

Total Hydrocarbon Methods The Good, The Bad, and the Ugly

MEASUREMENT TECHNOLOGY WORKSHOP 2015 January 27-29, 2015

Ray Merrill <u>merrill.raymond@epa.gov</u> 919-541-5225

U.S. Environmental Protection Agency

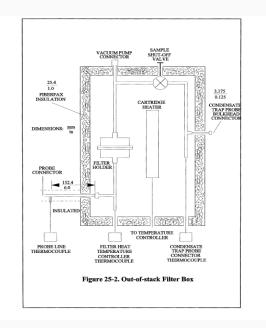
Fundamentals

□Tools – Reference Methods

- Method 25 (Nonmethane combustible carbon)
- ≻ Method 25A (Combustibles by FIA)
- ➤ Method 25B (Hydrocarbons by NDIR)
- Method 25C (Landfill Combustibles by FIA)
- ➤ Method 18 (Speciated Combustibles by FID)
- Method 320 (Speciated Combustibles by FTIR)

Fundamentals

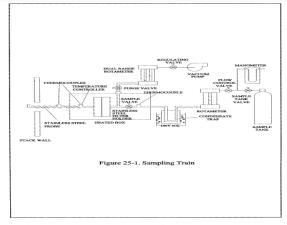
□ Tools – Non-methane Alternative Methods


- ✓ Alt 066 Alternative to Method 18 for Subpart JJJJ
- ✓ Alt 078 Clarification to Alternative to Method 18 for Subpart JJJJ
- ✓ Alt 096 TECO-55I for RICE
- ✓ Alt 097 TECO-55C for Landfills
- ✓ Alt 106 VOC Measurements for Engines

Method 25 – Parts is Parts

Method basics

- Heated filtered stack gas
- \succ Separate CO₂ and Methane
- Condensate and VOC converted to methane
- Uniform response, results as carbon




What to look for in report/results

Method defined endpoint parameters

- ➤ Sampling line temperature 121°C (250°F)
- Condensable trap desorb temperature 200°C (390°F)
- > Carbon Dioxide interference CO_2 purging
- Condensable trap Blanks the detection limit driver
- ➤ Water interference

U.S. Environmental Protection Agency

□ Why Choose Method 25 for NMOC?

- \succ The rule says so, somebody else figured out why.
- Method 25 measures all collected VOC as carbon (methane)
 - Universal response regardless of the compound
 - Meets certain definitions of THC
- □ Why not Choose Method 25 for NMOC?
 - Limited to 50 ppm due to background/blank issues
 - Does not measure VOC mass

(disregards heteroatoms – e.g., Oxygen, Nitrogen, Sulfur mass.)

Method 25C (Landfill NMOC as Carbon)

□ Method Basics – Method 25 without Condensate

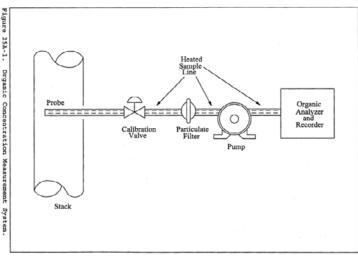
Specifies Sample Probe

- ✓ Unheated
- ✓ Penetrating (0.9 m)
- ✓ Gas accumulation volume
- ✓ No condensate trap
- Analysis = Method 25

What to look for in Method 25C data.

 Nitrogen or Oxygen Correction
 Method 25 QC
 Remember landfill gas is often about 50% CO₂ and 50 % Methane

Method 25A If it burns we count it


Method Basics

➢ If it makes it to the FIA

✓ Heated Filter and Transfer Line (Optional) ≥ 110°C (220°F)

> And burns, we count it.

✓ Assume uniform response factor (propane)

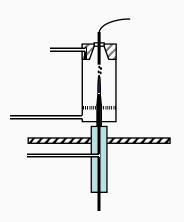
What to look for in results – M 25A

□Instrumental (CEMS) type QC

 \succ Calibration Error (\leq 5% of cal gas value)

≻ Calibration Drift (\leq 3% of span)

➢ Response Time


Water interference

□ Response of polar VOC (oxygenates)

Conversion to proper units of propane

✓ Methane response factor used to convert to propane?

□ What about NON-Methane VOC?

What's Important to you – M 25A?

□ Why choose Method 25A over Method 25

- Detection limit,
 - ✓ Method 25 ~ 50 ppm
 - ✓ Method 25A ~ 0.1 ppm
- Continuous THC Measurement
- □ Why not choose Method 25A
 - □ Rule does not specify, somebody else figured out why.
 - Does not measure or respond well to your VOC
 - > Formaldehyde, methanol, ethanol, acetaldehyde.
 - > Or, choose to calibrate with the predominant VOC if applicable.

What's Important to you – M 25A? (cont.)

How do I measure non-methane or non-ethane w/M-25A?

Method 18 gas separation and methane measurement

- ✓ Make sure the units of measure are the same (as propane)
- ✓ High Methane results affect the confidence in NMOC difference
 - Error in Methane may be larger than final NMOC
 - Negative results for NMOC are possible.

Other issues important to you – M 25A

□ Why not choose Method 25A for VOC measurements?

