

The Alpha and Omega of Stack Test Validation

From Test Protocol to Test Report Review

ALPHA– Test Protocol

• What is this?

Legal Document – defensible in court
Written declaration of the testing to be performed

Key Items in Test Protocol

• If the field is there – it is *required information*

- Dates/Times (timeliness of the submittal?)
- Facility Information
- Unit(s) to be Tested
 - Operating and Control Information
- Stack Diagram
- Methods
 - Modifications
 - Listed in the method as written
 - Proposed (who has the authority to approve?)

Reviewing the Test Protocol

• Field by Field

http://www.epa.state.oh.us/portals/27/files/ITT.pdf

- Pre-ALPHA
 - Rules/Regulations
 - Permits
 - Previous Testing History

Reviewing the Test Protocol -2

• Verify the information

• Request revision as needed

PRE-TEST Meeting

- WHY?• WHO?
- WHERE?
- WHAT?
- WHEN?

WHY a Pre-test Meeting?

• Smooth Testing

• Preview facility: emissions unit and control

• Discuss ITT – request changes

WHO Attends the Pre-Test Meeting?

• Regulatory Personnel

Facility Personnel
Environmental/Safety
Equipment Operators

- Stack Testers
- Other (lawyers, consultants, etc...)

WHERE to Have the Pre-Test Meeting?

• On-Site

• Verification of port siting (Method 1)

WHAT is the Point of Pre-Test Meeting?

- Discuss the test protocol and operating conditions to meet during the test
- View the emissions source and control equipment
- Discuss safety issues and required PPE

WHEN Should the Pre-Test Meeting[#] Be?

- A couple weeks prior to the scheduled test date
- Prior to the submittal of the test protocol
- Give everyone enough time to acquire what is needed for the day of the test

Day of Testing

- Be Prepared
- Take Note
- Be on the Lookout....

Day of Testing – Be Prepared

• Test Protocol

• PPE

• Observation Forms

• Camera (if allowed)

- Paperwork (copies)
 - Methods
 - Permits
 - Rules

Day of Testing - Take Note

- Job site organization
- Operating and Control Equipment Parameters
- Implementation of Test Methods

Day of Testing – Take Note (2)

• Field Data recorded

- O INK
- Single-line cross out and initialed
- Computer Entered
- Equipment ID information

Date Stack Probe Probe Filter	Dia. Lengti Type Media	h		- Hg							
Point No.	Time	2) Stack Gas Temperature	CFM @	Office Pressure (AH)	Gas Meter Volume Fleading	ues M Tempe		Filter Box Temperature	Probe Temperature	XAD-2 Iniet Temperature	Pump Vacuu
					-		Contract.				
							<u> </u>				
							<u> </u>				
					<u> </u>		<u> </u>				
					<u> </u>	<u> </u>					<u> </u>
			l	l	-		<u> </u>	l		l	<u> </u>

arometric Pressure (Pha)

- Visual inspection of nozzle, pitot tube
 - Alignment in the stack
 - Nozzle diameter

Day of Testing – Take Note (3)

• Calibration and span gases used

• Manometers to scale

• Meter Box Values : $\Delta H@$, γ and calibration dates

• Static and barometric pressures

Day of Testing – Take Note (4)

- Silica Gel
- Leak checks

- Probe and nozzle clean up
- Filter
- Instrumental Methods

Day of Testing – Be on the Lookout

• Cheating

- Umbilical cord crimping
- Adjusting impinger connections during leak checks
- Turning off the pump
- Not using highest vacuum during leak check
- Adjusting instrument based on readings
- Fabricating data on field data sheets
- Not traversing the stack

OMEGA - Test Report Review

- Names, Dates, etc...
- Summary of test
- **O** Calculations
 - Field Data Sheets
- Calibrations
- Operating Rates

