PM_{fine} Quantification

Perceptions about Ammonia Slip, Acid Gases,
Condensable Particulate Matter and
Applicable Test Methods

Ron Myers
OAQPS/SPPD/MPG
1/30/2013

Presentation Topics

- Archaeology
- Philosophy
- Recent History
- Current Activities
- Future

History

PM-10 NAAQS

- Recognized condensable PM impact
 - Crustal PM was cause of most nonattainment areas
 - Condensable PM was a small consideration
- Condensable PM method proposed in 1990
 - Was a "Consensus Method" addressing several State specific compliance test methods
 - Incorporates several analytical options

1990 EPA Method 202

- Collects PM in impinger water
 - Similar to 1971 back half PM method
 - Nitrogen purge added
 - Added stabilization of Sulfuric Acid
 - Reflected several State/local methods
 - Allowed several options
 - Air purge
 - No purge
 - Analysis of some components

Method 202 (cont)

- Intent was to replicate ambient air emissions (see Quotes from NSPS)
 - PM is defined by the conditions
 - Temperature
 - Concentration
 - Pressure
 - All 1990 M202 options generated different emissions values

No Referee Method available in 1990

Measurement/Monitoring Drivers

- PM fines NAAQS
- Permits Program
- Enhanced Monitoring
- Consolodated Emissions Reporting Rule
- Significant emissions increase w/ CPM addition
- Industry "artifacts" concern

Assessment of 1990 Method 202

- Conducted Laboratory Study
- SO₂ bubbled through impingers
 - 300 ppm for 1 & 3 hours
 - 50 ppm for 6 hours
 - Nitrogen purge and no purge
- No ammonia

Method 202 Artifacts

SO ₂	Test	H ₂ O	Artifact Mass (mg)		
ppm	duration	volume	No Purge	Purge	
300	1 Hr	400 ml	180 ± 6	10 ± 0.5	
300	3 Hr	800 ml	400 ± 25	20 ± 5	
50	6 Hr	1400 ml	200 ± 10	20 ± ??	

Recent Activities

- Revised Method 201A & 202
 - Eliminated options
 - Reduced initial impinger water
 - Required purge
 - Required back up impinger
- Dilution Sampling for PM
 - Research Methods
 - **OAQPS** developed Method

Method 202 Improvement

Expand Lab Study

- Purge Only
- Expand SO2 conc
- Modify glassware
- Collaborate with stakeholders

Dry Impinger Method Performance

Run	Organic (mg)	Inorganic (mg)	Filter (mg)	Total
1	0.11	2.23	-0.34	2.34
2	0.15	2.88	-0.06	3.03
3	0.09	1.37	0.00	1.46
4	0.30	1.91	0.00	2.22
5	0.16	1.54	0.07	1.77
6	0.33	2.19	-0.17	2.52
7	0.08	1.18	0.30	1.56
8	0.02	1.87	0.17	2.06
Blank	-0.02	0.21	0.00	0.68
Average	0.16	1.90	0.00	2.12
Std Dev	0.1	0.51	0.17	0.45
MDL	0.31	1.54	0.49	1.36

Important PM_{2.5} Method Dates

- Final PM Implementation Rule
 - April 25, 2007
 - FR Vol 72, No 79, pg 20586
- Proposed Test Methods
 - March 25, 2009
 - FR Vol 74, No 56, pg 12970
- Final Test Methods
 - December 21, 2010
 - FR Vol 75, No 244, pg 80118

Residual PM Testing Concerns

- Method 202 > SO₃
- Ammonia reactions
- CPM still dominates PM_{2.5} emissions
- Permit limits exceeded

Example Measurement Issue

- Coal fired utility boiler
 - Catalytic Reduction for NO_X
 - Permit limit for NO_X & PM₁₀
- Failed annual PM compliance test
 - PM₁₀ was 5x limit
 - CPM was 95% (NH₄)SO₄
 - NH₃ slip measured at 57 ppm
 - SO₃ measured at 0.4 ppm

Stack test consultant concluded PM was primarily "artifact"

Resolution of Measurement Issue

- Retested with several test method changes
 - Increased sample rate
 - Increased condenser temperature ...
 - Same results
- Replaced catalyst bed 2 years early
- Reduced NH₃ slip to 1 ppm
- CPM emissions reduced by 90%
 - New Plant Manager hired
- New Test Contractor hired

Next Example Measurement Issue

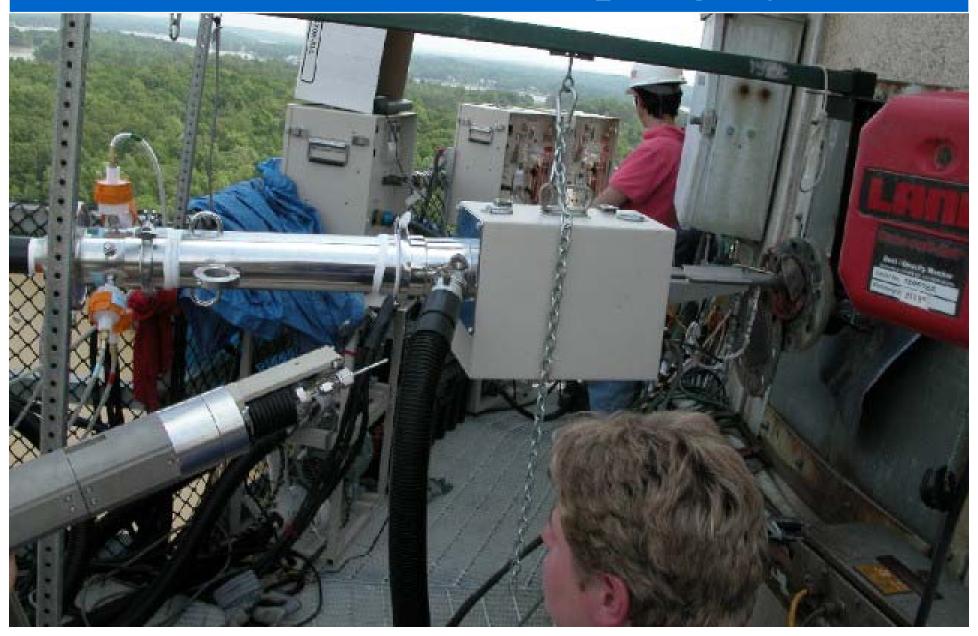
- Biomass Boiler
 - Noncatalytic reduction during O₃ season
 - FF for PM control
- PM (M5 & 202) test results
 - w/o NH₃ injection 0.004 #/mmBtu
 - w/ NH₃ injection 0.02 0.04 #/mmBtu
- CTM 039 results 0.007 #.mmBtu

- Sampling issues
 - Water
 - Filter

Interest in CTM 039 Increasing

- National Academy encouraged use of dilution sampling
- EPA developed system
 - Potential benchmark for "artifact" elimination
 - Potential for use with extended sampling times
 - Development of speciation profiles
- EPA continues to encourage further development

Typical Research Test Method



OAQPS Dilution Sampling System

OAQPS Dilution Sampling System

Video of OAQPS DST

This link will take you to the 2 min video of the OAQPS Dilution Sampling System.
You need to have Windows Media Player to view this slide of the presentation.

Future

- PM condensables are increasingly important
- Continued concerns by industry
- Several methods are available to accurately quantify condensable PM
- Continuous Monitoring Systems are on the Horizon
 - Several CPM control technologies available

Open Discussion

• QUESTIONS?