- Variable response to different VOC Classes
 - ✓ Nonresponsive to formaldehyde
 - ✓ Nonresponsive to per-chlorinated organic
 - ✓ Insensitive to other oxygenated compounds/water soluble
 - ✓ Does not measure true VOC mass

Method 25B If I see it, it must be a VOC

□ VOC that respond to IR in the hydrocarbon range

- Used to measure VOC in hydrocarbon fuel
- Response factors? average response of propane
- What about non-methane VOC from Method 25B?
 - ✓ Optical Speciation of Methane
 - ✓ Calibration with Methane and Propane
 - ✓ High Methane Interference

CTM-042 for Bakeries (ICAC Method)

□ Sample Inlet

- 375 F sampling line to avoid condensation/matches catalyst operating temperature.
- □ Catalytic Methane Cutter
 - ➢ Methane by Method 25A
 - ➤ Total by Method 25A
 - NMOC by difference

Methane Cutter Topics

□ FID Calibration

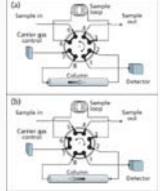
- Methane Gas Standard(s)
- Ethanol Gas Standard(s) -Bakery Specific Response Factor
- Catalyst Efficiency
 - Separate efficiency test using combined methane/ethanol cal gas is required.
 - Efficiency is determined each time unit is calibrated.

Methane Cutter Topics

□ Source Gas Composition Assumed

- Mostly methane and ethanol
- NMOC calculated by difference
 - ✓ High Methane, low NMOC calculation errors

Other Methods for NMOC/NMEOC

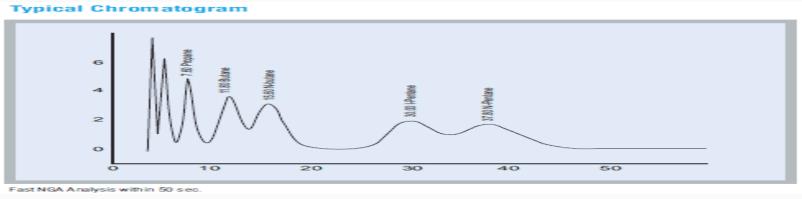

Methane Separation Methods (Alt106, 97a, 96,78,66)
 TECO 55/VIG 200/Backflush GC

✓ Methane passes through gas separation column to FID

 \checkmark Gas direction is reversed in column, residual sent to FIC

Calibration with Methane, Ethane, Propane

Semi-continuous Measurement by FID


Why is this important to me?

Advantages

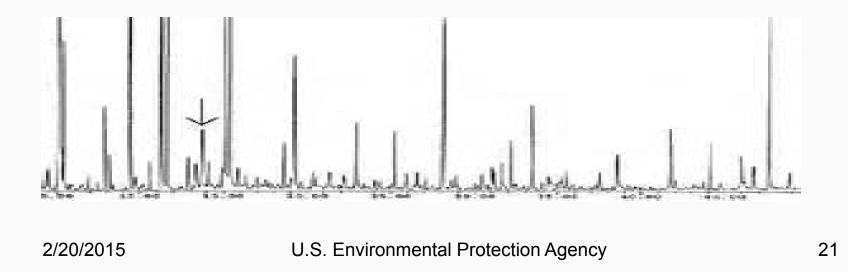
Measures NMOC or NMEOC directly

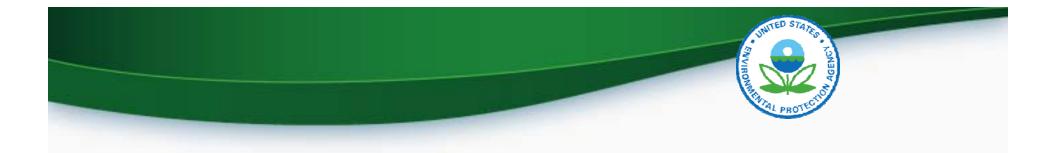
Disadvantages

Ethylene/Acetylene included in NMEOC?

2/20/2015

U.S. Environmental Protection Agency


Method 18 An Ugly way to do total VOC (JJJJ)

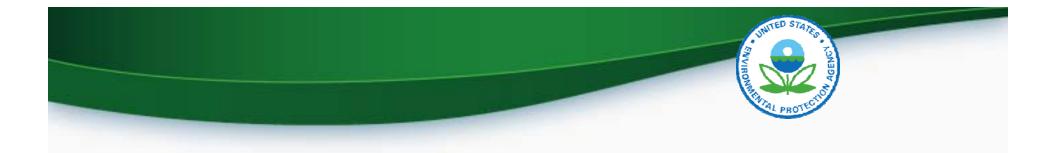

- This is a VOC speciation method by Flame Detector
- Requires prior knowledge of the VOC to measure
 - Calibration and response factors
 - Complete VOC mass characterization
- □ Requires conversion to VOC as propane.

What Compounds do I Measure?

AP 42 lists may be applicable to identify VOC species
 > Requires Method 18 QC and spike recovery for each compound.

Method 320 Another Ugly way to do total VOC (JJJJ)

□ This is a VOC speciation method by FT-Infrared Detector


- Like Method 18
 - ✓ Requires calibration for each VOC species
 - ✓ Requires prior knowledge of the VOC to measure
 - ✓ AP 42 lists may be applicable to identify VOC species
 - ✓ VOC have widely varying response factors
 - ✓ Requires Method 320 QC and spike recovery (surrogate).
 - $\checkmark\,$ Requires conversion to VOC as propane.

Method 18 or Method 320

Questions on how and how not to do speciated VOC as propane!

- Lets discuss what species to include as VOC to measure total VOC – Subpart JJJJ discussion
- How many compounds can you practically do with Method
 18 (Spike recovery on each compound)
- How many compounds can you practically do with Method 320 (spike most difficult to recover- what's that about?).

Method 18 or Method 320

- We have no systematic approach to know when "all" of VOC are measured to generate the total.
 - Method 18
 - ✓ Is accounting for 9X% of the chromatogram peak area enough?
 - Do I have to spike and show recovery on all compounds, even unknowns?
 - Method 320
 - \checkmark Is accounting for 9X% of the IR spectrum features enough?
 - ✓ Is the error in water and CO₂ correction overwhelming to low concentration VOC measurement?
 - ✓ How do I quantitate the mass of unknown compounds from IR data?

2