PM_{fines} Quantification Issues

Ron Myers

OAQPS/EMAD/EFPAG

12/6/2005

Presentation Topics

- PM Measurement Philosophies
- Recent History
- Current Activities
- Future

PM Measurement Philosophies

- Control Centric Philosophy
 - Focuses on Stack Conditions
 - Focuses on Add on PM controls
- Atmospheric Centric Philosophy
 - Focuses on Post Release Conditions

Control Centric Philosophy

- PM emissions measured at standardized stack conditions
 - Measure only controllable component
 - "Best" controls were ESP's & FF
 - Scrubbers were "Best" for a few sources

Control Centric Philosophy

- NSPS/MACT emissions limitations reflect capabilities of available controls
- Recognized that unmeasured portion was important in ambient air

Atmospheric Centric Philosophy

- Emissions measurement method focuses on primary releases
 - Measures atmospheric burden
 - Measures materials condensed due to cooling to atmospheric temperatures
 - Measures materials which quickly react to form solid particles
 - Excludes secondarily formed compounds

Recent History

- PM-10 NAAQS
 - Recognized condensable PM impact
 - Crustal PM was cause of most nonattainment areas
 - Condensable PM was a small consideration
 - Condensable PM method proposed in 1990
 - Was a "Consensus Method" addressing several State specific compliance test methods
 - Incorporates several analytical options

EPA Method 202

- Collects PM in impinger water
 - Similar to 1971 back half PM method
 - Nitrogen purge added
 - Changed extracting solvent
 - Added stabilization of Sulfuric Acid
 - Reflected several State/local methods
 - Allowed several options
 - Air purge
 - No purge
 - Analysis of some components

Method 202 (cont)

- Several Consultants have proposed "better" methods
 - Most methods are based on construct of what components should be considered "condensable PM"
 - No comparison to a Referee Method which replicates atmospheric physics

Method 202 (cont)

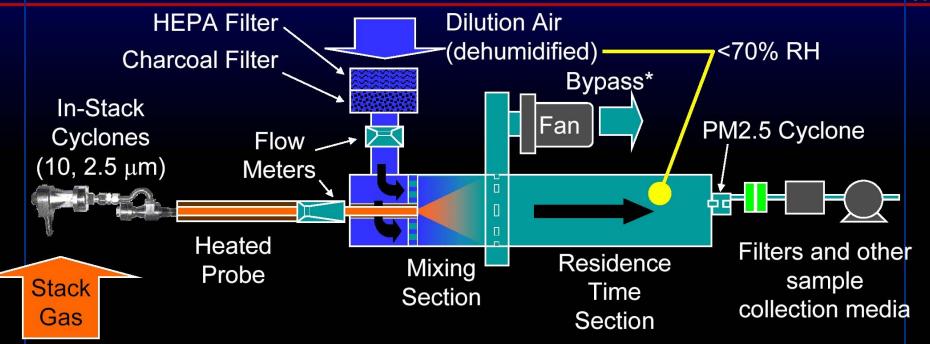
- Intent is to replicate ambient air emissions
 - PM is defined by the conditions
 - Temperature
 - Pressure
 - All M202 options generate different emissions values
 - Referee Method only recently available

Current Activities

- Dilution Sampling for PM
 - Research Methods
 - OAQPS developed Method
 - Industry developed Method
 - ASTM consensus standard

Typical Research Test Method

OAQPS Dilution Sampling System



OAQPS Dilution Sampling System

New EER Field-Portable Dilution Sampler

Environmental Energy

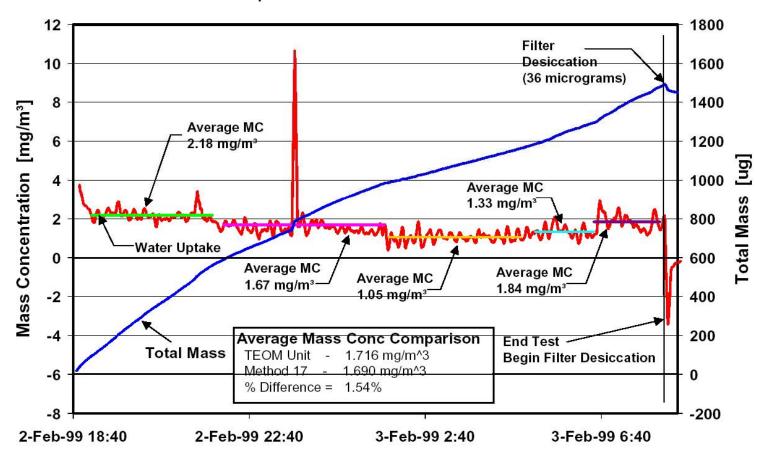
*to maintain constant residence time at different dilution ratios)

- Stainless steel
- Parallel jet mixing
- •Dilution Ratio 20:1 (10-40:1)
- Residence time 10 sec

- Similar conditions to plume
- No liquid phase conversion artifacts
- Analytical resolution 1 μ g (0.000001 g)
- Results comparable to
 - ·ambient air measurements
 - •Data legacy of Hildemann design

ASTM PM Test Method

ASTM D22 Committee


- Draft dilution base standard for sampling and analysis of PM2.5
- Several technical issues identified with first approval ballot
- Committee
 - Glenn England Chairperson
 - Representation from EPA, State/local agencies and Industry

Fine PM CEM's Development

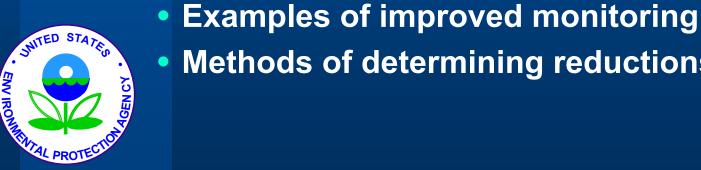
Figure 8. Low Contration Emission Test Using Dilution with Comparison to Manual In-Stack Method

Measurement/Monitoring Drivers

- PM fines NAAQS
 - Ambient Air Speciation Data
 - Proposed Implementation Rule
- Permits Program
 - NSR/PSD
 - Title V
 - State Programs
- Enhanced Monitoring
 - Consolodated Emissions Reporting Rule

PM fine Implementation Proposal

- Published on November 1, 2005
 - Source Emissions Testing
 - PM sizing at 2.5 μM
 - PM condensable
 - Source Emissions Monitoring
 - Filterable & condensable PM
 - Precursor compounds


PM fine Implementation Proposal

- Source Emissions & Testing Issues
- Seeks Comments on:
 - Need for Change in Test Method
 - Options Available for Compliance Demonstration
 - Effects on Existing SIP EmissionsLimits

PM fine Implementation Proposal

- Source Emissions Monitoring
 - Seeks comments on
 - Assertion that Emissions Reduced with **Improved Monitoring**
 - Feasibility of co-pollutant control
 - Asks for
 - Methods of determining reductions

Future

- PM condensables are increasingly important
- Several methods are available to accurately quantify condensable PM
- Several CPM control technologies available

Open Discussion

• QUESTIONS?

