OAR Perspective on Air Sensors

Kristen Benedict
Measurement Technology Workshop
January 28, 2015

Agenda

- Defining a "Sensor"
- State of the Science
- Data Application
- Messaging
- Questions

Defining "Sensor"

Tier	Cost Range (instrument only)	Anticipated User
Tier V (most sophisticated)	\$10 – 50 K	Regulators (supplement existing monitoring – ambient and source)
Tier IV	\$5 – 10 K	Regulators (supplement existing monitoring – ambient and source)
Tier III	\$2 – 5 K	Community groups and regulators (supplement existing monitoring- ambient and source)
Tier II	\$100 – 2 K	Community groups
Tier I (more limited)	Less than \$100	Citizens (education and personal health purposes)

http://www.epa.gov/research/airscience/docs/roadmap-20130308.pdf

State of the Science

o Criteria Pollutants

 Federal Reference Methods (FRM)/Federal Equivalent Methods (FEM)

o HAPs

 Guidance Materials by Pollutant Class (e.g. VOCs)

Source Testing

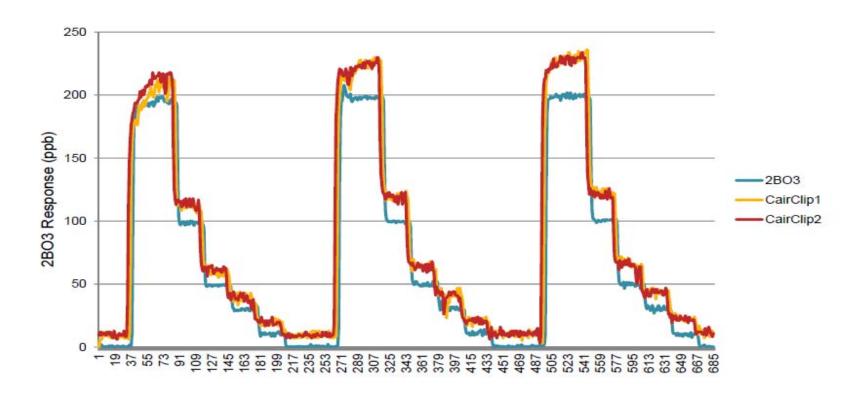
Test Methods/Alternative Test Methods

State of the Science

Citizen Science Toolbox

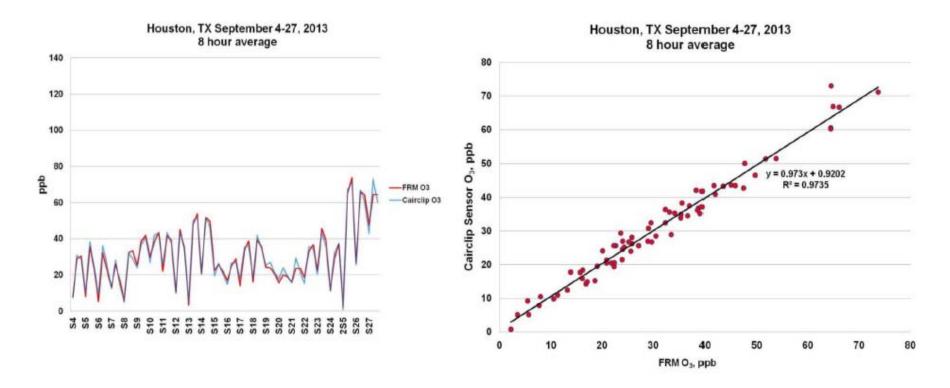
http://www.epa.gov/heasd/airsensortoolbox/

- Air Sensors Guidebook
- Sensor Evaluation Report
- Mobile Sensors & Applications



State of the Science

Example of Basic Performance Characteristics



(Slide courtesy of Ron Williams)

Seconds

DISCOVER AQ Low Cost Sensor Comparison

- Cairclip sensor data corrected by subtracting NO₂ data (as measured by NO₂ FRM) to obtain sensor O₃ results
- Sensor and FRM O₃ results averaged to 8 hours (starting at midnight) for comparison to 8 hour O₃ NAAQS
- Excellent agreement between sensor and FRM results for O₃

Data Application¹

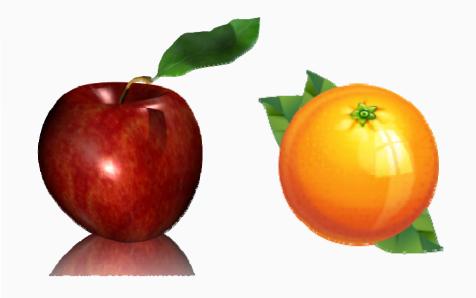
Tier	Application Area	Pollutants	Precision & Bias Error ²	Data Completeness ²
I	Education and Information	All	<50%	≥ 50%
II	Hotspot Identification and Characterization	All	<30%	≥ 75%
III	Supplemental Monitoring	Criteria pollutants, Air Toxics (incl. VOCs)	<20%	≥ 80%
IV	Personal Exposure	All	<30%	≥ 80%
V	Regulatory Monitoring	O_3 CO, SO_2 NO_2 $PM_{2.5}, PM_{10}$	<7% <10% <15% <10%	≥ 75%

^{1.} These are guidelines only (Tier I- Tier IV), and are likely to evolve over time as technology continues to develop and the state of the science continues to advance. The amount of data needed for any air quality purpose is highly specific to that purpose and could range from minutes to even years of data measurements.

