on comments received from CASAC and the public, the final document will be made available on an EPA website and in hard copy. A notice announcing the availability of the final ISA will be published in the Federal Register.
5. QUANTITATIVE RISK AND EXPOSURE ASSESSMENTS

Within the context of NAAQS reviews, quantitative risk and exposure assessments (REAs) are designed to estimate human exposure and health risks associated with existing and potential alternative standards. The appropriate scope of any REA will be informed by the availability of scientific information from the ISA as well as air quality information and information on data and models that may help to address important uncertainties or provide additional insights beyond those provided by previous REAs. As a result, the first step in the REA planning process is an assessment of the appropriate scope of the REA, which includes a determination of whether a distinct REA document is needed. As part of this planning process, we evaluate the REA for the previous SO₂ NAAQS review in the context of the extent to which important uncertainties may be addressed by new information available since the previous review and the extent to which new information may change results of the REA in important ways or may allow for additional analyses that can address important gaps in our understanding of the exposures and risks associated with SO₂.

This phase of the NAAQS review begins with the preparation of a REA Planning Document and considers the extent to which newly available scientific evidence and tools/methodologies provide support for conducting quantitative risk and exposure assessments. To the extent warranted, the scope and methods for components of exposure/risk assessments will be described. As outlined in Table 2-1 above, the EPA plans to issue this REA Planning Document in February 2015. This document will be the subject of a CASAC consultation and will be made available to the public for review and comment. CASAC advice and public comments on this draft IRP will be considered in developing the REA Planning Document. If warranted, one or more drafts of an REA will then be prepared and released for CASAC review and public comment prior to completion of a final REA.

The information newly available in this review will be considered in light of the comprehensive, complex and resource-intensive quantitative assessments of human exposure and health risks documented in the 2009 REA as discussed in section 5.1 below. As discussed in section 5.2 below, the REA Planning Document will consider the available scientific evidence, tools and methodologies in light of areas of uncertainty identified in the 2009 REA and the potential for new analyses to provide notably different exposure and risk estimates, with lower associated uncertainty. CASAC advice and comments from the public on this draft IRP, as well as the availability of resources, will also inform development of the REA Planning Document.
5.1 OVERVIEW OF RISK AND EXPOSURE ASSESSMENT FROM PRIOR REVIEW

In the previous review of the primary SO\textsubscript{2} NAAQS, the REA focused the quantitative exposure and risk analyses on 5-minute levels of SO\textsubscript{2} in excess of potential health effect benchmark values derived from the controlled human exposure literature. These benchmark levels are not potential standards, but rather are concentrations which represent “exposures of potential concern” which are used in the analyses to estimate potential exposures and risks associated with 5-minute concentrations of SO\textsubscript{2}. The health effect benchmark values used in the REA were derived primarily from the ISA’s evaluation of the 5 - 10 minute controlled human exposure literature. As noted above, the ISA concluded that moderate or greater decrements in lung function occurred in approximately 5 - 30\% of exercising asthmatics following exposure to 200 - 300 ppb SO\textsubscript{2} for 5 - 10 minutes. In addition, the ISA concluded that moderate or greater decrements in lung function occurred in approximately 20 - 60\% of exercising asthmatics following exposure to 400 - 600 ppb SO\textsubscript{2} for 5 - 10 minutes. The ISA also concluded that at SO\textsubscript{2} concentrations \(\geq \) 400 ppb, statistically significant moderate or greater decrements in lung function at the group mean level have often been reported and are frequently accompanied by respiratory symptoms. Moreover, small SO\textsubscript{2}-induced lung function decrements have been observed in exercising asthmatics at concentrations as low as 100 ppb when SO\textsubscript{2} is administered via mouthpiece. Taken together, the REA concluded it was appropriate to examine potential 5-minute benchmark values in the range of 100 - 400 ppb.

The purpose of the assessments in the SO\textsubscript{2} REA was to characterize air quality, exposures, and health risks associated with recent ambient levels of SO\textsubscript{2}, with SO\textsubscript{2} levels that could be associated with just meeting the then-existing SO\textsubscript{2} standards (i.e., 30 ppb annual average and 140 ppb daily average) and with SO\textsubscript{2} levels that could be associated with just meeting alternative 1-hour daily maximum standards. The SO\textsubscript{2} REA utilized three approaches to characterize health risks and are briefly described with the following.

In the first approach, measured 5-minute maximum SO\textsubscript{2} concentrations (1997 - 2007) from 98 ambient monitors were evaluated for exceedances of the 5-minute potential health effect benchmark levels, counting the number of days (per monitor and per year) a particular 5-minute benchmark concentration was exceeded and considering unadjusted, \textit{as is} annual average, daily average, and 1-hour daily maximum SO\textsubscript{2} concentrations. In addition, 5-minute SO\textsubscript{2} maximum concentrations were statistically estimated31 using all available monitors that measured 1-hour concentrations.

