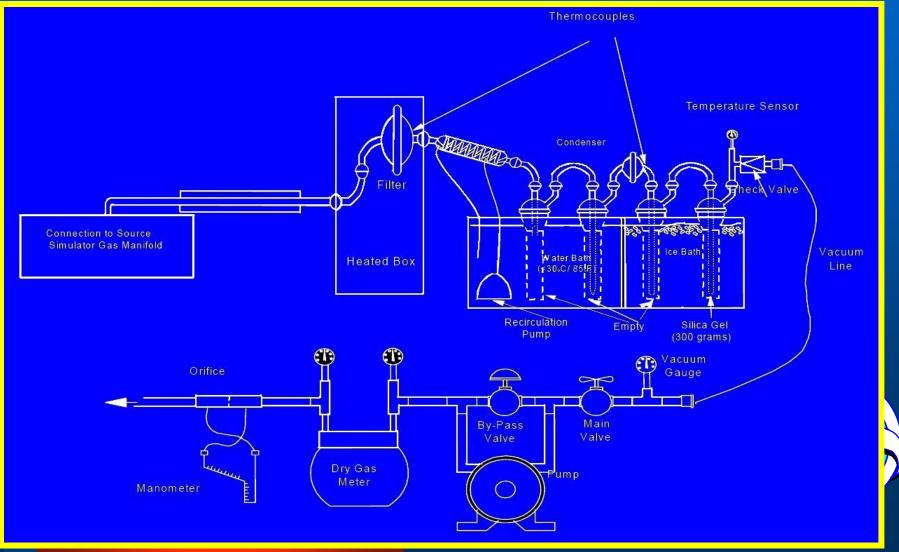
Fine PM Test Method

Measurement Technology Workshop

12/8/2010 Ron Myers OAQPS/SPPD/MPG


Presentation Topics

Condensable PM test method
Particle sizing test method
Implications of new test methods
Test method changes from proposal

Dry Impinger Train Layout

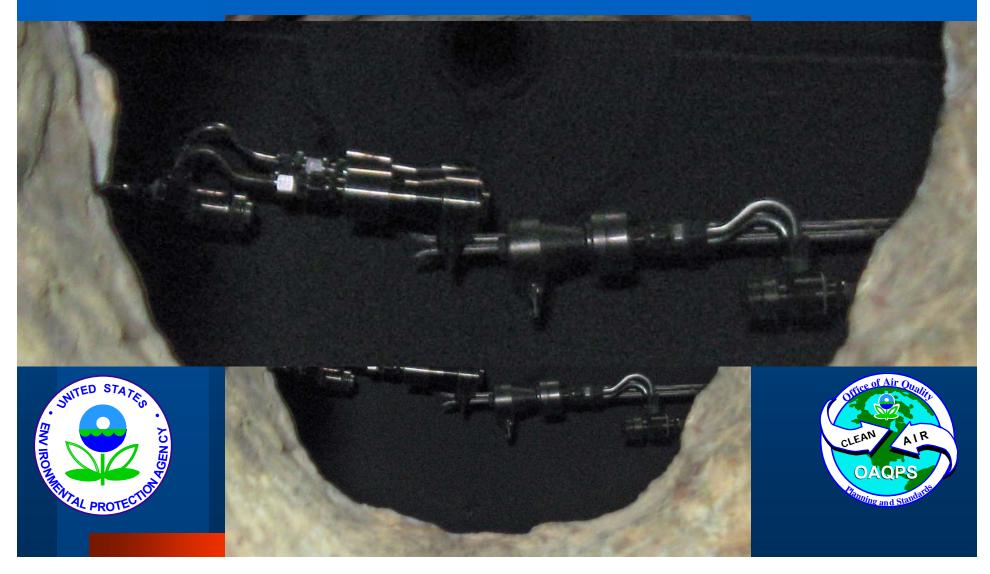
ENVIRON

Dry Impinger Method Performance

	Run	Organic (mg)	Inorganic (mg)	Filter (mg)	Total	
	1	0.11	2.23	-0.34	2.34	
	2	0.15	2.88	-0.06	3.03	
	3	0.09	1.37	0.00	1.46	
	4	0.30	1.91	0.00	2.22	
	5	0.16	1.54	0.07	1.77	
	6	0.33	2.19	-0.17	2.52	
	7	0.08	1.18	0.30	1.56	
	8	0.02	1.87	0.17	2.06	
	Blank	-0.02	0.21	0.00	0.68	ere of Air Quar
SNITED STATES	Average	0.16	1.90	0.00	2.12	
	Std Dev	0.1	0.51	0.17	0.45	EANAIR
EN ROLLECTION	MDL	0.31	1.54	0.49	1.36	OAQPS anning and Standards

Filterable PM Sizing

• Method 201A (1990)


• Method 201A (2010)

PM₁₀ & PM_{2.5} Precision Testing

CPM Precision

ENV IRO

Field Sampling Precision

Precision Testing Results

Filterable PM_{2.5} precision ≈ 1 mg
Total CPM precision ≈ 4 mg

Organic CPM precision ≈ 0.5 mg
Inorganic CPM precision ≈ 3.5 mg

H₂SO₄ collection decreases with decreasing concentration

Once collected H₂SO₄ is retained
H₂SO₄ is good audit material

PM_{2.5} Regulatory Requirements

- Clean Air Fine Particle Implementation Rule
 - Promulgated April 25, 2007
 - January 1, 2011 is critical date for PM_{2.5}
 - New or revised SIP rules must consider PM_{2.5} in setting limits
 - NSR/PSD permits must also consider PM_{2.5} in limits
 - Transition period was for development of improved knowledge using improved test method

Existing use of CPM Methods

- Most States do not address CPM
- Some States address CPM
 - States test methods for CPM are inconsistent
- Only rules that are new or revised need consider CPM

 States do not have to use EPA's test method for acceptance of SIP or NSR/PSD rules

Implications of considering PM_{2.5}

- States w/o CPM testing now
 - PM_{2.5} will need to be addressed in new or revised emissions limits

- Will likely adopt new test methods

 Higher numerical limits do not mean higher emissions

 State will need good information to know where they are and what revised limits will achieve

Implications of considering PM_{2.5}

States w/ CPM testing now

- May convince EPA that their rules comply with intent of implementation rule
- May wish to adopt new test method
 - Numerical limits will require adjustment
 - Adjustment requires careful consideration
 - Risk of errors may be greater than for States that are just now adopting CPM testing

Schedule for PM Test Methods

Signed by the Administrator - Effective date is January 1, 2011 – Nucor Steel asked for extension Extensive Response to Comments Response to major issues in preamble Responses to other issues in RTC document Several minor changes from proposal UNITED STA

INV IRC

Changes from proposal (M201A) Added definitions - Primary PM, PM₁₀, PM₂₅ - Filterable PM – Condensable PM Revised/clarified method applicability Small diameter stacks (blockage) Wet stacks (water droplets) Temperature limitations UNITED STA Port size requirements Particle sizing (PM₁₀ vs PM_{2.5} vs both)

NV IRC

Changes from proposal (M202)

- **Definitions of Primary PM, PM₁₀, PM_{2.5}**
- Replaced MeCl with hexane
- Modified filter media specifications
- Added optional glassware preparation
 - User determined requires proof blank
 - Bake at 350°C no proof blank
- Clarified text in several areas
 - Terminology (field blanks, proof blank)
 - Applicability for wet stacks
 - Use of pH indicators
 - Requirement to use cleaned glassware
 - Nitrogen purge specifications

Comments or Questions