^{2.} Precision, bias, and data completeness requirements in part were taken from Appendix D of the *EPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume II* (May 2013 edition). Refer to 40 CFR Parts 50, 53, 58, and the QA Handbook Volume II for all activities/criteria required for monitoring network data.

Data Application

- Informing Network Design
 - Locate monitor in high concentration areas
- Provide insight into near road concentrations (NO₂)
- Personal Exposure Monitoring
- Risk assessment
 - Characterization & Modeling
 - Fenceline/Community Monitoring
- Permitting
 - Help understand background pollutant concentrations


Sensor Concentration ≠ Air Quality Index

Sensor Reading

Concentration

Short term (e.g. 1 minute)

Data Quality Unknown

Air Quality Index

Index Color

Averaged (e.g. 8-hour, 24-hour)

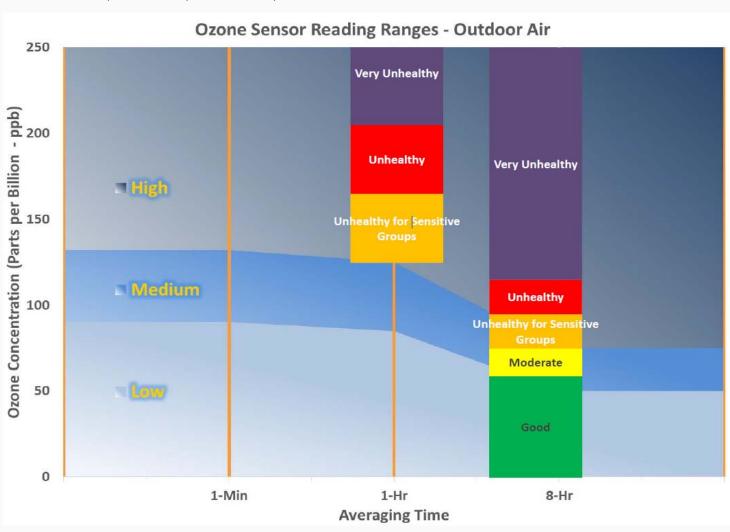
Data Quality Assured

The Air Quality Index

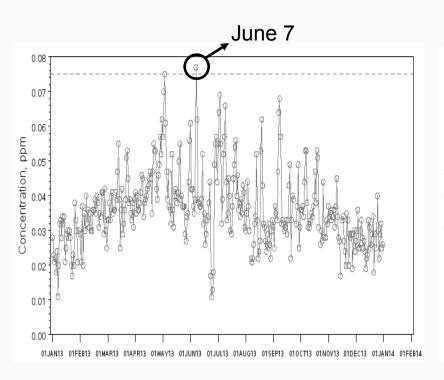
Not for use to interpret sensor data

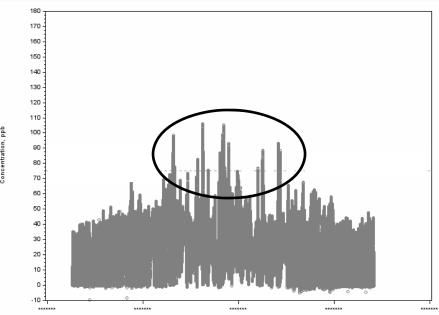
Air Quality Index (AQI) Values	Levels of Health Concern	Colors	
When the AQI is in this range:	air quality conditions are:	as symbolized by this color:	
0-50	Good	Green	
51-100	Moderate	Yellow	
101-150	Unhealthy for Sensitive Groups	Orange	
151 to 200	Unhealthy	Red	
201 to 300	Very Unhealthy	Purple	
301 to 500	Hazardous	Maroon	