31The approach for statistically estimating 5-minute maximum concentrations from 1-hour concentrations was based on a characterization of ratios of measured 5-minute maximum concentrations to measured 1-hour average

Do Not Quote or Cite

5-2

March 2014
SO₂ (1997 - 2006) to generate a similar output (i.e., the number of days per monitor per year a
benchmark concentration was exceeded considering as is air quality). Then, 5-minute maximum
concentrations were statistically estimated in 40 selected U.S. counties (2001 - 2006), though
using 1-hour SO₂ concentrations as is and, those adjusted to just meet the then-existing annual
and daily standards, and concentrations adjusted to just meet potential 1-hour daily maximum
alternative standards. In this analysis, all U.S. monitoring sites where SO₂ data have been
collected were included in this analysis and, as such, the results generated were considered a
broad characterization of national air quality and potential human exposures that might be
associated with these concentrations.

In the second approach, we used EPA’s Air Pollutants Exposure (APEX) model (US
EPA, 2012a,b), a Monte Carlo simulation model that can be used to simulate a large number of
randomly sampled individuals within specified locations, generating estimates of population
exposure. APEX simulates exposures in indoor, outdoor, and in-vehicle microenvironments
while taking into consideration the movement of individuals through time and space. APEX
estimated 5-minute daily maximum exposures simulated asthmatics may experience while at
moderate or greater exertion (e.g., while exercising) and compared these exposures to the same
5-minute potential health effect benchmark levels. Two case study areas were selected for this
exposure modeling: Greene County, Missouri, and three counties within the St. Louis
Metropolitan Statistical Area (MSA). For these two case study areas, year 2002 census block-
level hourly SO₂ concentrations were estimated by EPA’s AERMOD (a dispersion model), input
to APEX and combined with the same statistical model used for estimating 5-minute peaks
described from the hourly SO₂ concentrations above. Several modeled air quality scenarios were
considered, including as is air quality, air quality adjusted to just meet the then-existing
standards, and air quality adjusted to just meet potential alternative 1-hour daily maximum
standards. Output from this exposure modeling were the number and percent of asthmatics in
each study area experiencing at least one 5-minute daily maximum exposure at or above the
potential health effect benchmark levels while at moderate or greater exertion.

In the third approach, exposure-response relationships derived from controlled human
exposure studies were used in conjunction with the outputs of the St. Louis and Greene County
exposure analysis to estimate health impacts. More specifically, in each location we estimated
the number and percent of all asthmatics or asthmatic children at moderate or greater exertion
expected to experience moderate or greater decrements in lung function defined in terms of sRaw
or FEV₁ and considering the same air quality scenarios mentioned above.

concentrations (Section 7.2.3 of the 2009 SO₂ REA). Nineteen separate ratio distributions were developed from the
measurement data, stratified by seven 1-hour concentration levels and three concentration variability levels.
As mentioned above for each of these approaches, ambient SO2 concentrations and exposures were characterized by considering *as is* air quality (unadjusted concentrations) and several hypothetical air quality scenarios. Each of the hypothetical air quality scenarios had an ambient concentration target, derived from the form and level of the then-existing NAAQS or from potential alternative standards. Staff chose a proportional approach to adjust the SO2 concentrations to simulate each of the current and alternative air quality standard scenarios. A proportional approach was selected based on the mostly linear relationship between older high concentration years of air quality when compared with recent low concentration years at several locations (2009 SO2 REA, Section 7.4.2.5).

The approach used to evaluate uncertainty was adapted from guidelines outlining how to conduct a qualitative uncertainty characterization (WHO, 2008), though staff also performed several quantitative sensitivity analyses to iteratively inform both model development and the qualitative uncertainty characterization, where possible. While it may be considered ideal to follow a tiered approach in the REA to quantitatively characterize all identified uncertainties, staff selected the mainly qualitative approach given the limited data available to inform probabilistic analyses and time and resource constraints.

The following identifies the key observations and uncertainties from the prior SO2 REA.

5.1.1 Key Observations

Ambient Air Quality Characterization

- An increased probability of any 5-minute benchmark exceedance was consistently related to either increased 24-hour average or 1-hour daily maximum concentrations.
- For any of the air quality scenarios considered, the probability of exceeding the 5-minute maximum benchmark levels was consistently greater at monitors sited in low-population density areas compared with high-population density areas.
- Unadjusted *as is* air quality at ambient monitors measuring 5-minute maximum concentrations:
 - Measured daily and annual average concentrations were below that of the existing standards at all monitors, though measured 5-minute maximum ambient concentrations were present above the potential health effect benchmark levels. (2009 SO2 REA, Appendix A, Table A.5-1)
 - Nearly 70% of the monitor site-years analyzed had at least one daily 5-minute maximum concentration above 100 ppb and over 20% had ≥ 25 days with a daily 5-minute maximum concentration above 100 ppb.
 - About 44% of the monitor site-years analyzed had at least one 5-minute daily maximum concentration > 200 ppb, 25% had at least one > 300 ppb, and 17% had at least one > 400 ppb.
Air quality adjusted to simulate just meeting the then-existing annual standard in the 40 selected U.S. counties

- All counties evaluated were estimated to have multiple days per year where 5-minute daily maximum ambient SO₂ concentrations are > 100 ppb. For example, most counties are estimated to have, on average, 100 days or more per year with 5-minute daily maximum SO₂ concentrations > 100 ppb (2009 SO₂ REA, Table 7-11).
- Fewer benchmark exceedances were estimated to occur with higher benchmark levels. For example, five of the forty counties were estimated to have 60 or more days per year with 5-minute maximum SO₂ concentrations that exceed 300 ppb (2009 SO₂ REA, Table 7-11).