Field Data Sheet

Custom Stack Analysis, LLC. Method 26A

					101	en 100 202	`						
order.		DI	י יינאמ							DATE /			
163	ATION	11.	. / .	(nox (Connunity	Hospital				BY July			7
	CHETER (P				NT TEMP	49	ACCLIMET	MOIST	DF		999		-
2 COL	VEE NO	BJ ATI			ζρ-2 FI					ZLE DIA.	197		-
	METER	MET		COND				STACK	VACUUM		VEL.	TTME	-
	VOLUME		2(Tm)	TEMP	HEATER		TEMP	PRESS.		"H ₂ O	HEAD		
- 04.11	(Vm)	IN	OUT	°F	TEMP°F		°F(Ts)			(△H) (Pm)			1
ctent	625.925		57	21	255	265	116	.27	4,0	X	X	0	
5/8//	6756	56	53	21	260	260	114	1.1	4,0	1.8	.31	5	1
2	633.04	56	57	24	259	262	117		3.5	1.6	1.27		1
3	635.92	56	60	26	258	263	119		2.5	1.1	19	15	
4	138157	57	62		250	266	121		2.0	, 89	115	20	
5	642, 67	6	64	27 29	248	263	119		4.5	1.9	1.32	25	
16	HG128	58	65	32	249	263	119		4.5	2.2	137	30	6:5:
	646.29	59	13	33	260	266	124		5.5	×	1.57	50	2.7
2121	650.29	59	66	35	260	265	123		5.5	2.2	.36	35	
2	653.81	59	65	38	253	264	127		4.0	46	.27		
	657.31	60	68	39	251	266	129		4.0	16	126	45	
	660,59	60	67	40	248	265	1.31		4.5	17	129		
	164.32	61	69	41	248	262	126		4.5	14	28		
	67.691	61	69	42	254	364	127		4.0	45	.25		17:2
	0011011						- 156 - L				142	00	11.2
						1							
							1						
		-											
					~~~~~~								
(Vm)	411.866												
AVERA		6	,	****	*****		122						
	RATED G	15 SAN						MAX	COT T PO	1.6		60 L	-
002	1		and the second second		6.3	= 81.7	FINA		COLLECT		μ	MINUTE	3
02	6,0					IERITE	708.5		NITIAL	TOTAL	_		
- 00	12.0	- Id	.0 1.	2.0 Ja					96	12.5	-		
FILTE	R WT	PROBE	WASH	WTT	MPINGER		558.7	- 4°	AND TOTAL	151-			
GROSS					Cl WT.	14				5 6"Hg= 0	0		
TARE					1 ₂ WT.			CUDA	V NOEN	As), 785	5		
NET								AVC	SO RT A	P 522			
	PARTIC	JLAT W	T (Mn	)		Mq		1 4/6	JU RI ZI	= 1744	ų_j		
		5- 07	) =	206									
. 41.56	6				~								
\	/		/	.3	Correct	for le	ak						
				2									

#### Orsat Field Data Sheet

# Method 3 Orsat Field Data Plant Name: Youngstown Thermal Energy Fuel Type: Sampling Location: Boiler #3 Exhaust Stack Pre-Test Leak Check: Post-Test Leak Check:

Run Numbe	ər: )		Date: /	29-04		Operator:	M5
Time of		CÔ ₂	O ₂	CO			
Sample	Time of	Reading	Reading	Reading	%O ₂	%CO	%N ₂
Collection	Analysis	(A)	(B)	(C)	(B-A)	(C-B)	(100-C)
9:22	13:36	9,6	194	194	9.2	6.0	30,6
	13:49	10.0	191	19/	2.1	0.0	\$0.9
10:26	14:00	10.0	19.6	19.0	9.0	0.0	SI O
	Average	9,87	_	_	9.3	6.00	80.83

Analyzer I.D. - A - NRS - 001 Tedlar Bag I.D. -040114 -1 -  $URF_0 = 1.175$ 

#### Lab Data Sheet

foisture	e Weigh	ts	-	nger N <i>26A</i> 3	Jumber						
	Box	1	2	3	4		5	6	Drie	rite	Test 1
Gross		672.4	684.5	598.	7 602.	6			689	7.3	
Tare	5	579.6	612.1	578.	7 597	5			673	.6	
Net		92.8	72.4	20.0	5.1				15.	7	
	Init	ial Imp	ML = 400	2	Imping	ger 1	Cotal =	90.3	Tota	1 =	206.0
	Box	1	2	3	4		5	6	Drie	rite	<u>Test 2</u>
Gross		686.9	664.8	585.	8 589	2			703	3.8	
Tare	3	585.4		568.1					688	.3	
Net		101.5		17.7					15		
					Imping	ger 1	otal =	181.5	Tota	1 =	197.0
	Box	1	2	3	4		5	6	Drie	rite	<u>Test 3</u>
Gross		657.4	629.1	626.	4 587.	7			708	1.5	
Tare	6	579.0	574.7	607.9					696.0		
Net		78.4 54.4		18.5					12.5		
	Box	1	2	3	Imping	ger 1	otal =	1 <b>58.7</b> 6	Tota Dries		71,2 Test 4
Gross	DOX				3 4			0			1000 1
Tare											
Net											
robe Wa	sh Weig	qht			Imping	er 1	'otal =		Tota	1 =	
Box		lest	Gross		Tare		Net	Aceto Blai		I	otal
5		1	113364.		3353.1		11.1	. 15	5		0.95
3		2	113402.		394.2		8.5	1/5		1	.35
6		3	78599.	7 98.	592.1	7.6		.15		7.45	
ilter W No		т	est		iross	I	Таз	re		Ne	t
364		1		640.0			638.2		1.8		-
365		2		6.34,7			632.9		1.8		
366		3		642.0			639.7		2.3		
								4			
Total PM Weight				Test 1 2 3 4			Probe + Filter 12.75 10.15 9,75				



#### After the OMEGA – Thumbs Up or Thumbs Down

ValidPass

• Fail

• Enforcement

• Invalid

• Enforcement



#### Questions Down the Road?

Dawn Mays – Testing/Evaluation Supervisor Southwest Ohio Air Quality Agency (division of Hamilton County Department of Environmental Services) 513/946-7758

dawn.mays@hamilton-co.org

