Mercury CEMS and Sorbent Trap System Certification Under New Rules

EMC Measurement Technology Workshop

Robin Segall

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards January 29, 2015

Topics

- Mercury Measurement Requirements in New Rules
- Mercury Monitoring Specifications
 - Performance Specification 12A
 - Performance Specification 12B
 - MATS, Appendix A
- Ongoing QA Criteria for Mercury Monitoring
 - Procedure 5
 - MATS, Appendix A

Key New Rules w/ Mercury Measurement Requirements

- Mercury Air Toxics Standards (MATS) for Utility Boilers (Subpart UUUUU)
 - Compliance date 4/16/2015
- Portland Cement MACT
 - Compliance date 9/9/2015
- Commercial/Industrial Incinerator MACT (CISWI)
 - Compliance date 8/7/2013
- Boiler MACT
 - Compliance date 1/31/2016
- Sewage Sludge Incinerator MACT (SSI)
 - Earliest compliance date 3/21/2016

ALS AND RECORDS	2-12-07	Monday
leral Registe	Vol. 72 No. 28	монаау Feb. 12, 2007
United States Government Printing one Printing one Printing and Printing and Printi		PERIODICALS hotoga and here Fad U.S. Gewinned Hindy Office (1999: 6091-6538)

Mercury Air Toxics Standards (MATS)

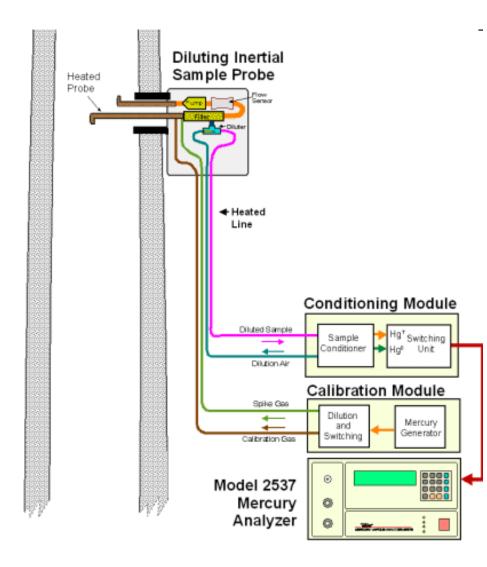
- Solid fuel/IGCC units
 - Must use Hg CEMS or sorbent trap monitoring systems
 - Appendix A contains mercury monitoring requirements
 - All Hg CEMS requirements
 - References Performance Specification 12B for sorbent trap monitoring system installation, maintenance and operation
 - Reference Method (RM) options: Methods 29, 30A, 30B or ASTM D6784-02
 - Ongoing QA requirements

Portland Cement MACT

- New and existing kilns
 - Must use Hg CEMS or sorbent trap monitoring systems
 - Performance Specification 12A (PS 12A) for Hg CEMS
 - Performance Specification12B (PS 12B) for sorbent trap monitoring systems
 - Procedure 5 for ongoing QA of Hg CEMS and sorbent trap monitoring systems
 - RM options: Method 29, 30A, 30B or ASTM D6784-02

Commercial/Industrial Solid Waste Incinerators

- New Waste-burning Kilns
 - Must use Hg CEMS or sorbent trap monitoring systems (Table 7); option for other affected units (60.2165(j))
 - PS12A for Hg CEMS
 - PS12B for sorbent trap monitoring systems
 - Procedure 5 for ongoing QA
 - RM options: Method 29, 30A, 30B or ASTM D6784-02


Boiler MACT

- Large coal-, oil-, and biomass-fired units
 - Optional use of Hg CEMS or sorbent trap monitoring system
 - PS 12A for Hg CEMS
 - PS12B for sorbent trap monitoring systems
 - Procedure 5 for ongoing QA of Hg CEMS and sorbent trap monitoring systems
 - RM options: Method 29, 30A, 30B or ASTM D6784-02

Sewage Sludge Incinerators

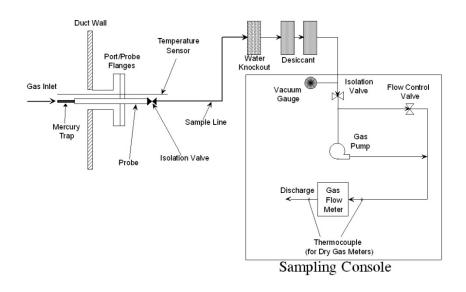
- All affected units
 - Optional use of Hg CEMS or sorbent trap monitoring system
 - PS 12A for CEMS
 - Procedure 5 for CEMS
 - RM options: Method 29, 30B or ASTM D 6784
 - PS12B for sorbent trap monitoring systems not specified, but would be an appropriate alternative that we could approve should a source request

Hg CEMS

- Measure gaseous Hg
 - Elemental (Hg⁰)
 - Oxidized (Hg²⁺)
- Almost all convert oxidized Hg to elemental Hg for measurement of total gaseous Hg
- Calibrate using NISTtraceable mercury gas generators or cylinders

Performance Specification 12A for Hg CEMS

- Certification Testing Requirements
 - 7-day calibration drift test -with Hg⁰ or Hg²⁺
 - Measurement error test 3 levels with Hg⁰ and Hg²
 - Relative accuracy against a RM



Performance Specification 12A Performance Criteria

Certification Test	Acceptance Criteria
Calibration Drift	<u><</u> 5% of span
Measurement Error	For Hg ⁰ \leq 5% of span For Hg ²⁺ \leq 10% of span
Relative Accuracy	\leq 20% or $ RM_{avg} - C \leq 1 \text{ ug/scm if RM is} \leq 0.5 \text{ ug/scm}$