Air quality adjusted to potential 1-hour daily maximum alternative standard levels:

- Far fewer days per year with 5-minute maximum SO₂ concentrations > 300 ppb and > 400 ppb (about 0 to 5 days/year) were estimated when adjusting air quality to just meet potential alternative standard levels of 100 and 150 ppb than compared with air quality adjusted to just meet the current standards (frequently 25 or more days/year) and the potential alternative standard levels of 200 and 250 ppb (about 5 to 20 days/year) (2009 SO₂ REA, Tables 7-13 and 7-14).

Exposure Assessment

- St. Louis had both a greater number and percent of asthmatic children and adults exposed above the benchmark levels than did Greene County for all air quality scenarios, largely a function of both the greater population density and the much greater SO₂ emissions density in St. Louis (2009 SO₂ REA, Section 8.9.2).
- Estimated exposures above 5-minute potential health effect benchmark levels at moderate or greater exertion using APEX occurred most frequently outdoors (around 50 to > 90%, depending on the air quality scenario and modeling domain) (2009 SO₂ REA, Figure 8-21).
- Simulating air quality that just meets the then-existing annual standard in either the Greene County or St. Louis Study areas resulted in the greatest number and percent of asthmatic persons exposed at all benchmark levels (2009 SO₂ REA, Figures 8-16 and 8-19).
- The exposure results using as is air quality were similar to that estimated using air quality adjusted to a 99th percentile 1-hour daily maximum of 50 or 100 ppb in either study area (2009 SO₂ REA, Figures 8-16 and 8-19).

Health Risk Assessment

- In terms of estimated percentage of all asthmatics or asthmatic children experiencing one or more lung function responses, estimated risks are greater for asthmatic children (2009 SO₂ REA, Tables 9-5 and 9-8, respectively), likely because they spend more time outdoors and at higher exertion levels than adults.
 - For example, approximately 13% of all asthmatics were estimated to experience at least one moderate lung function response (defined as an increase in sRaw ≥
100% (2009 SO$_2$ REA, Table 9-5), while approximately 19% of asthmatic
children experienced a similar response (2009 SO$_2$ REA, Table 9-8).

- A broad range of SO$_2$ exposure concentration intervals selected, some as high as 500 ppb, contributes to the estimated risks of experiencing one or more lung function responses per year for some of the standards considered in the assessment. For potential alternative 1-hour standards in the range of 100 to 150 ppb, SO$_2$ exposure concentration intervals below 200 ppb contribute to most of the estimated risks of experiencing one or more lung function responses per year (2009 SO$_2$ REA, Figures 9-7 and 9-8).

5.1.2 Key Uncertainties

- Uncertainty in the statistical model used to estimate 5-minute maximum SO$_2$
 concentrations from 1-hour SO$_2$ concentrations.
- Uncertainty in the spatial and temporal representativeness of the SO$_2$ ambient monitoring network.
- Uncertainties associated with the proportional air quality adjustment procedure that was used to simulate just meeting the then-existing standard and several alternative 1-hour daily maximum standards.
- Uncertainties related to the exposure model inputs and exposure estimates which are an important input to the risk assessment.
- Uncertainty about the shape of the exposure-response relationship for lung function responses at levels well below 200 ppb, the lowest level examined in free-breathing single-pollutant controlled human exposure studies.
- Uncertainty with respect to how well the estimated exposure-response relationships reflect asthmatics with more severe disease than those tested in chamber studies.
- Uncertainty about whether the presence of other pollutants in the ambient air would enhance the SO$_2$-related responses observed in the controlled human exposure studies.
- Uncertainty about the extent to which the risk estimates presented for the two modeled areas in Missouri are representative of other locations in the U.S. with significant SO$_2$ point and area sources.

5.2 CONSIDERATION OF QUANTITATIVE ASSESSMENTS FOR THIS REVIEW

This discussion is focused particularly on considering the extent to which newly available scientific evidence and tools/methodologies are available to inform our understanding of the key areas of uncertainty identified in the 2009 REA. As outlined in Table 2-1 above, the EPA plans to release an REA Planning Document for consultation with CASAC and for public comments in February 2015 that will consider the extent to which new quantitative risk and exposure assessments would be appropriate to conduct in the current review. CASAC review and public comments on this draft IRP will be considered in developing the REA Planning Document.
Some key areas being considered by staff, including types of data, methodologies and tools, are identified and summarized below, with a focus on the three approaches used to estimate exposure and health risk: an air quality characterization, an exposure assessment, and a health risk assessment.

5.2.1 Ambient Air Quality Characterization

The goals of an SO₂ ambient air quality characterization in a new quantitative risk and exposure assessment would be (1) to estimate short- and long-term ambient concentration levels that consider unadjusted SO₂ air quality and air quality adjusted to just meeting the existing and any potential alternative SO₂ standards; (2) to develop quantitative relationships between short-term peak concentrations and time-averaged concentrations; and (3) to identify key assumptions and uncertainties.