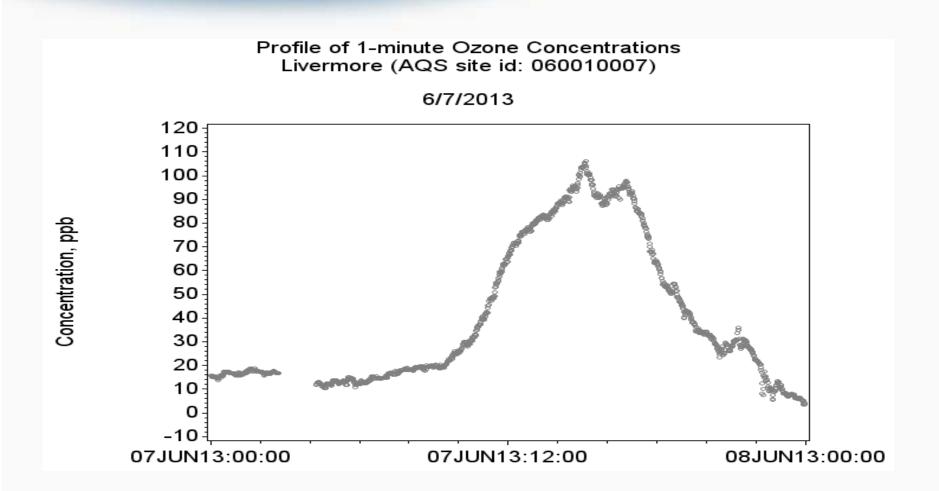
AQI focuses on health effects experienced within a few hours or days


Village Green

- Incorporate real-time, 1-minute ozone and PM_{2.5} sensor data into AIRNow tech
- Expand number of sites (4-5)
- Monitor additional pollutants (VOCs and NO₂)
- Fulfill Agency priority goal for two real time air quality data streams to the public


Brainstorming Sensor Messaging


NCEA, HEID, PACS, OID and AQAD Collaborative Effort


Brainstorming Sensor Messaging

Profiles of Max 8-Hour and 1-Minute Ozone Concentrations Livermore California (2013)

Brainstorming Sensor Messaging

2015 Sensor Messaging Activities

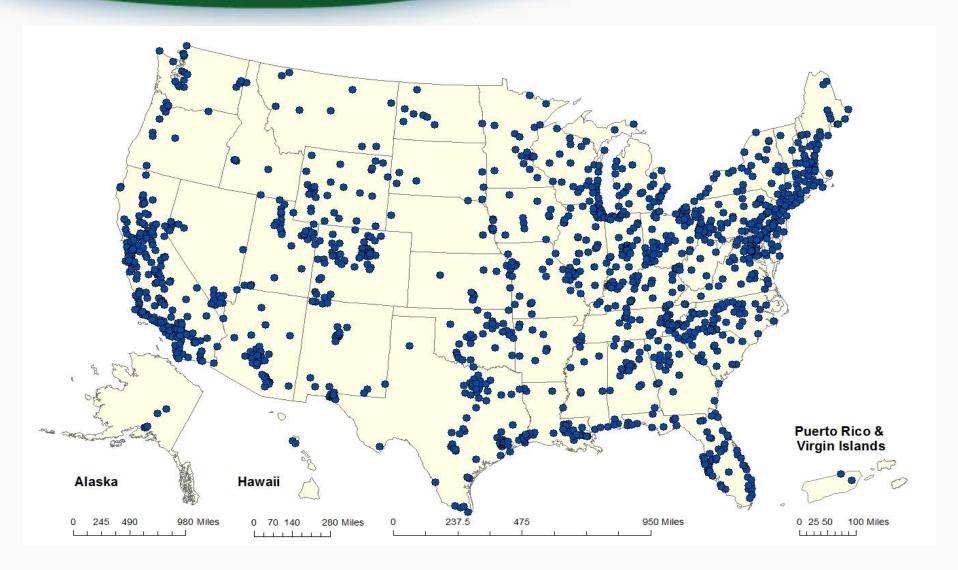
- $O_3/PM_{2.5}$ data analysis
- Sensor messaging webpage development
- Mobile website development
- Focus group studies

CONTACTS:

- Local/State Air
 - Agencies
 - NACAA
 - AAPCA
- EPA
- Others

RESPONSE:

- Not FEM/FRM Quality (ambient)
- Not an approved test/alternative method (source)
- No action
- Check the AQI


Inconsistent/inaccurate information without guidance

Example FAQ and Response

How can we measure pollution using small sensors to ensure that facilities are meeting regulatory limits? Who do I call with my concerns?

- Facilities are generally subject to emission limits measured at the stack (not the fenceline) of a facility
- While sensors may indicate an elevated presence of a pollutant, the facility may still be within emission or permit limits
- Local and State Agency contact information can be found through national associations for air pollution agencies

Acknowledgements

OAQPS Team

- Kristen Benedict (Team Lead)
- o Bryan Hubbell
- Michael Stewart
- o Alison Davis
- o Holly Wilson
- o Susan Stone
- o Phil Lorang
- o Nicholas Swanson
- o David Mintz
- Michelle Wayland
- o Melissa Dreyfus

- Mike Papp
- Jason DeWees
- o Kirk Baker
- James Hemby
- o Ron Evans
- o Chris Chapman
- o Brad Johns
- o John White
- o Phil Dickerson
- o Richard Wayland
- Melissa Payne

Collaborations Air Sensors Policy Group Air Sensors Health Group • ORD • EPA Sensors • EPA **ORD** • OAR NIEHS • EPA • OECA Army OAR • OW NOAA ES21 • CDC • CDC • NIH • USDA NIH NIST