Sorbent Trap Monitoring System Background

- Integrated sample measures total gaseous Hg
- For post-PM control locations
- Paired traps, in-stack w/ 3 sections
- Proportional sampling

Performance Specification 12B for Sorbent Trap Monitoring Systems

- Sampling/analytical requirements
 - Sampling train and operations
 - Sampling/sample QA
- Certification testing requirements
 - Spike recovery study
 - Sorbent capture capability
 - Analytical capability
 - Relative accuracy against a RM

Performance Specification 12B Performance Criteria

Certification Test	Acceptance Criteria
Spike Recovery Study	$85\% \le \%R_{avg} \le 115\%$
Relative Accuracy	\leq 20% or $ RM_{avg} - C \leq$ 1 ug/scm if RM is \leq 0.5 ug/scm
Pre- and Post- Leak Checks	\leq 4% of target (avg) sampling rate
Stack Gas Flow Ratio	95% of hourly ratios within 25% of reference ratio
Trap Section 2 Breakthrough	\leq 5% of Section 1 mass; \leq 20% RD or difference \leq 0.03 ug/scm when conc \leq 1.0 ug/scm
Paired Trap Agreement	\leq 10% RD; \leq 20% RD or difference \leq 0.03 ug/scm when conc \leq 1.0 ug/scm
Calibration	
Trap Section 3 Spike Recovery	75 to 125% of spike amount
Gas Meter Calibration	Measured Y $\pm 5\%$ of initial Y
Temperature Sensor Calibration	+1.5% of reference sensor
Barometer Calibration	+10 mm of NIST-traceable barometer

Appendix F, Procedure 5 for Ongoing QA

• For Hg CEMS

- Daily calibrations -- with Hg⁰ or Hg²⁺
- Weekly system integrity check with Hg²⁺
- Quarterly s test run RAA or 3-level gas audit with Hg⁰ and Hg²⁺
- Annual relative accuracy test audit (RATA)
- For sorbent trap monitoring systems
 - Annual RATA
 - PS12B, not Procedure 5, specifies routine QA/QC (leak checks, calibrations, paired train agreement, spike recovery, breakthrough)

Procedure 5 Performance Criteria

Certification Test	Acceptance Criteria
Calibration Drift (Daily)	<u><</u> 5% of span
System Integrity Check (Weekly)	None
Gas Audit (3 Quarters)	<u>+</u> 15% of avg audit value or <u>+</u> 0.5 ug/m ³
3-Run RAA (3 Quarters)	<u>+</u> 20% of 3-run avg or <u>+</u> 10% of applicable standard
RATA (Yearly)* *CEMS and Sorbent Trap Systems	Same as PS12A

MATS, Appendix A

- Certification Testing Requirements
 - 7-day calibration error test -- with Hg⁰ or Hg²⁺
 - Linearity check at 3 levels -- with Hg⁰
 - System integrity check at 3 levels -- with Hg²⁺
 - Not required if no converter
 - Cycle time test
 - Relative accuracy against a RM

MATS, Appendix A Certification Performance Criteria

Certification Test	Acceptance Criteria
Calibration Drift	< 5% of span or absolute value <1.0 ug/scm
Linearity Check System Integrity Check (3-level)	<u>+</u> 10% of reference gas value or absolute value <0.8 ug/scm
Cycle Time Test	15 minutes
Relative Accuracy*	\leq 20% or RM _{avg} – C \leq 1.0 ug/scm if RM is \leq 0.5
*CEMS and Sorbent Trap Systems	ug/scm

MATS, Appendix A QA Performance Criteria

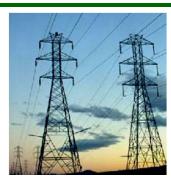
Certification Test	cceptance Criteria
Calibration Error (Daily)	≤ 5% of span or absolute value ≤1.0 ug/scm
Single-level System Integrity Check (Weekly)	<u>+</u> 10% of reference gas value or absolute value <0.8 ug/scm
Linearity Check <u>or</u> 3-level System Integrity Check (Quarterly)	<u>+</u> 10% of reference gas value or absolute value <0.8 ug/scm
RATA (Yearly) *	$\leq 20\%$ or $ RM_{avg} - C \leq 1.0$ ug/scm if RM is ≤ 0.5
*CEMS and Sorbent Trap Systems	ug/scm

Key Differences Between PS 12A and MATS Certification Criteria

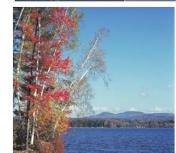
- Calibration Drift (Error)
 - MATS has alternate absolute value criterion
- Measurement Error (Linearity) with Hg⁰
 MATS has alternate absolute value criterion
- Measurement Error (System Integrity) with Hg²⁺
 - MATS has alternate absolute value criterion
 - PS 12A has less strict sole criterion
- Cycle Time Test

- PS 12A has no cycle time test

Key Differences Between PS 12A and MATS Ongoing QA Criteria


• Daily Calibration Drift (Error)

- MATS has alternate absolute value criterion


- Quarterly Gas Audits (3-level Linearity or System Integrity) with Hg⁰ and/or Hg²⁺
 - MATS only requires use of Hg⁰ or Hg²⁺ while PS 12A requires both
 - PS 12A has less strict % of reference gas criterion while MATS has less strict alternate absolute value criterion

Summary

- Most mercury monitoring system certifications will be occurring at coal-fired utility boilers and Portland cement plants
- Some differences between MATS and Portland cement certification and QA requirements, but not terribly significant
- Look for proposed adjustments in MATS requirements soon
 - No longer allow sole use of Hg²⁺ gas standard
 - Tighten up RATA criterion
- Future
 - Finalize Hg calibration gas traceability protocols and procedures

Questions?