For the analyses conducted during the last review, ambient SO₂ monitoring data were available up to mid-2007 (2006 was the most recent year with complete data at that time). Since that review, additional 5-minute data have become available (Table 5-1), particularly during the most recent years (2010-2012). Ambient monitors reporting all twelve 5-minute values per hour are tabulated in the 2ⁿᵈ column; monitors which report one maximum 5-minute value per hour are in the 3ʳᵈ column; and hourly average monitors not included in the two preceding columns are counted in the last column. Given the greatly expanded number of monitors, it is possible that we could develop a new statistical model to estimate 5-minute concentrations from hourly concentrations. Additional ambient monitoring attributes (e.g., proximity to selected emission sources) could be considered in its design. Output from this new model could be compared with that generated using the statistical model used in the prior air quality characterization. In addition, relationships between 5-minute peak concentrations and longer averaging times (e.g., greater than 1-hour but less than 24-hour) would be considered. And finally, new completeness criteria could be proposed in development of this new statistical model to potentially ensure the quality and representativeness of available measurements that are used.

Table 5-2 summarizes the potential areas where additional information, if available, would provide reasonable substance to address key uncertainties identified in the previous review. These will be considered, in addition to the above factors, in deciding the extent to which new quantitative risk and exposure assessments would be appropriate to conduct in the current review.
Table 5-1. The numbers of SO$_2$ monitors 2003 to 201232

<table>
<thead>
<tr>
<th>Year</th>
<th>Monitors Reporting 5-Minute Continuous Concentrations1</th>
<th>Monitors Reporting 5-Minute Maximum Concentrations2</th>
<th>Monitors Reporting 1-Hour Concentrations2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>6</td>
<td>40</td>
<td>528</td>
</tr>
<tr>
<td>2004</td>
<td>6</td>
<td>32</td>
<td>524</td>
</tr>
<tr>
<td>2005</td>
<td>6</td>
<td>24</td>
<td>510</td>
</tr>
<tr>
<td>2006</td>
<td>4</td>
<td>24</td>
<td>498</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>22</td>
<td>499</td>
</tr>
<tr>
<td>2008</td>
<td>3</td>
<td>20</td>
<td>471</td>
</tr>
<tr>
<td>2009</td>
<td>2</td>
<td>20</td>
<td>440</td>
</tr>
<tr>
<td>2010</td>
<td>149</td>
<td>31</td>
<td>435</td>
</tr>
<tr>
<td>2011</td>
<td>194</td>
<td>183</td>
<td>435</td>
</tr>
<tr>
<td>2012</td>
<td>195</td>
<td>185</td>
<td>450</td>
</tr>
</tbody>
</table>

1 5-minute continuous monitors with at least 20,000 values/year (about 20% data completeness).

2 5-minute maximum and hourly with at least 50% data completeness (4,380 values/year).

5.2.2 Exposure Assessment

The goals of an SO$_2$ exposure assessment in a new quantitative risk and exposure assessment would be (1) to estimate short- and long-term exposures to ambient concentrations through air quality and modeling analyses considering current air quality for SO$_2$ and air quality levels just meeting the current and any potential alternative SO$_2$ standards; (2) compare estimated exposures to potential health effect benchmark levels; and (3) to identify key assumptions and uncertainties. Our assessment of uncertainties in the prior SO$_2$ REA and the potential utility and impact of newly available information regarding the conduct of a new exposure assessment could consider the following:

- Factors that may contribute to greater personal exposures including the impacts of important sources of SO$_2$ (e.g., outdoor point sources).
- Factors that may contribute to lessened personal exposures including infiltration and the decay of SO$_2$ indoors.
- Impact of human behavior (e.g., time spent indoors or outdoors, time spent near sources, timing of exposure event, breathing rate) in influencing the magnitude and duration of exposures, and frequency of repeated short-term peak exposures.
- Population living in close proximity to local sources or otherwise living in areas with elevated SO$_2$ concentrations.
- Frequency and (temporal and spatial) variability of peak air quality levels at concentrations and averaging times of significance.

32 In the last review, the final rulemaking required States to report either the highest 5-minute concentration for each hour of the day, or all twelve 5-minute concentrations for each hour of the day (see section 1.3)
As done was done previously, APEX could be used though we would employ the latest version the model33 (US EPA, 2012a; 2012b) to estimate 5-minute or long-term exposures of interest. Table 5-2 summarizes the potential areas where additional information regarding the assessment of exposure, if available, would provide reasonable substance to address key uncertainties identified in the previous review. These will be considered, in addition to the above factors, in deciding the extent to which new quantitative risk and exposure assessments would be appropriate to conduct in the current review.

5.2.3 Risk Assessment

The goals of a SO$_2$ risk assessment in a new quantitative risk and exposure assessment would be (1) to estimate the number/percent of people at risk of adverse health effects following exposure to SO$_2$ concentrations considering current air quality for SO$_2$ and air quality levels just meeting the current and any potential alternative SO$_2$ standards; (2) to provide distributions of health risk estimates over a range of ambient SO$_2$ concentrations; and (3) to identify key assumptions and uncertainties. Our assessment of uncertainties in the prior SO$_2$ REA and the potential utility and impact of newly available information regarding the conduct of a new risk assessment could consider the following:

- The level and averaging time associated with potential health effect benchmark levels, particularly if there are newly identified at-risk study groups.
- New controlled human exposure studies having the same responses reported in the last review (i.e., sRaw and FEV$_1$) or newly identified adverse responses that could form the basis for the development of exposure-response (E-R) relationships.
- New epidemiologic study(s) that provide(s) concentration-response (C-R) relationships based on data collected in environmentally-relevant settings. Depending on the type of health response function(s) available, ambient SO$_2$ concentration data would be used for characterizing risks and would be most appropriately applied in areas where the epidemiologic study was performed.

Table 5-2 summarizes the potential areas where additional information regarding the assessment of risk, if available, would provide reasonable substance to address key uncertainties identified in the previous review. These will be considered, in addition to the above factors, in deciding the extent to which new quantitative risk and exposure assessments would be appropriate to conduct in the current review.

33 APEX is also referred to as the Total Risk Integrated Methodology/Exposure (TRIM.Expo) model (see http://www.epa.gov/ttn/fera/trim_gen.html for general details on TRIM).
Table 5-2. Primary uncertainties associated with the exposure and risk assessments in the previous review and the potential use of new information for reducing these uncertainties

<table>
<thead>
<tr>
<th>Component of Assessment</th>
<th>Uncertainty/Limitation Remaining From Prior REA</th>
<th>Consideration of Potential Utility of Information Newly Available in This Review For the Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air quality characterization</td>
<td>Characterize relationships between 5-minute peak concentrations and longer averaging times.</td>
<td>There are now more monitors reporting 5-minute concentrations compared with that used in the last review.</td>
</tr>
<tr>
<td></td>
<td>Develop predictive relationships to approximate the probability of occurrence of 5-minute peak concentrations given hourly average concentrations and site specific data for use in locations without 5-minute ambient monitors.</td>
<td>A new characterization of monitor site attributes and emissions sources influencing both 5-minute and hourly SO₂ ambient monitoring concentrations could be performed.</td>
</tr>
<tr>
<td></td>
<td>The estimated number of exceedances of potential health effect benchmark levels occurring at monitors located across the U.S.</td>
<td></td>
</tr>
<tr>
<td>Selection of potential health effect benchmark levels</td>
<td>The health effect benchmark levels used in the SO₂ REA were derived from the ISA’s evaluation of the 5 - 10 minute controlled human exposure literature. The subjects participating in these human exposure studies were exercising asthmatics and do not include individuals who may be most susceptible to the respiratory effects of SO₂ (e.g., the most severe asthmatics). Since the majority of controlled human exposure studies investigating lung function</td>
<td>New estimates of benchmark exceedances could be developed if there are studies newly available that indicate alternative benchmark levels exist outside of the range already considered in the 2009 SO₂ REA.</td>
</tr>
<tr>
<td>Component of Assessment</td>
<td>Uncertainty/Limitation Remaining From Prior REA</td>
<td>Consideration of Potential Utility of Information Newly Available in This Review For the Assessment</td>
</tr>
<tr>
<td>--</td>
<td>--..</td>
<td></td>
</tr>
<tr>
<td></td>
<td>responses to SO2 were conducted with adult subjects, the risk assessment relies on data from adult asthmatic subjects to estimate exposure-response relationships that have been applied to all asthmatic individuals, including children.</td>
<td>A different methodology could be used if there are studies newly available that indicate an improved alternative approach to adjusting air quality.</td>
</tr>
<tr>
<td>Approach used to simulate just meeting potential air quality standard scenarios</td>
<td>The proportional adjustment factors derived from an area’s design monitor are applied to adjust all ambient monitors within the given study area. Deviation from proportionality at any monitor could result in either over or under-estimation of concentrations.</td>
<td></td>
</tr>
<tr>
<td>Exposure assessment</td>
<td>Uncertainty in some of the exposure model input data (e.g., activity patterns, indoor decay rates, air exchange rates)</td>
<td>It is possible that there could be additional data and/or analyses that could be reduce this uncertainty to some extent.</td>
</tr>
<tr>
<td>The estimated number of people with exposures above the potential health effect benchmarks in different locations</td>
<td>The modeling approach used in the prior REA to assessing exposures was resource intensive; therefore, the geographic scope of this analysis was limited to two study areas, albeit having two differing emissions and population densities.</td>
<td>The availability of recently collected 5-minute ambient monitor concentrations and consideration of other air quality input data sources (e.g., dispersion model) could allow for exposure estimates to be developed in other study areas.</td>
</tr>
<tr>
<td>Representativeness of study areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk assessment based on clinical exposure studies</td>
<td>A generally common and important uncertainty in human exposure studies is the limited number of study subjects as well as limits to the type of pre-existing health conditions subjects may have, particularly if the health condition affords the subject with heightened</td>
<td>The availability of new clinical studies could reduce the uncertainty associated with probabilistic exposure-response relationships.</td>
</tr>
<tr>
<td>Component of Assessment</td>
<td>Uncertainty/Limitation Remaining From Prior REA</td>
<td>Consideration of Potential Utility of Information Newly Available in This Review For the Assessment</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>effects sensitivity to the pollutant exposure.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>There remains greater uncertainty in responses below 200 ppb because of the lack of experimental data.</td>
<td></td>
</tr>
<tr>
<td>Risk assessment based on epidemiologic studies</td>
<td>In the last SO2 NAAQS review, the REA concluded that the epidemiologic evidence was not appropriate for use in quantitative risk analyses.</td>
<td>The ability to conduct an epidemiology-based risk assessment for SO2 would depend on the availability of concentration-response relationships from new epidemiologic studies sufficient to reduce the uncertainty to an acceptable level. A risk characterization based on epidemiologic studies also requires baseline incidence rates and population data for the risk assessment locations.</td>
</tr>
<tr>
<td>City-specific concentration-response relationships</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.2.4 Uncertainty and Variability

The uncertainty and variability inherent in characterizing ambient air quality and in estimating exposure and risk would also be evaluated in a new quantitative risk and exposure assessment. Uncertainty reflects the degree of confidence in the representativeness of models or model components. Variability can be described in terms of empirical quantities that are inherently variable across time and space or between individuals (Cullen and Frey, 1999). Consistent with prior NAAQS REAs including the last SO$_2$ REA, EPA would consider using the approach described in WHO (2008), whereas a tiered approach to assessing uncertainty and variability in exposure and risk estimates will be employed, beginning with a qualitative analysis and progressing to a quantitative analysis only if warranted and if data are available to support such an analysis.

5.3 PUBLIC AND SCIENTIFIC REVIEW

The CASAC review panel on the SO$_2$ primary NAAQS will be consulted on the risk/exposure assessment REA Planning Document at a public meeting. The panel will also review drafts of the risk/exposure assessment. The panel will review the draft document and discuss their comments in a public meeting announced in the Federal Register. Based on CASAC’s past practice, EPA expects that key CASAC advice and recommendations for revision of the document will be conveyed by the CASAC chair in a letter to the EPA Administrator. In revising the draft risk/exposure assessment for SO$_2$, EPA will take into account any such advice and recommendations. EPA will also consider comments received from CASAC or from the public at the meeting itself and any written public comments. EPA anticipates preparing a second draft of the risk/exposure assessment for CASAC review and public comment. After appropriate revision, the final document will be made available on an EPA website and subsequently printed, with its public availability being announced in the Federal Register.
6. AMBIENT AIR MONITORING

In the course of NAAQS reviews, aspects of the methods for measuring ambient levels of the NAAQS pollutant, as well as the current network of monitors, including their physical locations and monitoring objectives, are reviewed. The methods for sampling and analysis of each NAAQS pollutant are generally reviewed in conjunction with consideration of the indicator element for each NAAQS. Consideration of the ambient air monitoring network generally informs the interpretation of current data on ambient air concentrations and includes an assessment of the adequacy of the monitoring network for determining compliance with the existing or, as appropriate, a potentially revised NAAQS. This chapter describes plans for considering these aspects of the ambient air monitoring program for sulfur oxides which includes the indicator SO2.

6.1 CONSIDERATION OF SAMPLING AND ANALYSIS METHODS

In order for the data to be used to determine compliance, ambient SO2 concentration data must be obtained using Federal Reference Methods (FRMs) or Federal Equivalent Methods (FEMs) which are designated by the Agency in accordance with 40 CFR Part 50 and Part 53. As described earlier, SO2 is the indicator for the sulfur oxides NAAQS, and has been routinely measured by UV fluorescence FEMs since the 1980s. The SO2 concentration data produced by modern FEM analyzers are routinely logged by state and local agencies whom report the hourly average and either the maximum 5-minute value (one of twelve 5-minute periods) in the hour or all twelve 5-minute averages within the hour to EPA’s Air Quality System (AQS).

The Agency is unaware of any recent technological advances in SO2 measurements or forthcoming modifications to existing methods that should be considered in this NAAQS review. Therefore, the EPA does not anticipate raising any specific sampling and analysis methods issues for consideration in this integrated review plan.

6.2 CONSIDERATION OF AIR MONITORING NETWORK REQUIREMENTS

The ambient air quality monitoring networks for criteria pollutants support three major objectives: (1) to provide air pollution data to the general public in a timely manner; (2) to
support compliance with NAAQS and emissions strategy development; and (3) to support air pollution research studies. A review of the available SO$_2$ monitoring network and data was performed as part of the primary SO$_2$ NAAQS review completed in 2010. Subsequent to that review, and in conjunction with revising the primary standards, the Agency promulgated minimum monitoring requirements to support the implementation of a new primary 1-hour SO$_2$ standard. The 2010 action introduced minimum requirements based upon the use of a Population Weighted Emissions Index (PWEI). The PWEI utilizes both population and emissions data within Core Based Statistical Areas (CBSAs) to determine if monitoring is required in a CBSA and, if so, how many monitors are required. The intent of using the PWEI to require monitors is to focus monitoring into areas where there is a higher proximity of population and SO$_2$ emissions. In effect, areas with a higher calculated PWEI value are expected to have higher potential for population exposure to peak, short-term SO$_2$ emissions.

Historically, the data used to determine compliance with the SO$_2$ NAAQS have been largely based upon data obtained from ambient monitors operated by state, local, and tribal air monitoring agencies. These monitors are either required due to federal regulation contained in 40 CFR Part 58, Appendix D, state implementation plans, industrial permits, or other state or local requirements or voluntary actions. While monitoring data are a mainstay in determining compliance for all other criteria pollutants, SO$_2$ is unique in that there is a precedent to also use dispersion modeling in the implementation of its NAAQS. This is notable because the use of modeling in lieu of monitoring can potentially reduce the necessary size and distribution of a compliance monitoring network. As a result, the final monitoring requirements promulgated as part of the 2010 SO$_2$ NAAQS revision reflected this potentiality.\(^{34}\)

As of December 2013, the ambient SO$_2$ monitoring network is estimated to have 431 monitors in operation nationwide. This number far exceeds the approximate 129 required by PWEI.

\(^{34}\) The best available rationale and description of the Agency’s current thinking on the SO$_2$ implementation is “Next Steps for Area Designations and Implementation of the Sulfur Dioxide National Ambient Air Quality Standard,” also known as the “strategy paper,” which was released in February of 2013 (http://www.epa.gov/airquality/sulfurdioxide/pdfs/20130207SO2StrategyPaper.pdf).
7. POLICY ASSESSMENT/RULEMAKING

7.1 POLICY ASSESSMENT

The PA, like the previous OAQPS Staff Paper, is a document that provides a transparent OAQPS staff analysis and staff conclusions regarding the adequacy of the current standard and potential alternatives that are appropriate to consider prior to the issuance of proposed and final rules. The PA integrates and interprets the information from the ISA and REA(s) to frame policy options for consideration by the Administrator. The PA is also intended to facilitate CASAC’s advice to the Agency and recommendations to the Administrator on the adequacy of the existing standard or revisions that may be appropriate to consider. Staff conclusions in the PA are based on the information contained in the ISA and, as available, the REA, and any additional staff evaluations and assessments discussed in the PA. In so doing, the discussion in the PA is framed by consideration of a series of policy-relevant questions drawn from those outlined in chapter 3, including the fundamental questions associated with the adequacy of the current standard and, as appropriate, consideration of an alternative standard(s) in terms of the specific elements of the standard: indicator, averaging time, level, and form.

The PA for the current review will identify conceptual evidence-based and risk/exposure-based approaches for reaching public health policy judgments. It will discuss the implications of the science and quantitative assessments for the adequacy of the current primary standard and for any alternative standards under consideration. The PA will also describe a broad range of policy options for standard setting, identifying the range for which the staff identifies support within the available information. In so doing, the PA will describe the underlying interpretations of the scientific evidence and risk/exposure information that might support such alternative policy options that could be considered by the Administrator in making decisions for the primary SO2 standard. Additionally, the PA will identify key uncertainties and limitations in the underlying scientific information and in our assessments. The PA will also highlight areas for future health-related research, model development, and data collection.

In identifying a range of primary standard options for the Administrator to consider, it is recognized that the final decision will be largely a public health policy judgment. A final decision must draw upon scientific information and analyses about health effects and risks, as well as judgments about how to deal with the range of uncertainties that are inherent in the scientific evidence and analyses. Staff’s approach to informing these judgments recognizes that the available health effects evidence generally reflects a continuum consisting of ambient concentrations at which scientists generally agree that health effects are likely to occur, through lower concentrations at which the likelihood and magnitude of the response become increasingly
uncertain. This approach is consistent with the requirements of the NAAQS provisions of the
CAA and with how the EPA and the courts have historically interpreted the Act. These
provisions require the Administrator to establish primary standards that are requisite to protect
public health and are neither more nor less stringent than necessary for this purpose. As
discussed in section 1.1 above, the provisions do not require that primary standards be set at a
zero-risk level, but rather at a level that avoids unacceptable risks to public health, including the
health of at-risk populations.\footnote{The at-risk population groups identified in a NAAQS review may include low income or minority groups. Where low income/minority groups are among the at-risk populations, the rulemaking decision will be based on providing protection for these and other at-risk populations and lifestages (e.g., children, older adults, persons with pre-existing heart and lung disease). To the extent that low income/minority groups are not among the at-risk populations identified in the ISA, a decision based on providing protection of the at-risk lifestages and populations would be expected to provide protection for the low income/minority groups.}

Staff will prepare at least one draft of the PA document for CASAC review and public
comment. The draft PA document will be distributed to the CASAC Sulfur Oxides Primary
NAAQS Review Panel for their consideration and provided to the public for review and
comment. Review by the CASAC Panel will be discussed at public meetings that will be
announced in the \textit{Federal Register}. Based on past practice by CASAC, the EPA expects that
CASAC would summarize their key advice and recommendations for revision of the document
in a letter to the EPA Administrator. In revising the draft PA document, OAQPS will take into
account any such recommendations, and also consider comments received from CASAC and
from the public, at the meeting itself, and any written comments received. The final document
will be made available on an EPA website, with its public availability announced in the \textit{Federal
Register}.

\subsection{7.2 \textsc{Rulemaking}}

Following issuance of the final PA and the EPA management consideration of staff
analyses and conclusions presented therein, and taking into consideration CASAC advice and
recommendations, the Agency will develop a notice of proposed rulemaking. The proposed
rulemaking notice conveys the Administrator’s proposed conclusions regarding the adequacy of
the current standard(s) and any revision that may be appropriate. A draft notice of proposed
rulemaking will be submitted to the Office of Management and Budget (OMB) for interagency
review, in which OMB and other federal agencies are provided the opportunity for review and
comment. After the completion of interagency review, the EPA will publish the notice in the
\textit{Federal Register} seeking comment on proposed agency action – namely whether or not to revise
the current standard, and if so, how. Monitoring rule changes associated with review of the
primary SO\textsubscript{2} standard, and drawing from considerations outlined in Chapter 6 above, will be
developed and proposed, as appropriate, in conjunction with this NAAQS rulemaking.

At the time of publication of the notice of proposed rulemaking, all materials on which
the proposal is based are made available in the public docket for the rulemaking.36 Publication
of the proposal notice is followed by a public comment period, generally lasting 60 to 90 days,
during which the public is invited to submit comments on the proposal to the rulemaking docket.
EPA also will provide opportunity for a public hearing on any proposed action. Taking into
account comments received on the proposed action, the Agency will then develop a notice of
final rulemaking, which again undergoes OMB-coordinated interagency review prior to issuance
by the EPA of the final rule. At the time of final rulemaking, the Agency responds to all
significant comments on the proposed action.37 Publication of the final action in the Federal
Register completes the process.

\begin{itemize}
\item 36 The rulemaking docket for the current primary SO\textsubscript{2} NAAQS review is identified as EPA-HQ-OAR-2013-0566.
This docket has incorporated the ISA docket (EPA–HQ–ORD–2013-0357) by reference. Both dockets are publicly
accessible at \url{www.regulations.gov}.
\item 37 For example, Agency responses to all substantive comments on the 2009 notice of proposed rulemaking in the last
review were provided in the preamble to the final rule and in a document titled \textit{Responses to Significant Comments
on the 2009 Proposed Rule on the Primary National Ambient Air Quality Standards for Sulfur Dioxide}, available at:
\url{http://www.epa.gov/ttn/naaqs/standards/so2/s_so2_cr_rc.html}
\end{itemize}
8. REFERENCES

APPENDIX A

DRAFT OUTLINE FOR INTEGRATED SCIENCE ASSESSMENT FOR SULFUR OXIDES – HEALTH CRITERIA

Preamble (will be available online)
- Process of ISA Development
- EPA Framework for Causal Determination
- Public Health Impact
- Concepts in Evaluating Adversity of Health Effects

Preface
- Legislative Requirements for the NAAQS Review
- History of the Primary NAAQS for Sulfur Dioxide

Executive Summary

Chapter 1 Integrative Summary
1.1 Policy-relevant Questions for Sulfur Dioxide NAAQS Review
1.2 ISA Development and Scope
1.3 Sulfur Oxides Sources, Ambient Concentrations, Exposure
1.4 Health Effects Evidence
 - Exposure, Dosimetry, and Modes of Action
 - Comparison of 2008 ISA and Current Conclusions
 - Key Evidence for Evaluated Health Effects
1.5 Policy-Relevant Considerations
 - Concentration-Response and Thresholds
 - Exposure Averaging Times and Lags
 - At-risk Populations
 - Adverse Health Effects, Public Health Significance
1.6 Summary

Chapter 2 Atmospheric Behavior of Sulfur Oxides
2.1 Introduction
2.2 Sources
2.3 Atmospheric Chemistry and Fate
2.4 Monitoring
2.5 Atmospheric Concentrations of Sulfur Oxides
2.6 Modeling
2.7 Summary and Conclusions

Chapter 3 Exposure to Ambient Sulfur Oxides
3.1 Introduction
3.2 General Considerations
3.3 Exposure Measurement
3.4 Exposure-related Metrics
3.5 Exposure Modeling
3.6 Implications for Epidemiologic Studies
3.7 Summary and Conclusions

Chapter 4 Integrated Health Effects Exposure to Sulfur Oxides
4.1 Introduction
4.2 Dosimetry and Mode of Action
4.3 Respiratory Morbidity
 Peak (5-10 min) and Short-Term (1+ hr) Exposure
 Long-Term Exposure
4.4 Cardiovascular Morbidity (Short-Term and Long-Term)
4.5 Other Morbidity
 Reproductive and Developmental
 Cancer
 Neurological/Other Emerging Outcomes
4.6 Mortality (Short-Term and Long-Term Exposure)
4.7 Summary and Conclusions

Chapter 5 Potential At-risk Lifestages and Populations
Introduction and Summary of 2008 ISA Key Findings
Review of Evidence for Specific Lifestages or Factors
 Influencing Health Effects of Sulfur Oxides such as:
 Children, Older Adults, Socioeconomic Status, Diet, Sex,
 Pre-existing Disease, Genetic Variants
Summary and Conclusions
[This page intentionally left blank.]